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7. We ghall still prove that the commubativity (f+g)#h = Flgn)
bolds also, if one of distributions f, ¢, % i8 of bounded carrier, Drovided
the convolution of two remaining ones exists. We have namely:

TeeoREM 7. If the convolution f+g emists and h is a distribution of
bounded carrier, then, in the equalily (f*g)*h == fr(g*h), all the couwold-
tions ewist and the equality holds.

Proof. The existence of convolutions (f*g¢)*h and g*h follows, ay
a particular case, from Theorem 5. Tt remaing to prove the exigtence
of f+(g*h) and the equality. Let Jn = (f*&,)%(g%8,). Then Ty, -» fry
by the hypothesis that fxg exists. Now, by Theorem 5 we have T
—(f*g) *h. Assume that % iy a continuous function. Then

Rt b == [(f8n) *(9 % 8p) 1% b = (f* En) *[(g % 0a) % D] == (% 8,) %[ (g *h) % 5,7

here, the second equality follows from the fact that fxé,, g*8, and b
are functions for which the convolutions (|f* 6| * |g * §,]) * |&] and (9%8,) *h
exist, and the last equality follows from the remark at the end of gec-
tion 6. Since k,*h converges, the convolution f *(g«h) exists, by
definition, and the equality (f*g)*h = f#(g*h) holds. I¢ % is not a con-
finuous function, then the assertion follows by Theorem 3.
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On the uniqueness of the ideals
of compact and strictly singular operators *
by
RICHARD H. HERMAN (Rochester)

The purpose of this note is to extend a result of [3]. In particular,
it is shown fhere that the ideal of compact operators is unique in [X7],
the bounded linear operators from X to X, where X =1Ip, 1< p < oo
and ¢,. An obvious question is do there exist other spaces for which this
is true ? We obtain a partial result in this direetion by requiring our space
to have two properties which Ip and ¢, enjoy. In addition, using one of
these properties, we show that the ideal of compact and strictly singular
operators agree. The phrase “partial result’’ is used since we eannot at
this time exhibit a space with the above-mentioned properties other
than Ip or ¢,. However, the proofs given here have the advantage of
treating all cases simultaneously, as opposed to what is done in [3].

We will assume that the reader is somewhat familiar with the theory
of Schauder bases in Banach spaces. Results used from this theory may
be found in [2].

1. Definition. {e;} is a Schauder basis for X if for each zeX,

£ = ) a;z; uniquely. In this case a; = g:i(a), gseX™.
1

2. Definition. {2} is said to be a block basis if
41
2 = Zd(r,;k)&,;, ay < g < ...
ap+1
If {e;} is a Schauder basis for X, then {2} is a Schauder basis for
8D {=i}, [11.
3. Definition. We will say that a Banach space X with a basis
has (+) if given a block basis {2}, there exists P: X — 5p {23}, P a pro-
jection. )

* This work was done while the author was an NDEA Fellow at The University
of Maryland.
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4. LevmA. If Q is a non-zero, two-sided ideal in [X), X o Banach
space, then Q contains all operators with findte-dimensional range.

The following is due to Maddaus [6].

5. LeMMA. Let X be a Banach space with a Schauder basis. Lvery
compact operator in X i the wniform limit of finite-dimensional operators.

6. LEMMA. Let A<[X], X o Banach space with a Schauder basis {ex}.
A sufficient condition for A to be compact is that

o0
Dllder] < oo.
1

Proof. Since X is separable, we may apply the condition for eom-
pactness given by Gelfand [4]. Let {f;} = X* be such that f; — 0 in the
weak * topology. We must show f; — 0 uniformly on the image, under 4,
of the unit ball § in X. Let @S, Then )

=] o0
D p = Zam and Ao = Z a; Ae;.
. X 1

Let g; be the coordinate functionals. There exists M such that llgsll < M,
hence, |o;] = |g;(@)| < M. Let &> 0 be given, and pick N (&) such that

> &
;’ el < -

Pick J(e) large enough so that | fi(de)| < &/2NM for §>J and
¢=1,..., N. Then

N ©
o) <|fy( 3 acdes) |+ £ Y e | < .
1 N

Since » was arbitrary, we are done.

_ 7. Definition. A Banach space X with a Schauder basis {e;} is
said to be block homogencous if given a block basis {2}, Il == 1, then
Dt converges if, and only if, 2ter converges. In this case, A ( Dbt
= Z‘tkek is an isomorphism between 8P {o} and X.

The following lemma is stated in [3] somewhat differently:

8. LEMMA. Let X be a blook homogeneous Banach space, with (--)
and o Schauder basis {e;}. No proper two-sided ideal 2 = [X] can contain
an operator O such thet inf|Cey| = 6 > 0 and limgy(Oey) == 0 for cach
coordinate functional ;. % T .

. Proof. Suppose such an operator was in £. By theorem 8 of [1]
it follows that some subsequence {06y} is a basic sequence oquivalent
0 {2}, a block basis. By hypothesis, {} is equivalent to {e;}. Thus there

e ©
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exist A, Be[X] such that Be; = Oer, and Ae; = #. Then |(A—OB)e|
= |lg;—Ceyl. An examination of the above-mentioned theorem indicates

we may choose |j—0eyl < & and. ||| > 8/2, with }'e < co. Hence, by
1

Lemma 6, 4—OB is compact. By assumption, X has (+). Therefore,
there exists P: X — 5p {21} ' i

By lemmas 4 and 5, 4—CBeQ. Hence, 4~'-P-(4—CB)
=1—A""P-0-B. If 0eQ, then I<f which is a contradiction.

9. TuroreM. Let X be as in Lemma 8. If Q is a non-trivial ideal
in [X], then Q is the ideal of compact operators.

Proof. Let 4 be a non-compact operator and 4 ef2. Then there
exists a sequence {w,}, [[@all =1, such that {4ds,} has no convergent
subsequence. If the g; are the coordinate functionals, we may, by the
Cantor process, extract a subsequence {Awn,} such that g;(Az,) con-
verges for each j. {4y} has no convergent subsequence; therefore, choose
a further subsequence {%;} such that | 4%—A4%,,|| > &> 0. Let o = 7—
—y4,; then

(T) g;(A42) — 0 and il;f||Az;|[ = ¢>0. Pick a subsequence of the #

such that g;(z,) converges for each, j. Now {42,} has no.convergent

subsequence for, if it did, say 4z, — @, then g;(z) = 0 for all j, by the

continuity of the g;, hence # = 0. But inf||dz)| > ¢ > 0, thus # cannot
. 1

== 0, a contradiction. Therefore, there exists b> 0 and a further subse-
quence such that

(II) inf|l4 (&, —2,41)]] =0 > 0. Let 9 = 2,—2,,,. Now g;(9,) — 0 and
we must have, by (II) that H4é > 0 such that iIrlfH?/rll > 0. By theorem 3

of [1] and our hypothesis on X, some subsequence {y,,} is-equivalent to
{ex}. Let Be, =y, and AB = C; then g;(Ce) = g;(4yy,) >0 by (I),

and inf((0e| = inf||4y,,) >0 by (IT). According to Lemma 8, this is

impossible, g.e.d.

10. Levma. The spaces l,(1 < p < 00) and ¢, are block homogeneous.
Proof. Verify.

11. LeMMA. The spaces (1 < p < oo) and ¢, have (+).

Proof. Let {2} be a block basis in ¢,. There exists hye[z;]* such
that {h} is a biorthogonal sequence for the {2}, i.e. hx(2;) = 6k and
Ikl < 2 for all %, [2]. By the Hahn-Banach theorem we extend each
Ry to Py a continuous linear functional on . Hence, ky, belongs to 1, for
all &, [1]. Suppose

1

k
& = 2 t(lz)e'h

ap+1
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where ¢; is the standard basis for ¢,. Iach
o0

hip = 2 af’f;
1

and | <2 (f; is the standard basis in 7,). By the form of the norm in I

we may take
1

hy = E “ik)fe

ap+1

and still have [y || < 2 and hy'(2) = 0py. Lebt @ = Y t;¢;. We write
1

@ = 29;,‘ where @y = 2 tie;.

The desired projection is then
o
W
Py = 2 hk (w,,)zk.
1

P is clearly the identity on [z;], therefore, it suifices to show that P is
well defined or, using the fact that ¢, is block homogeneous, that the

sequence {h (@)} e6,. But o = %’wk hence, [ly| — 0. Using the fact that

b <2 for all %, the result is obvious.
The proof for the case of I,,1 < p < oo, iy gimilar. We may apply

the same method arriving at functionals k' and letting o = >'my, 'we again

. ! 1
define Pw = 3y (ax)#. However, we must now show {h;’ (1)} to belong
to the appropriate ,. But

-1 0
2 W @) < 3 1P ol < 22 3 }; il = 2° DT|uf” < oo.
gt 1

12, OororrARY [3]. The ideal of compaoct operators i3 unique in 1
1 <p < oo, and ¢,. '

Proof. Lemmas 10 and 11.
) 13. Detinition. An operator Te[X] is said to be strictly singular
%f, \?vl_xenever T has a bounded inverse on a subspace M < X, then M
is finite-dimensional [5].

1.4. Oc_)ROLLARY. If X has a block homogencous basis, then the ideal
of strictly singular operaiors (K (X )) equals the ideal compact operators (T(X )).
. Proof. Suppose n.ot, Le., Ac¢K(X) and A¢T(X). As in the proof
of Theorem 9 we obtain a sequence (after relabeling) {y,} such that
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(i) infflyml = 6 >0,
(i) igfllA?/mll =b>0,
(i) g;(ym) >0,

(iv) 9;(4ym) >0,

m
(v) Ay, is a basic sequence equivalent to {e,}, the basis of X.

By applying Theorem 3 of [1] to {y»} we may extract {y.,}, a basic
sequence equivalent to {e:}, since the space is block homogeneous. If
we now take the corresponding Ay, and use the block homogeneity
again, we get {4ym,} basic and equivalent to {e}. Let W = 8D {Ym,}-
Since {ym,} is a basic sequence, all the y,, are topologically free, i.e.,
no one is in the closed linear span of the other. Hence, W is infinite-
-dimensional. By the above equivalence, we obtain the existence of iso-
morphism B and ¢ such that

B
Ymy —>

&
o

Vg,

A

i.e., 4 = OB is an isomorphism between W and AW. This contradicts
the fact that A is strictly singular.
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