

On normed lattices topologically isomorphic to some Orlicz space L^*_a

hv

KÔJI HONDA (Muroran)

1. Introduction. Let μ be a non-atomic, completely additive measure on a set Ω with $\mu(\Omega) = 1$.

The Orlicz space $L^*_{\boldsymbol{\phi}}(\Omega, \mu)$ consists of all real-valued functions x(t), μ -measurable on Ω , such that

(1)
$$\varrho(ax) = \int_{\Omega} \Phi(a|x(t)|) d\mu < +\infty \text{ for some real number } a > 0,$$

where Φ is an N-function which satisfies (Δ_2) -condition (1). Then, the space L_{Φ}^* is not only a Banach space with the norm (2)

$$||x|| = \inf\{1/|\xi|; \rho(\xi x) \le 1\},$$

also becomes a conditionally complete vector lattice (3) by the usual ordering.

In the preceding paper [7], we gave a characterization of L_{σ}^{*} . The purpose of the present paper is to characterize L_{σ}^{*} under the topological equivalence without containing the function Φ in the condition by which L_{σ}^{*} is characterized.

We shall easily see that an N-function has an equivalent N-function with the continuous derivative. Therefore, we shall assume in this section that Φ is continuously differentiable. Then, the modular norm on L^*_{Φ} is

(1) A continuous convex function Φ is said to be N-function if

$$\lim_{\xi \to \pm 0} \Phi(\xi)/\xi = 0 \quad \text{and} \quad \lim_{\xi \to \pm \infty} \Phi(\xi)/\xi = \pm \infty \quad ([9], \text{ p. 9}).$$

 $[\]Phi$ is said to satisfy (Δ_2) -condition if there exist two real numbers a>0 and $\xi_0\geq 0$ such that $\Phi(2\xi)\leq a\Phi(\xi)$ for all $\xi\geq \xi_0$. In this case, L_Φ^* can be defined as the totality of μ -measurable functions x(t) such that $\varrho(x)<+\infty$. The functional ϱ on L_Φ^* in (1) is a modular in Nakano's terminology.

⁽²⁾ This norm is called the modular norm or Luxemburg norm.

⁽³⁾ A vector lattice R is said to be conditionally complete, if for $R \ni a_{\lambda} > 0$ ($\lambda \in A$) there exists $a \in R$ such that $a = \bigcap_{i=1}^{n} a_{\lambda}$.

smooth and monotone (4). Furthermore, we can see that for each $x(t) \in L_{\varphi}^*$ there exists only one $\overline{x}(t) \in L_{\varphi}^*(\Omega, \mu)$, Ψ is the complementary N-function, for which the equality in the Young's inequality holds, i.e.,

(2)
$$\int_{\Omega} x(t) \overline{x}(t) d\mu = \int_{\Omega} \Phi(|x(t)|) d\mu + \int_{\Omega} \Psi(|x(t)|) d\mu.$$

Indeed, $\bar{x}(t) = \varphi(|x(t)|)\operatorname{sgn} x(t)$ where φ is the derivative of Φ (cf. [12], Theorem 39.1, and [4], p. 64). Hence, we obtain a transformation T from L_{φ}^* into L_{φ}^* through the correspondence $x(t) \to \bar{x}(t) = \varphi(|x(t)|)\operatorname{sgn} x(t)$.

This transformation T has the following properties:

- (i) $0 \leqslant x \leqslant y$ implies $0 \leqslant Tx \leqslant Ty$,
- (ii) (Tx)[p] = T([p]x) for any projector [p] (5).
- (iii) T(-x) = -Tx.

Let R be a conditionally complete vector lattice, and \overline{R} be its *conjugate space*, i.e., the totality of all linear functionals \overline{x} on R for which

$$\inf_{\lambda \in A} |(x_{\lambda}, \overline{x})| = 0 \ (^{6})$$

for any system $\{x_{\lambda}; \lambda \in A\}$ in R with $x_{\lambda} \downarrow_{\lambda \in A} 0$. A transformation T from R into \overline{R} , with conditions (i)-(iii) is said to be *conjugately similar* ([12], p. 254).

Recently, the present author and Yamamuro [5] have shown the following theorem:

Let R be a conditionally complete vector lattice possessing a norm with $|x| \leq |y|$ implies $||x|| \leq ||y||$, which has at least two linearly independent elements and its conjugate norm be strictly convex. If there exists a one-to-one conjugately similar transformation T from R into its conjugate \overline{R} with the condition

$$(x, Tx) = ||x|| \cdot ||Tx|| \quad (x \in R),$$

then R is of L_p -type (p > 1).

In the Orlicz space L_{σ}^* , a similar behavior to L_p -space may be seen. For $x \in L_{\sigma}^*$ with $\|x\| = 1$, we denote by x^* the element in the conjugate space of L_{σ}^* , with the norm 1, for which the equality in Hölder's inequality holds, i.e., $(x, x^*) = \|x\| \cdot \|x^*\|$. This x^* determines uniquely for x, because of the smoothness of the norm on L_{σ}^* .

Then, we shall be able to see the following property:

For any step element x in L_{σ}^* (i.e., a simple function), with the norm 1, and for any sub-step projector [p] of x (i.e., a projector satisfying $[p]x(t) \equiv \text{const.}$ for the simple function x), the equality in the Hölder's inequality in the form

(*)
$$([p]x, x^*[p]) = ||[p]x|| \cdot ||x^*[p]|$$

holds.

Indeed, let s in L^*_{Φ} be the function $s(t) \equiv 1$ on Ω a.e. In general, for the conjugately similar transformation T,

(4)
$$L_{\varphi}^* \ni x, ||x|| = 1, \rightarrow Tx = \varphi(|x|)\operatorname{sgn} x(t) \in L_{\varphi}^*,$$

the relation

$$(x, Tx) = ||Tx|| (7)$$

holds and hence we have $x^* = Tx/||Tx||$. Now, expressing x in (*) by a form

$$x(t) = \xi[p]s(t) + \sum_{i=1}^{n} \xi_{i}[p_{i}]s(t),$$

where [p] and $[p_i]$ (i = 1, 2, ..., n) are mutually orthogonal projectors (8), we have, by the property (ii),

$$Tx(t) = \operatorname{sgn} \xi \varphi(|\xi|) T[p]s(t) + \sum_{i=1}^{n} \varphi(|\xi_i|) T[p_i]s(t) \cdot \operatorname{sgn} \xi_i$$

so that

$$x^*[p] = \frac{\varphi(|\xi|)T[p]s \cdot \operatorname{sgn} \xi}{\|Tx\|}$$

and further

$$\begin{split} \left(\frac{[p]s}{\|[p]s\|}, \varphi\left(\frac{1}{\|[p]s\|}\right) T[p]s\right) &= \left(\frac{[p]s}{\|[p]s\|}, T\frac{[p]s}{\|[p]s\|}\right) \\ &= \left\|T\frac{[p]s}{\|[p]s\|}\right\| = \varphi\left(\frac{1}{\|[p]s\|}\right) \|T[p]s\|, \end{split}$$

namely, (*) is satisfied.

⁽⁴⁾ The norm on the normed space X is said to be *smooth*, if at every point of the unit surface of X there is only one supporting hyperplane of the unit sphere of X. This is equivalent to the Gateaux differentiability of the norm [8]. The norm on the normed lattice X is said to be *monotone*, if 0 < x < y implies ||x|| < ||y|| for x, $y \in X$. If φ satisfies the (Δ_t) -condition and $\varphi(\xi) > 0$ for each $\xi > 0$, then the modular norm is monotone ([2], Theorem 3.3).

^(*) For the support F of an element $p(t) \in L_{\overline{\phi}}^*$, the projector [p] is defined by $[p]x(t) = \chi_F x(t)$, where χ_F is the characteristic function of F. In a conditionally complete vector lattice R, the projector [p] $(p \in R)$ is defined by $[p]x = \bigcup_{n=1}^{\infty} (x \cap n|p|)$ if x > 0, and $[p]x = [p]x^+ - [p]x$ for any $x \in R$, where $x^+ = x \cup 0$ $x^- = (-x)^+$ and $|x| = x^+ + x^-$. For $\overline{x} \in L_T^*$, $\overline{x}[p]$ is a linear functional on R such that $(y, \overline{x}[p]) = ([p]y, \overline{x})$ for all $y \in L_T^*$. See also footnote (*).

⁽⁶⁾ (y, \overline{x}) means the value of $\overline{x} \in \overline{R}$ at $y \in R$.

⁽⁷⁾ This fact is obtained from (2) and [14], Theorem 3.2.1.

⁽⁸⁾ Projectors [p] and [q] are called mutually orthogonal if $[p][q] \equiv [|p| \cap |q|] = 0$.

To show that the property (*) is a characteristic property of L^*_{σ} under the topological equivalence, we shall prepare in the next section.

- 2. Throughout this section, let R be a normed lattice which has the following properties:
 - (i) R is non-atomic and conditionally σ-complete (9),
 - (ii) the norm $\|\cdot\|$ on R is semi-continuous, i.e.,

$$0 \le x_n \uparrow_{n=1}^{\infty} x(x_n, x \in R) \text{ implies } ||x_n|| \uparrow_{n=1}^{\infty} ||x||,$$

- (iii) the norm on R is smooth and monotone,
- (iv) R has a positive complete element s with ||s|| = 1, i.e., no element in R is orthogonal to s,
- (v) $\sup (\sum \|[p_k]s\|) = +\infty$, where $\{[p_k]s\}$ is any orthogonal partition of s, and also there exists a positive integer k_0 such that for any [p] orthogonal partitions $[p]s = \sum_{i=1}^{k_0} [q_i]s$, with $\|[q_1]s\| = \|[q_2]s\| = \dots = \|[q_{k_0}]s\|$, $imply \|[q_i]s\| \le \|[p]s\|/2$ for $i = 1, 2, ..., k_0$.

Remark. It is easily verified that the Orlicz space L^*_{σ} in section 1 satisfies property (v) from the facts that Φ satisfies (Δ_2) -condition and $\Phi(1/\|[p]s\|) = 1/\mu(F)$, where F is the support of $p(t) \in L^*_{\sigma}$.

An element x in R is called a *step element*, if x is of a form $\sum_{i=1}^{n} \xi_i[p_i]s$ for certain orthogonal system $\{[p_i]; i=1,2,\ldots,n\}$ of projectors in R. For a step element x, we shall call a *sub-step projector* of x the projector [p] such that $[p]x = \xi[p]s$ for some real number ξ .

We denote again the main notation used in this paper.

 \overline{R} is the conjugate space of R; S is the unit surface of R, i.e., the set $\{x \in R; ||x|| = 1\}$; E is the set of all step elements in R; (x, \overline{y}) means the value of $\overline{y} \in \overline{R}$ at $x \in R$; x^* means, for $x \in S$, the element on the unit surface of \overline{R} for which the equality in the Hölder's inequality holds, i.e., $(x, x^*) = ||x|| \cdot ||x^*||$; $x^*[p]$, for any projector [p] in R and $x \in S$, denotes the element of \overline{R} such that $(y, x^*[p]) = ([p]y, x^*)$ for all $y \in R$.

For mutually orthogonal elements $a_i \, \epsilon S \, (i=1,\,2,\,\ldots,\,n),$ the functions

$$\xi_k = f_k(\xi_1, \ldots, \xi_{k-1}, \xi_{k+1}, \ldots, \xi_n) \quad (k = 1, 2, \ldots, n)$$

which are defined by the relation

$$\|\xi_1 a_1 + \xi_2 a_2 + \ldots + \xi_n a_n\| = 1$$
 and $\xi_i \geqslant 0$ $(i = 1, 2, \ldots, n)$

are called the *represented functions* of an *n*-dimensional *indicatrix* $C(a_1, a_2, \ldots, a_n)$ (10) of R.

Moreover, Greek letters ξ, η, \dots denote the real numbers or real functions and small Latin letters a, b, x, \dots denote the elements in R.

We shall first give two lemmas concerning the properties of the indicatrix, which connect with [6] and [8].

LEMMA A. Each represented function $\xi_k = f_k(\xi_1, \dots, \xi_n)$ of an n-dimensional indicatrix $C(a_1, \dots, a_n)$ of R is partially differentiable with respect to the variable $\xi_i(i \neq k)$. Here, the differentiation at the end point in the domain of f_k means the one-side differentiation.

Proof. Since the norm on R is smooth, when we denote the right and left derivatives by $D^+f_k(\xi_i)$ and $D^-f_k(\xi_i)$ respectively, we have

$$(a_i + (D^+f_k(\xi_i))a_k, x^*) = (a_i + (D^-f_k(\xi_i))a_k, x^*) = 0$$

by the same method as that in [6], Lemma 2, and [8], where

$$\sum_{j=1}^n \xi_j a_j = x \in S.$$

If $(a_k, x^*) = 0$, we have $(y, x^*) = 1$ for $y = \sum_{i \in I} \xi_i a_i$ so that

$$1 = ||x^*|| \geqslant \left(\frac{y}{||y||}, x^*\right) > 1$$

provided that $\xi_k \neq 0$, because $||x|| = ||\xi_k a_k + y|| > ||y||$ by the monotony of the norm. This is impossible and consequently we have

$$\frac{\partial f_k}{\partial \xi_i} = -\frac{(a_i, x^*)}{(a_k, x^*)}.$$

It is obvious that $\partial f_k/\partial \xi_i = 0$ at $\xi_i = 0$.

LEMMA B. For a represented function $\xi_k = f_k(\xi_1, \ldots, \xi_n)$, let us assume that $x = \xi_1 a_1 + \ldots + f_k(\xi_i) a_k + \ldots + \xi_n a_n \in S$ and that ξ_i is variable and ξ_j $(j \neq i \ and \ j \neq k)$ are fixed. Then (a_i, x^*) is non-decreasing function in $\xi_i \geqslant 0$.

Proof. It is enough to prove the case in which the indicatrix is 2-dimensional, by reason of which the proof in the *n*-dimensional case is essentially the same as that in 2-dimensional case. Let $\eta = \eta(\xi)$ be a represented function of an indicatrix C(a, b) of R with respect to $a, b \in S$ with $a \cap b = 0$.

^(*) R is said to be non-atomic, if every non-zero element in R is divided into two non-zero elements orthogonally. R is said to be conditionally σ -complete, if for $R \in a_n$ > 0 (n = 1, 2, ...) there exists $a \in R$ such that $a = \bigcap_{n=1}^{\infty} a_n$. A normed lattice satisfying (i)-(iii) comes to a conditionally complete vector lattice, because (ii) and (iii) imply the continuity of the norm [3] and furthermore this fact and (i) imply the desired result ([12], Theorem 30.7).

⁽¹⁰⁾ The notion of an indicatrix has been introduced in [11], p. 342.

By definition, for $0 < \xi < 1$,

(7)
$$\left(a,\left(\xi a+\eta(\xi)b\right)^*\right)=\lim_{\varepsilon\to 0}\frac{\|(\xi+\varepsilon)a+\eta(\xi)b\|-1}{\varepsilon}.$$

First, we shall prove, for each small $\varepsilon > 0$, that a function

$$g(\xi, \varepsilon) = \|(\xi + \varepsilon)a + \eta(\xi)b\| - 1$$

is non-decreasing in $0 \le \xi \le 1$. Put, for $0 < \xi < 1$,

$$D_{\xi}^{+}g(\xi,\varepsilon) = \lim_{\delta \to +0} \frac{1}{\delta} \{ \|(\xi+\delta+\varepsilon)a + \eta(\xi+\delta)b\| - \|(\xi+\varepsilon)a + \eta(\xi)b\| \}.$$

Taking enough small δ and ε_1 with $0 < \delta < \varepsilon_1 < \varepsilon$, by virtue of Lemma A the derivative $\eta'(\xi)$ exists and is non-increasing by the concavity of $\eta(\xi)$.

Accordingly, we have for some $0 < \theta < 1$

$$g(\xi+\delta,\varepsilon) = \|(\xi+\varepsilon)a + \eta(\xi)b + \delta\{a + \eta'(\xi+\theta\delta)b\}\| - 1$$

$$\geq \|(\xi+\varepsilon)a + \eta(\xi)b + \delta\{a + \eta'(\xi+\varepsilon_1)b\}\| - 1$$

and hence

(8)
$$D_{\xi}^{+}g(\xi,\varepsilon)$$

$$\geqslant \lim_{3\to+0} \frac{1}{\delta} \left[\|(\xi+\varepsilon)a + \eta(\xi)b + \delta\{a + \eta'(\xi+\varepsilon_{1})b\}\| - \|(\xi+\varepsilon)a + \eta(\xi)b\| \right]$$

$$= (a + \eta'(\xi+\varepsilon_{1})b, c^{*}),$$

where

$$c = \frac{(\xi + \varepsilon)a + \eta(\xi)b}{\|(\xi + \varepsilon)a + \eta(\xi)b\|}.$$

Putting

$$\lambda = rac{\xi + arepsilon}{\|(\xi + arepsilon)\,a + \eta(\xi)\,b\|}$$
 and $\mu = rac{\eta(\xi)}{\|(\xi + arepsilon)\,a + \eta(\xi)\,b\|},$

the point (λ,μ) is on the indicatrix C(a,b). When we take again ϵ_1 such that $0<\epsilon_1<\epsilon(1-\xi)/(1+\epsilon)$, then, on account of $\|(\xi+\epsilon)a+\eta(\xi)b\|\leq 1+\epsilon$, it follows that $\xi+\epsilon_1<(\xi+\epsilon)/(1+\epsilon)\leqslant \lambda$. Consequently, we have, by (8) and Lemma A, $D_\xi^+g(\xi,\epsilon)\geqslant (a+\eta'(\lambda)b,c^*)=0$ which shows $g(\xi,\epsilon)$ is non-decreasing in $0\leqslant \xi\leqslant 1$. Therefore, by (7), $(a,(\xi a+\eta(\xi)b)^*)$ is non-decreasing in $0\leqslant \xi\leqslant 1$.

3. THEOREM. Let R be the normed lattice which has properties (i)-(v) in the preceding section. If R satisfies the following condition:

for any step element $x \in S \cdot E$ and for any sub-step projector [p] of x,

$$([p]x, x^*[p]) = ||[p]x|| \cdot ||x^*[p]||$$

holds, then R is topologically isomorphic to some Orlicz space L_{ϕ}^* the modular norm on which has properties (ii), (iii) and (∇) .

The central part of the proof of Theorem is to construct a function Φ which determined the Orlicz space L_{σ}^* . Therefore, we shall begin to give the lemmas by which Φ is constructed and its properties are proposed.

In what follows, suppose that R satisfies the condition in Theorem. For any $\xi \ge 0$, we define a function $f(\xi)$ as

(9)
$$f(\xi) = \sup \left\{ \frac{\|x^*[p]\|}{\|s^*[p]\|}; x \in S \cdot E \text{ and } [p]x = \xi[p]s \right\}$$
$$= 0 \quad \text{if} \quad \xi = 0.$$

Remark. $0 \neq \|[p]x\|$ and $x \in S$ imply $([p]x, x^*) \neq 0$. Indeed, if $([p]x, x^*) = 0$, then $(x-[p]x, x^*) = 1$ and hence $\|x-[p]x\| = 1$ contradicting to the monotony of the norm.

LEMMA 1. There exists a positive constant β such that for arbitrary $x_0 \in S \cdot E$, with $x_0 = \xi \lceil p_0 \rceil s + \sum_{i=1}^n \xi_i \lceil p_i \rceil s$, $0 < ||\xi \lceil p_0 \rceil s|| \leqslant 1$ and $\xi > 0$,

(10)
$$\frac{\|x_0^*[p_0]\|}{\|s^*[p_0]\|} \leqslant f(\xi) \leqslant \beta \frac{\|x_0^*[p_0]\|}{\|s^*[p_0]\|}.$$

Proof. The left side inequality is obvious from the definition of $f(\xi)$. Suppose that $S \cdot E^{\mathfrak{z}} x = \xi[p] s + \sum_{i=1}^{n} \xi_{i}[p_{i}] s$. Then, we have

$$\left(rac{\lceil p
ceils}{\lVert \lceil p
ceils
Vert},rac{x^*\lceil p
ceil}{\lVert x^*\lceil p
ceil
Vert}
ight)=1$$

and hence, by virtue of the smoothness of R,

(11)
$$\frac{x^*[p]}{\|x^*[p]\|} = \left(\frac{[p]s}{\|[p]s\|}\right)^* = \frac{s^*[p]}{\|s^*[p]\|},$$

because $||x^*[p]|| \neq 0$ from the above remark.

Therefore, for any $0 \neq [q] \leq [p], x^*[q]/||x^*[p]|| = s^*[q]/||s^*[p]||$ and consequently

(12)
$$\frac{\|\mathbf{z}^*[q]\|}{\|\mathbf{z}^*[q]\|} = \frac{\|\mathbf{z}^*[p]\|}{\|\mathbf{z}^*[p]\|} \quad \text{for every } 0 \neq [q] \leqslant [p]$$

Next, we shall prove that there exist two positive constant $\mbox{\it A}$ and $\mbox{\it B}$ such that for every elements $\mbox{\it x}$ and $\mbox{\it y}$ in $\mbox{\it S}\cdot\mbox{\it E}$

(13)
$$A \leqslant \frac{\|x^*[p]\|}{\|y^*[q]\|} \leqslant B,$$

where $\xi > 0$, $x = \xi[p]s + u$, $y = \xi[q]s + v$, [p]u = [q]v = 0, ||[p]s|| = ||[q]s|| and $0 \neq u$, $v \in E$.

14 - Studia Mathematica

If such constants do not exist, on account of (12), there exist some elements x_n and y_n in $S \cdot E$, which satisfy the following relations:

$$egin{aligned} 0 &< x_n = \xi_n [\, p_n] s + \eta_n b_n, & b_n \epsilon S \cdot E, & [\, p_n] b_n = 0\,, \ 0 &< y_n = \xi_n [\, q_n] s + \zeta_n d_n, & d_n \epsilon S \cdot E, & [\, q_n] d_n = 0\,, \ 1 &\geqslant \|\xi_n [\, p_n] s \| = \|\xi_n [\, q_n] s \| = t_n \downarrow_{n=1}^{\infty}, & \xi_n > 0 \end{aligned}$$

and

$$||y_n^*\lceil q_n\rceil|| = g(n)||x_n^*\lceil p_n\rceil||$$
 with $g(n) \uparrow_{n=1}^{\infty} + \infty$.

For simplicity, we put $\lceil p_n \rceil s / \lVert \lceil p_n \rceil s \rVert = a_n$, $\lceil q_n \rceil s / \lVert \lceil q_n \rceil s / \lVert q_$

$$\left[\frac{d\eta_n}{dt}\right]_{t=t_n} = -\frac{(b_n, x_n^*)}{X_n} \quad \text{and} \quad \left[\frac{d\zeta_n}{dt}\right]_{t=t_n} = -\frac{(d_n, y_n^*)}{Y_n}$$

and hence

$$0 \leqslant \left[-\frac{d\zeta_n}{dt} \right]_{t=t_n} = \frac{1-g(n)}{\zeta_n(t_n) \cdot X_n \cdot g(n)} + \frac{\eta_n(t_n)}{\zeta_n(t_n)} \left[-\frac{d\eta_n}{dt} \right]_{t=t_n},$$

because $t_n X_n + \eta_n(t_n)(b_n, x_n^*) = t_n Y_n + \zeta_n(t_n)(d_n, y_n^*) = 1$ and $Y_n = g(n)X_n$ by condition (*) in the theorem.

On the other hand, it is easily seen that for enough large n,

$$1 - t_n \leqslant \eta_n(t_n), \quad \zeta_n(t_n) \leqslant 1, \quad 0 \leqslant \left[-\frac{d\eta_n}{dt} \right]_{t = t_n} \leqslant 1, \quad 0 < Y_n = X_n \cdot g(n)$$

and $\lim_{n\to\infty} (1-g(n)) = -\infty$. Consequently, we have

$$0 \leqslant \left[-\frac{d\zeta_n}{dt} \right]_{t=t_n} \leqslant \frac{1-g(n)}{(1-t_n) Y_n} + \frac{1}{1-t_n} < 0$$

for enough large n, which is impossible. Thus, there exists a constant A>0 satisfying (13) We may be able to prove similarly the existence of B in (13). By (12), (13) and the definition of $f(\xi)$, we can see that Lemma 1 is verified for $\beta=B$.

LEMMA 2. The function $f(\xi)$ defined in (9) is a real-valued, non-decreasing function in $\xi \geqslant 0$ and more $f(\xi) > 0$ for $\xi > 0$.

Proof. It is evident, by Lemma 1, that $f(\xi)$ is real-valued and $f(\xi) > 0$ for $\xi > 0$ from the remark for the definition of $f(\xi)$. Suppose $0 < \xi_1 < \xi_2$. We choose a projector [p] such that $0 < \|\xi_i[p]s\| \le 1$ (i = 1, 2). Moreover, we consider $x_i \in S \cdot E$ (i = 1, 2) such that

$$x_i = \xi_i[p]s + \sum_{i=1}^n \eta_k[q_k]s + \eta(\xi_i)[q]s,$$

$$\left(rac{ \left \lfloor p
ight
floor s}{ \left \lVert \left \lfloor p
ight
floor s
ight
floor }, \, x_1^*
ight) \leqslant \left(rac{ \left \lfloor p
ight
floor s}{ \left \lVert \left \lfloor p
ight
floor s
ight
ceil }, \, x_2^*
ight).$$

Hence, in virtue of the condition (*), we have

$$\frac{\|x_1^*[p]\|}{\|s^*[p]\|} \leqslant \frac{\|x_2^*[p]\|}{\|s^*[p]\|} \quad \text{and more} \quad \frac{\|x^*[p_1]\|}{\|s^*[p_1]\|} = \frac{\|x^*[p_2]\|}{\|s^*[p_2]\|}$$

if $0 < \|\xi_i[p_j]s\| \le 1$ and $[p_2] \le [p_1]$, for each element $x = \xi_1[p_1]S + \sum \zeta_k[r_k]s \in S \cdot E$ by (12). Accordingly, when we choose $0 < \eta < 1$ such that $y = \xi_2[p_2]s + \eta \cdot \sum \zeta_k[r_k]s$ belongs in $S \cdot E$ (this is possible, on account of (12), by taking $[p_2]$ such that $\|[p_2]s\|$ is enough small) we obtain, by Lemma 2,

$$\frac{\|x^*[p_1]\|}{\|s^*[p_1]\|} = \frac{\|x^*[p_2]\|}{\|s^*[p_2]\|} \leqslant \frac{\|y^*[p_2]\|}{\|s^*[p_2]\|}.$$

Therefore, we have

$$\begin{split} f(\xi_1) &= \sup \left\{ \frac{\|x^*[p]\|}{\|s^*[p]\|} \, ; \, x \, \epsilon S \cdot E \; \text{ and } \; [p] x = \, \xi_1[p] s \right\} \\ &\leq \sup \left\{ \frac{\|y^*[p]\|}{\|s^*[p]\|} \, ; \, y \, \epsilon S \cdot E \; \text{ and } \; [p] y = \, \xi_2[p] s \right\} = f(\xi_2). \end{split}$$

LEMMA 3. For the convex function

$$M(\xi) = \int_0^{\xi} f(t) dt,$$

there exists a convex function $\Phi(\xi)$, equivalent to $M(\xi)$, such that

- (i) the derivative of $\Phi(\xi)$ is continuous,
- (ii) $\lim_{\xi \to +0} \Phi(\xi)/\xi = 0$ and $\lim_{\xi \to +\infty} \Phi(\xi)/\xi = +\infty$,
- (iii) $\Phi(\xi) > 0 \text{ for } \xi > 0.$

Proof. Putting

(14)
$$\Phi(\xi) = \int_0^{\xi} \frac{M(t)}{t} dt \quad \text{for} \quad \xi \geqslant 0,$$

we have

$$\frac{1}{2} M(\frac{1}{2}\xi) \leqslant \Phi(\xi) \leqslant M(\xi) \quad \text{ for } \quad \xi \geqslant 0$$

so that $\Phi(\xi)$ is equivalent to $M(\xi)$. It is evident that Φ satisfies (i) and (iii). In order to prove that Φ satisfies (ii), it will suffice to prove that

$$\lim_{\xi \to +0} f(\xi) = 0 \quad \text{ and } \quad \lim_{\xi \to +\infty} f(\xi) = +\infty.$$

For $0 < \xi < 1$, choosing $x_{\xi} = \xi[p]s + \eta(\xi)[q]s \in S \cdot E$, with [p][q] = 0, we have

$$\begin{split} \lim_{\xi \to +0} & f(\xi) = \lim_{\xi \to +0} \frac{\|x_{\xi}^*[p]\|}{\|s^*[p]\|} = \lim_{\xi \to +0} \frac{([p]s, x_{\xi}^*)}{\|s^*[p]\|} \\ & = \left([p]s, \left(\frac{[q]s}{\|[q]s\|} \right)^* \right) \middle/ \|s^*[p]\| = 0. \end{split}$$

Next, taking $x_{\xi} = \xi[p_{\xi}]s_{\varepsilon}S \cdot E$ for each $\xi > 1$, it follows from the property (v) for R that $\lim_{\xi \to +\infty} \|s^*[p_{\xi}]\| = 0$. Therefore, we have, by Lemma 1,

$$\lim_{\xi \to +\infty} f(\xi) \geqslant \lim_{\xi \to +\infty} \frac{\|x_{\xi}^{*}[p_{\xi}]\|}{\|s^{*}[p_{\xi}]\|} = \lim_{\xi \to +\infty} \frac{1}{\|s^{*}[p_{\xi}]\|} = +\infty.$$

4. The proof of Theorem. We shall make use of the spectral theory of H. Nakano [12; §§ 8-13 and §§ 20-23] and [13; Chap. III]. Therefore, we restate at the moment several results obtained by H. Nakano.

Let & be the proper space of R, i.e., the compact Hausdorff space consisting of all maximal ideals (11) $\mathscr P$ of projectors in R with a neighbourhood iystem $\mathscr J=\{U_{[x]};x\in R\}$, where $U_{[x]}=\{\mathscr P\in\mathscr E;\ [x]\in\mathscr P\}$. Then, each $U_{[x]}$ so both open and closed in $\mathscr E$, and $\mathscr J$ forms a Boolean algebra with respect to the set operation, i.e.,

$$U_{[x]} \cup U_{[y]} = U_{[[x] \cup [y]]}$$
 and $U_{[x]} U_{[y]} = U_{[x][y]}$ [12; p. 32].

For $x \in \mathbb{R}$, the function $(x/s, \mathcal{P})$ on \mathscr{E} is defined by

$$\left(\frac{x}{s},\,\mathscr{P}\right) = \left\{ \begin{array}{ll} \lambda & \text{if} & \mathscr{P}\epsilon \prod\limits_{\varrho>0} (U_{[x_{\lambda+\varepsilon}]} - U_{[x_{\lambda-\varepsilon}]}), \\ +\infty & \text{if} & \mathscr{P}\epsilon \prod\limits_{-\infty<\lambda<+\infty} (\mathscr{E} - U_{[x_{\lambda}]}), \\ -\infty & \text{if} & \mathscr{P}\epsilon \prod\limits_{-\infty<\lambda<+\infty} U_{[x_{\lambda}]}, \end{array} \right.$$

where $[x_{\lambda}] = [(\lambda s - x)^{+}]$, and is called the *relative spectrum* [13; Theorem 23.3].

For this function, we can see that

LEMMA 4. (i) $(x/s, \mathcal{P})$ is almost finite, i.e., finite in an open dense set in \mathscr{E} , and is continuous (12) [13; Theorems 19.2 and 19.3];

(ii) $(x/s, \mathscr{P}) = ([p]x/s, \mathscr{P})$ on $U_{[p][x]}$ for any projector [p] [13; Theorem 18.4];

(iii) the set $\{(x/s, \mathscr{P}); x \in R\}$ is linear and lattice isomorphic to R [13; Theorem 18.5-Theorem 18.10].

For a bounded continuous function $f(\mathscr{P})$ on $U_{[p]}$, the integral of $f(\mathscr{P})$ by $x \in \mathbb{R}$, denoted by $\int\limits_{[p]} f(\mathscr{P}) d\mathscr{P} x$, is defined as a limit of partial sums

$$\sum_{j=1}^{n_i} f(\mathscr{P}_{ij}) [p_{ij}] x$$

for every sequence of orthogonal partitions $\{[p_{ij}]\}\$ of [p] such that

$$\underset{\mathscr{F} \in U[p_{ij}]}{\operatorname{Osc}} f(\mathscr{P}) \leqslant \varepsilon_i \quad (j=1,2,...,n; i=1,2,...), \quad \lim_{i \to \infty} \varepsilon_i = 0$$

and for arbitrary $\mathcal{P}_{ij} \in U_{[p_{ij}]}$.

For an unbounded continuous function $f(\mathscr{P})$ on $U_{[p]}$, if there exists an increasing sequence of bounded continuous functions $f_n(\mathscr{P})$ on $U_{[p]}$ such that

$$\lim_{n\to\infty} f_n(\mathscr{P}) = f(\mathscr{P}) \quad \text{and} \quad \lim_{n\to\infty} \int_{[p]} f_n(\mathscr{P}) d\mathscr{P} x$$

exists, then we shall say that $f(\mathscr{P})$ is integrable by x on $U_{[p]}$ and denote this limit by $\int\limits_{[p]} f(\mathscr{P}) d\mathscr{P} x$. We have, as an integral representation,

LEMMA 5 [13; Theorems 21.1 and 21.2]. For any $a \in \mathbb{R}$, $(a/s, \mathscr{P})$ is integrable by s and

$$a = \int\limits_{[s]} \left(\frac{a}{s}, \mathscr{P}\right) d \mathscr{P} s.$$

Conversely, if a continuous function $f(\mathcal{P})$ is integrable by s and

$$b = \int_{[s]} f(\mathscr{P}) d\mathscr{P} s,$$

then $f(\mathcal{P}) = (b/s, \mathcal{P})$ for all $\mathcal{P} \in \mathcal{E}$.

For $x \in R$ and $\bar{a} \in \bar{R}$, considering $([p]x, \bar{a})$ as a measure of $U_{[p]}$, we can define integral of continuous functions $f(\mathscr{P})$ on $U_{[p]}$ by (x, \bar{a}) , denoted by

$$\int_{U_{[p]}} f(\mathscr{P})(d\mathscr{P}x,\,\bar{a}).$$

This integral has been introduced in [11; § 4 and § 5] and the following facts are obtained.

⁽¹¹⁾ The set of projectors $\mathscr P$ is called an *ideal*, if (i) $\mathscr P \not = 0$, (ii) $\mathscr P \not = [x]$ and [x] < [y] imply $[y] \in \mathscr P$, (iii) $\mathscr P \not = [x]$, [y] implies $[x][y] \in \mathscr P$, where [x][y] means $[[x] \cap [y]]$.

⁽¹²⁾ In the case $(x/s, \mathscr{P}_0) = +\infty$ (or $-\infty$), the continuity means that for any real number $\lambda > 0$, there exists a nbd. $U_{[q]} \ni \mathscr{P}_0$ such that $(x/s, \mathscr{P}) > \lambda$ (or $< -\lambda$) for all $\mathscr{P} \in U_{[q]}$.

Normed lattices

LEMMA 6 [11; § 4, Hilfsatz 4.22] [12; Theorem 21.10]. For $x \in \mathbb{R}$, $(x/s, \mathcal{P})$ is integrable by (s, \bar{a}) for any $\bar{a} \in \overline{\mathbb{R}}$, and we have

$$([p]x, \bar{a}) = \int_{U[p]} \left(\frac{x}{s}, \mathscr{P}\right) (d \mathscr{P} s, \bar{a}).$$

LEMMA 7. (i) For $0 \neq \bar{a} \in \bar{R}$,

$$\lim_{\substack{[p] \ y \to \mathscr{P}}} \frac{([p] x, \bar{a})}{([p] s, \bar{a})} = \left(\frac{x}{s}, \mathscr{P}\right) \quad \text{for} \quad \mathscr{P} \in U_{[x]} \cdot C_{\bar{a}} \ (^{13}),$$

namely

$$\inf_{\mathcal{U}_{[\mathcal{D}]},\mathscr{P}} \left\{ \sup_{\mathbf{0} \neq [\mathcal{V}] \leqslant [\mathcal{P}]} \frac{\langle [\mathcal{Y}] x, \bar{a} \rangle}{\langle [\mathcal{Y}] s, \bar{a} \rangle} \right\} = \sup_{\mathcal{U}_{[\mathcal{D}]},\mathscr{P}} \left\{ \inf_{\mathbf{0} \neq [\mathcal{V}] \leqslant [\mathcal{P}]} \frac{\langle [\mathcal{Y}] x, \bar{a} \rangle}{\langle [\mathcal{Y}] s, \bar{a} \rangle} \right\} = \left(\frac{x}{s}, \mathscr{P} \right)$$

[13; Theorem 54.3];

(ii) for any $a, b \in R$, there exists

$$\lim_{[\underline{v}] \to \mathscr{P}} \frac{([\underline{v}] x, \overline{b})}{([\underline{v}] x, \overline{a})} = g(\mathscr{P}) \quad \text{ for } \quad \mathscr{P} \epsilon \, U_{[\underline{v}]} \cdot C_{\overline{a}}$$

and the limit is independent from $x \in R$ [13; Theorem 51.5].

The above limit $g(\mathscr{P})$ is denoted by $(\overline{b}/\overline{a}, \mathscr{P})$ and integrable by (y, \overline{a}) for each $y \in \mathbb{R}$ [13; Theorem 51.8].

LEMMA 8 [11; 4, Hilfsatz 4.23] [12; Theorem 21.11]. If $f(\mathscr{P})$ is integrable by (b, \bar{a}) in $U_{[p]}$, then $f(\mathscr{P})$ $(b/s, \mathscr{P})$ is integrable by (s, \bar{a}) in $U_{[p]}$ and

$$\int_{\mathcal{O}[p]} f(\mathscr{P})(d\mathscr{P}b\,,\,\bar{a}) = \int_{\mathcal{O}[p]} f(\mathscr{P})\Big(\frac{b}{s}\,,\,\mathscr{P}\Big)(d\mathscr{P}s\,,\,\bar{a})\,.$$

Now, we consider such a completely additive measure μ on ($\mathcal{E};\mathcal{J})$ as

(15)
$$\mu(U_{[p]}) = ([p]s, s^*).$$

Suppose that $x \in S \cdot E$ with $x = \sum_{i=1}^{n} \xi_i[p_i]s$ where $[p_i]s$ are mutually orthogonal and $\xi_i \neq 0$ (i = 1, 2, ..., n). For such a ξ_i , we take a projector [p] such that

$$0 < \|\xi_i[p]s\| \leqslant 1$$
 and $[p] \leqslant [p_i]$.

By Lemma 1 and condition (*), we have

(16)
$$\frac{([p]s, x^*[p])}{([p]s, s^*[p])} \leqslant |\xi_i| f(|\xi_i|) \leqslant \beta \frac{([p]x, x^*[p])}{([p]s, s^*[p])}.$$

(13)
$$C_{\bar{a}} = \mathscr{E} - \bigcup_{\bar{a}[p]=0} U_{[p]}$$
.

Therefore, we have, by Lemma 7.

$$\lim_{[v] \to \mathscr{P}} \frac{([p]x, x^*[p])}{([p]s, s^*[p])} = \left(\frac{x}{s}, \mathscr{P}\right) \left(\frac{x^*}{s^*}, \mathscr{P}\right) \quad \text{for} \quad \mathscr{P} \in U_{[p]} \cdot \mathscr{E},$$

so that

$$(17) \quad \left(\frac{x}{s}, \mathscr{P}\right) \left(\frac{x^*}{s^*}, \mathscr{P}\right) \leqslant |\xi_i| f(|\xi_i|) \leqslant \beta \left(\frac{x}{s}, \mathscr{P}\right) \left(\frac{x^*}{s^*}, \mathscr{P}\right) \quad \text{for} \quad \mathscr{P} \in U_{[p_i]}.$$

On the other hand, $(x/s,\mathscr{P})=\xi_i$ for $\mathscr{P}\in U_{[p_i]}$ (i=1,2,...,n) and by Lemma 8

$$\int_{\mathscr{S}} \left(\frac{x}{s}, \mathscr{P}\right) \left(\frac{x^*}{s^*}, \mathscr{P}\right) (d\mathscr{P}s, s^*) = \int_{\mathscr{S}} \left(\frac{x}{s}, \mathscr{P}\right) (d\mathscr{P}s, x^*) = (x, x^*) = 1.$$

Consequently, on account of (15) and (17), we have

(18)
$$1 \leqslant \int_{\mathscr{E}} \left| \left| \frac{x}{s}, \mathscr{P} \right| \right| f\left(\left| \left(\frac{x}{s}, \mathscr{P} \right) \right| \right) d\mu \leqslant \beta.$$

For $\Phi(\xi)$ finding in Lemma 3, there exist two constants $0 < \gamma < \delta < +\infty$ such that $|\xi|f(|\xi|) \leq \Phi(\delta \cdot |\xi|)$ and $\Phi(\gamma \cdot |\xi|) \leq |\xi|f(|\xi|)$, because $|\xi|f(|\xi|)$ is equivalent to $M(|\xi|)$. Consequently,

$$(19) \qquad 1\leqslant \int\limits_{\mathscr{S}}\varPhi\Big(\delta\bigg|\bigg(\frac{x}{s},\,\mathscr{P}\bigg)\bigg|\bigg)d\mu \quad \text{ and } \quad \int\limits_{\mathscr{S}}\varPhi\Big(\gamma\bigg|\bigg(\frac{x}{s},\,\mathscr{P}\bigg)\bigg|\bigg)d\mu\leqslant \beta$$

for any $x \in S \cdot E$.

In [8], we prove that for any $0 \neq x \in R$ there exists a sequence of step elements $x_n \in E$ such that $0 \leq x_n \uparrow_{n=1}^{\infty} |x|$. Hence, by the Lebesgue's bounded sequence theorem,

$$\lim_{n\to\infty}\int\limits_{\mathscr S}\varPhi\bigg(\bigg|\frac{x_n}{s},\,\mathscr P\bigg)\bigg|d\mu=\int\limits_{\mathscr S}\varPhi\bigg(\bigg|\bigg|\frac{x}{s},\,\mathscr P\bigg)\bigg|\bigg|d\mu$$

so that, from (19),

$$(20) 1 \leqslant \lim_{n \to \infty} \int_{\mathfrak{s}} \varPhi\left(\frac{\delta}{\|x_n\|} \left(\frac{x_n}{s}, \mathscr{P}\right)\right) d\mu = \int_{\mathfrak{s}} \varPhi\left(\frac{\delta}{\|x\|} \left| \left(\frac{x}{s}, \mathscr{P}\right) \right| \right) d\mu$$

and similarly

(21)
$$\int_{\mathscr{E}} \Phi\left(\frac{\gamma}{\|x\|} \left| \left(\frac{x}{s}, \mathscr{P}\right) \right| \right) d\mu \leqslant \beta.$$

Thus, the function space $\Lambda \equiv \{(x/s\,,\,\mathscr{P})\,;\,x\,\epsilon R\}$ comes to a modulared space, with the modular

$$\varrho(x) = \int_{\mathscr{E}} \varPhi\left(\left|\left(\frac{x}{s}, \mathscr{P}\right)\right|\right) d\mu,$$

Normed lattices

which is topologically isomorphic to R, that is, for the modular norm

$$\left\|\left(\frac{x}{s},\,\mathscr{P}\right)\right\| = \inf_{\varrho(\xi x)\leqslant 1} \frac{1}{|\xi|},$$

it follows that $||x||/\delta \le |||(x/s, \mathcal{P})||| \le \beta ||x||/\gamma$ for each $x \in \mathbb{R}$.

Therefore, the modular norm $\||\cdot\||$ on Λ is continuous (by the continuity of $\|\cdot\|$ on R (14)) and Λ is non-atomic (by the non-atomicity of R). Consequently, the modular ϱ on Λ is *finite* ([1; p. 62] and [9; § 10]), i.e., $\varrho(x) < +\infty$ for every $x \in \Lambda$.

These facts show that R is topologically isomorphic to a subspace Λ of the Orlicz space L^*_{σ} (\mathscr{E}, μ), however, we can verify that \mathscr{D} satisfies the (Δ_2) -condition, so we know the inclusion L^*_{σ} (\mathscr{E}, μ) $\subset \Lambda$, by the same method as in the end of the proof of the theorem in [7; p. 150 and p. 580]. In what follows, we shall only prove that \mathscr{D} satisfies the (Δ_2) -condition. By property (v) for R, which is described in section 2, there exists a positive integer k_0 such that

$$||[q_i]s|| \leq \frac{1}{2}||[p]s||$$
 $(i = 1, 2, ..., k_0)$ for any projector $[p]$

and for any orthogonal partition

$$[p]s = \sum_{i=1}^{k_0} [q_i]s$$

with $||[q_1]s|| = ||[q_2]s|| = \ldots = ||[q_{k_0}]s||$. (The possibility of such a orthogonal partition arises from the facts that R is non-atomic and has the continuous norm). We have therefore

$$\begin{split} \|[p]s\| \cdot \|s^*[p]\| &= ([p]s, s^*[p]) = \sum_{i=1}^{k_0} ([q_i]s, s^*[q_i]) \\ &= \sum_{i=1}^{k_0} \|[q_i]s\| \cdot \|s^*[q_i]\| \leqslant \frac{1}{2} \|[p]s\| \cdot \sum_{i=1}^{k_0} \|s^*[q_i]\| \end{split}$$

and hence

$$||s^*[p]|| \leqslant \frac{1}{2} \sum_{i=1}^{k_0} ||s^*[q_i]||.$$

On the other hand, we have, by (13),

$$A \leqslant \frac{\|s^*[x]\|}{\|s^*[y]\|} \leqslant B$$

for non-zero projectors [x], [y] with [x][y] = 0 and ||[x]s|| = ||[y]s||. Accordingly, we have

(22)
$$\|s^*[p]\| \leqslant \frac{k_0 B}{2} \|s^*[q_i]\| \quad (i = 1, 2, ..., k_0).$$

Now, for any $\xi > 1$, we take a projector $[p_{\xi}]$ satisfying $\|\xi[p_{\xi}]s\| = 1$ and use $[p_{\xi}]$ instead of [p] in (22). Then, for the orthogonal partition

$$[p_{\hat{\epsilon}}]s = \sum_{i=1}^{k_0} [q_i]s$$
 with $||[q_1]s|| = ||[q_2]s|| = \dots = ||[q_{k_0}]s||$,

we have

$$||2\xi[q_i]s|| \leq 1$$
 $(i = 1, 2, ..., k_0).$

Therefore, considering $x=2\xi[q_1]s+\eta[r]s\in S\cdot E$, where [r] is a projector with $[q_1][r]=0$, we have

$$f(2\xi) \leqslant \beta \frac{\|s^*[q_1]\|}{\|s^*[q_1]\|} \quad \text{(by Lemma 1)}$$

$$\leqslant \beta \frac{1}{\|s^*[q_1]\|}$$

$$\leqslant \frac{2\beta}{Bk_0} \frac{1}{\|s^*[p_{\xi}]\|} \quad \text{(by (22))}$$

$$= \frac{2\beta}{Bk_0} \cdot \frac{\|(\xi[p_{\xi}]s)^*[p_{\xi}]\|}{\|s^*[p_{\xi}]\|}$$

$$\leqslant \frac{2\beta}{Bk_0} f(\xi) \quad \text{(by Lemma 1)}.$$

Namely, we have

$$f(2\xi) \leqslant \frac{2\beta}{Bk_0} f(\xi)$$
 for all $\xi > 1$

and hence $M(\xi)$ in Lemma 3 satisfies the (Δ_2) -condition and consequently $\Phi(\xi)$ satisfies also the (Δ_2) -condition, because $\Phi(\xi)$ is equivalent to $M(\xi)$.

Thus, the normed lattice R having the properties (i)-(v) is topologically isomorphic to the Orlicz space $L^*_{\boldsymbol{\sigma}}(\mathscr{E},\mu)$. The theorem is proved.

References

- [1] I. Amemiya, A generalization of the theorem of Orlicz and Birnbaum, Jour. Fac. Hokkaido Univ. 13 (1956), p. 60-64.
- [2] I. Amemiya, T. Andô and M. Sasaki, Monotony and flatness of the norm by modulars, ibidem 14 (1959), p. 98-113.
 - [3] T. Andô, On the continuity of norms, Proc. Japan Acad. 33 (1957), p. 429-434.
- [4] Convexity and evenness in modulared semi-ordered linear spaces, Jour. Fac. Sci. Hokkaido Univ. 14 (1959), p. 59-95.
- [5] K. Honda and S. Yamamuro, A characteristic property of L_p -spaces (p>1), Proc. Japan Acad. 35 (1959), p. 446-448.

⁽¹⁴⁾ See the footnote (9).

[6] K. Honda, A characteristic property of L_{ϱ} -spaces ($\varrho>1$), III, ibidem 39 (1963), p. 348-351.

[7] — A characterization of the Orlicz space L_{Φ}^* . Proc. Acad. Amsterdam 67 (1964), p. 144-151 and 580-581.

[8] - On smoothness of normed lattices, Proc. Japan Acad. 42 (1966), p. 589-592.

[9] M. A. Krasnosel'skii and Ya. B. Rutickii, Convex functions and Orlicz spaces, Groningen 1961 (Translated from the Russian edition).

[10] W. A. J. Luxemburg, Banach function spaces, Thesis, Delft Institute of Techn., Assen 1955.

[11] H. Nakano, Stetige lineare Funktionale auf dem teilweisegeordneten Modul, Jour. Fac. Sci. Imp. Univ. Tokyo 4 (1942), p. 201-382.

[12] - Modulared semi-ordered linear spaces, Tokyo, Marzen 1950.

[13] - Modern spectral theory, Tokyo, Marzen 1950.

[14] S. Yamamuro, On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc. 90 (1959), p. 291-311.

[15] A. C. Zaanen, Linear Analysis, Amsterdam 1953.

MURORAN INSTITUTE OF TECHNOLOGY, JAPAN

Recu par la Rédaction le 28, 8, 1966

A norm satisfying the Bernstein condition

bу

ROY O. DAVIES (Leicester)

In the research that recently culminated ([1], [3], [4]) in the proof that all separable infinite-dimensional Fréchet spaces are homeomorphic, one step (not however used in that proof) was the introduction into e_0 of a new norm, equivalent to the original norm but in addition satisfying the "Bernstein condition". Bessaga [2] gives a rather complicated construction and proof, communicated to him by Kadets. The purpose of the present note is to point out that the very simple norm

$$|||x||| = ||x|| + \sum_{i=1}^{\infty} a_i |x_i|$$
 for $x = (x_i) \epsilon c_0$,

where $\sum a_i$ is any fixed convergent series of positive numbers, will serve the purpose equally well. In view of the inequalities

$$||x|| \leqslant |||x||| \leqslant \left(1 + \sum_{i=1}^{\infty} a_i\right)||x||$$

it is obvious that $\|\cdot\|$ is an admissible norm, equivalent to $\|\cdot\|$, and it remains to be shown that it satisfies the Bernstein condition. Thus, we have to prove the following

THEOREM. If $x_i \ge 0$, $y_i \ge 0$ (i = 1, 2, ...), $x_i \to 0$, $y_i \to 0$, and

(1)
$$\sup_{i\geqslant j} x_i + \sum_{i=j}^{\infty} a_i x_i = \sup_{i\geqslant j} y_i + \sum_{i=j}^{\infty} a_i y_i = \delta_j \quad (say)$$

for j = 1, 2, ..., then $x_i = y_i$ for all i = 1, 2, ...

Proof. Suppose not. If k is the first index for which $x_k \neq y_k$, and say $x_k > y_k$, then the inequality $x_i \geqslant y_i$ cannot hold for all $i \neq k$, otherwise (1) would fail for j=1. Hence there exist indices m and n such that

$$1 \leq m < n, x_m > y_m, x_n < y_n, \text{ and } x_i = y_i \text{ for } m < i < n.$$