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On normed lattices
topologically isomorphic to some Orlicz space L},

by

KOJI HONDA (Muroran)

1. Introduction. Let x be a non-atomic, completely additive measure
on a set Q with u(0) = 1.

The Orlicz s_'pace L3(2, u) consists of all real-valued functions x(t),
p-meagurable on Q, such that

(1)  o(ax) = ] di(ala'( Mdp < 4oc for some real number « > 0,

where @ is an N-function which satisfies ( Ay)-condition (). Then, the
space Ly is not only a Banach space with the norm (%)

= Inf{1/]&; o(&mw) < 1},

also becomes a conditionally complete vector lattice (*) by the wusual
ordering.

In the preceding paper [7], we gave a characterization of L%. The
purpose of the present paper is to characterize LY under the topological
equivalence withouwl containing the function & in the condition by which
Ly is characterized.

We shall easily see that an N-funetion has an equivalent ¥-funection
with the continuous derivative. Therefore, we shall assume in this section
that @ is continuously differentiable. Then, the modular norm on Ly is

(!) A continuous convex function @ is said to be N-function if

m @(&)/8 =0  and lim &)/ = + oo (191, ». 9).
-

Estro

Cbia said to satisfy (A,)-condition if there exist two real numbers a> 0 and
2 0 such that @ (2£) < «® () for all £ = &, In this case, I$ can be defined as the
totahty of y-measurable functions x(t) such that ¢(®) < -+ co. The functional g on
L% in (1) is a moduler in Nakano’s terminology.
(2) This norm is called the modular norm or Lumemburg norm.
(*) A vector lattice R is said to be conditionally complete, if for Raa; > 0 (Aed)

there exists aeR such that a = () a;.
ied
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smooth and monotone (4). Furthermore, we can see that for each @(t)eld
there exists only one Z(t)eLy(2, u), ¥ is the complementary N -funetion,
for which the equality in the Young’s inequality holds, i.e.,

(2) [aEWap = [D(w@))du+ [ (0()])du.
2 9 2

Indeed, Z(f) = ¢ ([m('t)l)sgnm(t) where ¢ is the derivative of @ (cf. [12],
Theorem 39.1, and [4], p. 64). Hence, we obtain a transformation 7
from Lj into Lj through the corvespondence & (1) — Z(t) = ¢ (|w (1)|)sgna (7).

This transformation 7' has the following properties:

(i) 0 <o <y implies 0 < T < Ty,

() (Tx){p] = T([p]w) for any projector [p] (5).

(ifi) T(—2) = —Ta. :

Let R be a conditionally complete vector lattice, and R be its conjugate
space, i.e., the totality of all linear functionals  on R for which

inf| (2, &) = 0 (%
Aed

for any system {w;; led} in B with #;| ;.,0. A transformation 7' from
R into R, with conditions (i)-(iii) is said to be conjugately similar ([12],
p. 254).

Recently, the present author and Yamamuro [5] have shown the
following theorem:

Let R be a conditionally complete vector lattice possessing a norm with
lwl < lyl implies |w] < llyll, which has at least two linearly independent
elements and its conjugate norm be strictly convew. If there cxists o one-to-one
conjugately similar tramsformation T from R into its conjugate R with the
condition

(3) (, Tw) ="|jao|- | ]|
then B s of Ly-type (p > 1).

(reR),

(4) The norm on the normed space X is said to be smooth, if ab every point of
the unit surface of X there is only one supporting hyperplane of the unit sphere of
X. This is equivalent to the Gateaux differentiability of the norm [8]. The norm
on the normed lattice X is said to be monotone, if 0 < & < y implies ||| < ||yl for =,
yeX. If @ satisfies the (A,)-condition and P (&) > 0 for each &> 0, then the modular
norm is monotone ([2], Theorem 3.3).

(°) For the support F of an element p(b)el}";, the projector [p] is defined by
[plo() = xpa(t), Wwhere yp is the characteristic function of F. In a conditionally

o
complete vector lattice B, the projector [p] (peR) is defined by [pla = (J (@ ~n|p])
no1

it >0, and [ple = [plat—[pls for any weR, where o = @ w0 o= = (—)*
and |o| = o 45~ For ZeL}, Z[p] is a linear functional on R such that (, Zlp])
=([ply, %) for all yeLH. See also footnote (%).

(*) (y, %) means the value of Z<E at yeR.

e ©
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In the Orlicz space Ly, a similar behavior to L,-space may be seen.
For weIy with || = 1, we denote by &* the element in the conjugate
space of Ly, with the norm 1, for which the equality in Hélder’s in-
equality holds, ie., (z, o*) = || |lo*|. This #* determines uniquely for ,
because of the smoothness of the norm on Ts.

Then, we shall be able to see the following property:

For any step element ¢ in L} (i.c. ) & simple function), with the norm 1,
and for any sub-step projector [p] of o (i.e., a projector satisfying [pla(t)
= const. for the simple function z), the equality in the Holder’s inequality
in the form

{*) ([plz, 2™ [p]) = l[p]ol- ll* [p]]
holds.

Indeed, let s in Ly be the funection s(#) =1 on 2 a.e. In general,
for the conjugately similar transformation T,

(4) L3 2, ol = 1, - Ta = (|w|)sgna(t) < LS,
the relation
{5) (2, Tz} = |Tal| (7)

holds 'a,nd hence we have a* = Tx/||Tw|. Now, expressing « in () by
a form

a(t) = E[pls()+ ¥ &lpis(e),

=1

where [p] and [p;] (¢ =1, 2, ..., ) are mutually orthogonal projec-
tors (%), we have, by the property (ii),

To(t) = sgnép(1E) Tlps(0)+ > p(1&1) T pils(t) sgné;
i=1

80 that
o*lp] = qv(lfl)ll’lz[:f;]us-sgn&
and further
(ie3em# o) 702%) = (s 12200
= “T e | = ® (i) e

namely, () is satisfied.

7

(") This fact is obtained from (2) and [14], Theorem 8.2.1.
(]) Projectors [p] and [g] are called mutually orthegonalif [p][q] = [ipl~gl] = 0.


GUEST


206 Ko6ji Honda

To show that the property (x) is a characteristic property of L}
under the topological equivalence, we shall prepare in the next section.

2. Throughout this section, let R be a normed lattice which has the
following properties:
(i) R is non-atomic and conditionally o-complete (°),
(ii) the norm ||| on R is semi-continaous, i.e.,

0 = op 451 0 (wny @ e R) dmplies |l 1502,

(iii) the norm on R is smooth and monotone,

(iv) R has a positive complete element s with ||s|| == 1, d.e., no element
in R is orthogonal to s,

(v) sup (MN[pslsll) = --oo, where {[pils} is any orthogonal partition
of s, and ulso there ewists o positive integer k, such that for any [p] ortho-

0 4
gonal partitions [pls = 3'[g:ls, with [[g:lsll = l[qu]sll = ... = ||[gs,]sl],
=1

imply [[g:]sll = l[p1sl/2 for i =1,2,..., k.

Remark. It ig easily verified that the Orlicz space L} in section 1
satisfies property (v) from the facts that @ satisfies (A,)-condition and
&(1/|lp1sll) = 1/u(F), where I is the support of p(t)eL}.

n
An element x in R is called a step element, if x is of a form ) 2, Eilpels
Y=l

for certain orthogonal system {[p;];¢ =1,2,...,n} of projectors in K.
For a step element «, we shall call a sub-step projector of x the projector
[p] such that [p]z = &[p]s for some real number &.

We denote again the main notation used in this paper.

R is the conjugate space of R; 8§ is the unit surface of R, i.e., the set
{#eR; o] = 1}; B is the set of all step elements in R; (x, §) means the
value of 7eR at ©eR; o means, for xS, the element on the unit surface
of R for which the equality in the Holder’s inequality holds, i.e., (z, 2*)
= ||+ |&*{|; 4* [p], for any projector [p]in R and « ¢§, denotes the clement
of R wuch that (y,2*[p]) = ([ply, #*) for all yeR.

For mutually orthogonal elements a;eS (§ = 1,2, ..
tiong

., "), the fune-

ér sz(é'“ very Ek—-ls Ek»l—h vy En)

(b =1,2,...,m)

() R is said to be non-atomie, if every non-zero element in X ig divided into two
non-zero elements orthogonally. R is said to be conditionally g-complete, if for Reay

(=]
>0(n=1,2,..) there exists aeR such that ¢ = (M) an. A normed lattice satisfying
N=1
(i)-(iil) comes to a conditionally complete vector lattice, because (ii) and (iii) imply
the continuity of the norm [3] and furthermore this fact and (i) imply the desired
result ([12], Theorem 30.7).
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which are defined by the relation

6103+ &203 4. 4 Gl =1 and  E>0 (i=1,2,..., %)

are called the represented functions of an n-dimensional indicatriz
Clay, sy ...y @) (19 of R.

Moreover, Greek letters &, #,... denote the real mumbers or real
functions and small Latin letters a,b,x,... denote the elements in R.

We shall first give two lemmas coneerning the properties of the
indicatrix, which conneet with [6] and [8].

Lenvwa A, Each represented function &, — Jel&syoovy &) of an n-dimen-
sional indicatriz C(ay, ..., a,) of R is partially differentiable with respect
to the variable &(i £ k). Here, the differentiation af the end point in the
domain of fi. means the one-side differentiation.

Proof. Since the norm on R is smooth, when we denote the right
and left derivatives by Dtfi(£,) and D~fi(&;) respectively, we have

(ai+(D+fk(Ei))a"" m*) = (“H“ (D—fk(fi))“ky -’D*) =0
by the same method as that in [6], Lemma 2, and [8], where

Zfi(lj = gef.
J=1

If (a, #") = 0, we have (y,s*) =1 for y = > &;a; so that
i#k
1= o) > (i, m) >1
el

provided that & 5= 0, because || = léxar—+yl > llyll by the monotony
of the norm. This is impossible and consequently we have
afk (a‘w’y m*) .

() 98 (ag, @)

It is obvious that df./0& = 0 at & =0

Levwma B. For a represented function & = fi(£,, ..., &n), let us assume
that & = Eyay+ ...+ frl€)ag+ ...+ EnaneS and that & 48 variable and &
(j# @ and j # k) are fized. Then (a;, «*) is non-decreasing function in & = 0.

Proof. If is enough to prove the case in which the indicatrix is
2-dimensional, by reason of which the proof in the n-dimensional case
is essentially the same as that in 2-dimensional case. Let n =n(&) be

a represented function of an indicatrix C(a, b) of R with respect to a,bel
with ¢ ~ b = 0.

(**) The notion of an indicatric has been introduced in [11], p. 842.
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By definition, for 0 < & < 1,
€+ e)atn(£)bl—1

I}

(7) (@, (a+n(£)8]") = Lim
First, we shall prove, for each small ¢ > 0, that a function
g(&,8) = |[(§+e)a+n(&)b]|—1
is non-decreasing in 0 < & < 1. Put, for 0 < £ < 1,

Dig(¢, ¢) =£13%{H<£+ 8+e) @t (64 8)b| —[I(&+ o) at+ (&) B}

Taking enough small § and & with 0 < ¢ < & < &, by virtue of
Lemma A the derivative 5’(£) exigts and is non-increasing by the con-
cavity of #(£).

Accordingly, we have for some 0 < 6 < 1

g(E+9, &) = (§+e)a+n(£)b+{a--n'(§+06)b}—1

2 6+ e)a+n(&)b+0{a+n"(£+ &)b}|—1
and hence

8)  Dfg(é e

> B [1(E+ eJa+n(§)0-+ 0ot o'+ )] — [(6+ e)a+n(E)]

= (a+77,(5+31)b; 0*),
where
_ _(Eteatn(s)d
T e+ o)a+n(ED]
Putting
1= £t 7(£)

Etaatn@ ™ * = EF et @’

the point (1, u) is on the indicatrix ¢ (@, b). When we take again e such
that 0 <& < e(1—¢)/(1+¢), then, on account of l(&+ &) a--n(&)b]
S1+4e, it follows that £-4e < (£-- e)/(1+6) < A Consequently, we
have, by (8) and Lemma A, Dfg(f,e) > {a+7"(A)b, ¢*) =0 which
shows g(¢&, &) iz non-decreaging in 0 < ¢ < 1. Therefore, by (7), (a, (éa-+
+n(£)b)%) is non-decreasing in 0 < & <.

3. TumorEM. Let R be the normed lattice which has properties (i)-(v)
in.the preceding section. If R satisfies the following condition:

for any step eloment x<8 B and Jor any sub-step projector [p] of @,
(%) - (P12, o"[p]) = |[p]a| |o*[p]]
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holds, then R is topologically isomorphic to some Orlice space Ly the modular
norm on which has properties (ii), (iii) and (v).
The central part of the proof of Theorem is to construct a funection
@ which determined the Orlicz space L. Therefore, we shall begin to
give the lemmas by which @ is constructed and its properties are proposed.
In what follows, suppose that R satisfies the condition in Theovem.
For any & >0, we define a function f(£) as

l* (o1
9 = —_— s peN- =
(9) f(& sup{ ||s*[p][] soeS-E a,und [plz f[p]s}
=0 if £ =0.

Remark. 0 # |[p]ef and ze§ imply ([plz, =*) # 0. Indeed, if
(lplw, &*) = 0, then (z— [p]z, 2*) = 1 and hence |lo— [p]a]] = 1 contra-
dicting to the monotony of the norm.

Levma 1. There ewists a positive constant B such that for arbitrary

n

@oe8- B, with z, = £[p0]s—{—‘§ Ei[pils, 0 < [IE[pols <1 and &> 0,

e [l g 2l
Wl SO <P

Proof. The left side inequality is obvious from the definition of
f(&). Buppose that 8-Esy = £[pls+ Y £[p:]s. Then, we have
G=1

(10)

( [pls _&*[p] ) _

tp1sll” =™ [p i

and hence, by virtue of the smoothness of R,

a1 2 [p] =( [p]s )*= $*[p]
ll=* o1 Ilp1sl| lls* e’

because ||z*[p]|| +# 0 from the above remark.
Therefore, for any 0 s [¢] < [p], #*[q]/lle* [p]ll = s*[q]/Is*[p]| and
consequently
™[l lle™ o]l
ls*Lall — lis* (w1l
Next, we shall prove that there exist two positive constant A and
B sueh that for every elements © and y in §-F
sk
< um*mn < B,
lly™ [q]Il
where §>0, x={[plst+u, y=~&Mgls+o, [plu=I[gJv=0,
Ilglsl| and 0 % u, veR.

(12) for every 0 # [¢] < [p]

(13)

Itplsh =

14 ~ Studia Mathematica
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If such constants do not exist, on account of (12), there exist some
elements &, and ¥, in S-B, which satisfy the following relations:

0 <y, = En[?n]s+nnbn1 bnES'E, [_'pn] by, = 0,
0 < Yn= Enlgn] 8+ Lnn, dneS-H, [gu]dn =0,
1= an[}’n]sll = ”En[q'n,]s” = tnw:;l‘y £, >0

and

lynlgall = g(m)lwnlpall  Wwith  g(n)5,+o0.

For simplicity, we put [p]s/I[Palsl = an, [gn]s/l[gnlsll = n, X,
= (a4, #}) and ¥, = (¢n, yn). For the represented functions # = y,(t)
and = {,(t) of the indicatrices C(an, by) and C(cn,d,) respectively,
as is shown in (6), we have then

L2 [ Y R [din] __ (duyy3)
[ di ]intﬂ’— X,n dt t==ty, Yn
and hence
agy 1—g(n) 7 (tn) [ d"?n]
* < | — = —
0= [ i ]i=tn En(tn) '—Xn'g(“) + Cn(tn) dt t=tn’

because 1, Xy, -+ 7 (tn) (bny @) = tn Yot Cu(tn) (dn, ¥n) = Land ¥, = g(n) X,
by condition () in the theorem.
On the other hand, it is easily seen that for enough large =,

a1
1—t, < pultn), baltn) <1, 0 <|:_ (Z ] <1, 0< Yo=Xpng(n)
. ity
and lim (1— g(n)) = —occ. Consequently, we have
N—>00
<| - < <90
0 [ @ oy S Tt 7o 1ot

for enough large n, which is impossible. Thus, there exists a constant
A > 0 satisfying (13) We may be able to prove similarly the existence
of Bin (13). By (12), (13) and the definition of f(£), we can see that Lemma 1
is verified for 8 = B.

Levua 2. The function f(£) defined in (9) is a real-valued, non-decreas-
ing function in & > 0 and more f(£) > 0 for & > 0.

Proof. It is evident, by Lemma 1, that f(£) is real-valued and f(£)
> 0 for & > 0 from the remark for the definition of f(&). Suppose 0 < &,
< &,. We choose a projector [p] such that 0 < [|&[pls] <1 (6 =1,2).
Moreover, we consider ;¢S F (i = 1,2) such that

@ = &lpls+ D melals +n (&) [ds,

icm

Normed latlices 211

where [p], [¢x](k =1,2,...,n) and [¢] are mutually orthogonal. Then,
if we fix n (k=1,2,...,n), the represented functions n(&)ILeIsl
= hi(&s, N1 ..., 7a) aTe differentiable at £;(1 = 1, 2) respectively; namely,
derivatives 7'(&;) exist by Lemma A. Therefore, by Lemma B, we have

ls .\ _[[pls .
(nmsn ‘ "'”) < (H[p]sn ’ ”)

Hence, in virtue of the condition (x), we have

o7 o) Ilm;[pln_ lla* [p4]l - lle* (211

s el s Te]l ls* ool lis*[pell
if 0. < jl&p; sl <1 and [p,] <{p,], for each element @ = & [P]S84+
+23 telrilseS-B Dby (12). Accordingly, when we choose 0 < n<1
such that y = &[p,)s+7-3 &[ri]ls belongs in 8-F (this is possible,

on account of (12), by taking [p,] such that {|[p,]s] is enough small)
we obtain, by Lemma 2,

le™Tpal _ e palll _ [y (221
Is* o0l 18" [pad1 8™ [pall

Therefore, we have

and more

F(&) = sup{”%%]]l;mwﬂ and [p]z = fl[pjs}
<Sup{ I!]li*gg;: ;YeS-E and [ply = Ez[pls} = f(&).

LEMMA 3. For the convex function

&
M) = [fimyat,

there exists a convex fumction @ (&), equivalent to M (&), such that
() the derivative of P() is continuous,
(i) lim @(£)/& = 0 and Lm D(£)[¢ = +oo,
50 b—>+to0

(iii) @(£) >0 for £>0.
Proof. Putting

(14) D)= | ——dt for E>0,

L M@
J=

we have
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5o that & (&) is equivalent to M (£). It is evident that @ satisfies (i) and (iii).
In order to prove that @ satisfies (ii), it will suffice to prove that
lim f(§) =0 and lim f(£) = -oo.
&0 f—>too
For 0 < £ <1, choosing @; = &[pls+n(é)[qlseS-B, with [p]lq]
= 0, we have

laftpdl _ o (s, ad)

Smf(6) = Ml e s el
_ [q]s *) * = 0.
= (w36, () )/

Next, taking @, = £[p¢]seS-F for each &> 1, it follows from the
property (v) for R that lim [|s*[p.]| = 0. Therefore, we have, by Lemma 1,
E—a+too

. e [pel . 1
SR TOZ D el TS Wl

4. The proof of Theorem. We shall make use of the spectral theory
of H. Nakano [12; §§ 8-13 and §§ 20-23] and [13; Chap. III]. Therefore,
we restate at the moment several results obtained by H. Nakano.

Let & be the proper space of R, t.e., the compact Hausdorff space
consisting of all mawimal ideals (1) 2 of projectors in R with a neighbourhood
iystem J = {Upj;weR}, where Uy = {Pec&; [w]eP}. Then, each Upy
ss both open and closed in &, and # forms a Boolean algebra with respect
to the set operation, i.e.,

00

U[g;] v U[y] = U[F‘!UW” and [12; P. 32}.
For zeR, the function (z/s, #) on & is defined by

it Pe[[(Ugyg— Uy p)s
050

Uiey Uy = Uy

@
-, Z| = Foo if  Pe ” (g_‘U[x])’
8 —oo<d<t+oo A
—oo if  Pe ][] Ulays
—00<A< 00
where [#;] = [(As—=)"], and is called the relative spectrum [13; Theo-

rem 23.3].
For this function, we can see that

Lemua 4. (i) (w/s, &) is almost finite, i.e., finite in an open dense st
in &, and is conlinuous (*?) [13; Theorems 19.2 and 19.37];

(*) The set of projectors £ is called an ideal, if (i) £ 0, (ii) #> %] and (=] < [¥]
imply [yle#, (iif) &[], [y] implies [#)[y]e®, where [z][y] means [|jz] ~ [y]].

(*) In the case (z/s, #) = + co (or — o), the continuity means that for any
real number i> 0, there exists a nbd. Upq)? 2, such that (s, #) > 4 (or < —4)
for all -‘7€U[q]. B
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() (2/s, #) = (Iplafs, ) on Upyy for any projector [p] [13;
Theorem 18.4];

(iii) the set {(v[s, P); weR} is linear and lattice isomorphic to R [13;
Theorem 18.5-Theorem 18.107.

For a bounded continuous funetion f(#) on Upy, the integral of
f(#) by zeR, denoted by [ f(#)dPw, is defined as a limit of partial
sums 21

n
DN ICIIAE:

J=1
for every sequence of orthogonal partitions {[p1} of [p] such that

Ose f(2) <&

. (G=1,2,..,mi=1,2,..), limsg=0
Uit e

and for arbitrary ;e Ulpy-

For an unbounded continuous function f(#) on Uy, if there exists
an increasing sequence of bounded continuous functions Fa(P) on Uy
such that

lim f,(#) =f(#) and lim [f(P)dPe
n—oo ‘n->00[p]

exists, then we shall say that f(2) is integrable by © on Uiy and denote
this limit by f f(P)d Px. We have, as an integral representation,
]

LeMuMA 5 [13; Theorems 21.1 and 21.2]. For any ac<R, (afs, &#) is

integrable by s and
4= f(i, 5”)(19’8.
o ‘o

Conversely, if a continuous function f(P) is integrable by s and
b= f f(P)aPs,
i8]
then f(P) = (bjs, P) for all Peé.

For zeR and deR, considering ([p]z, @) as a measure of Upys we
can define integral of continuous functions f(#) on Uy, by (2, a), denoted by

[f(P)a2e,a).
Uy

This integral has been introduced in [11; § 4 and § 5] and the follow-
ing facts are obtained.
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LEmma 6 [11; §4, Hilfsatz 4.22] [12; Theorem. 21.10]. For gzeR,
(@/s, P) is integrable by (s, @) ) for any @R, and we have

(Ip)a, @) = f(;

ﬂ)(dﬁs, ay.
Uy

LeMMA 7. (i) For 0 # deR,

(m”’”—”)=(f_,g‘) for  PeUy 0s (),

{p>? ([p]s, d) 8
(ylw, 8) ([yle, d)} - (ﬁ’ gzt)

namely,
U[p];9{°¢[1’]<[1'] (Lyls, @)} Uy {0%[1/]<[1"] (lyls, @) s

[13; Theorem b54.3];
(ii) for any o,beR, there ewmisis

w @80 o
wo (010, @)
and the limit is independent from xR [13; Theorem 51.5].
The above limit g(P) is denoted by (B)a, P) and integrable by (y, @)
for each yeR [13; Theorem 51.8].
Lemma 8 [11; 4, Hilfsatz 4.23] [12; Theorem 21.11]. If f(#) is in-
tegrable by (b, &) in Uy, then f(2) (b /s, Z) is integrable by (s, @) in Upy,

and
Uf f(#) ( ) (@%s, a@).

Now, we consider such a completely additive measure u on (&;.#)

Pe U[m] -0z

f (P (@D, a)

Uiy

ag
(15) w(Uy) = ([pls, 5%).
n
Suppose that zeS-F with = =i2§1- [p:]s where [p;]s are mutually
=1

orthogonal and £ 0 (1 =1,2,...,n).
jector [p] such that

0 < |§; [pIs]<1 and
By Lemma 1 and condition (%)

For such a &, we take a pro-

[p] < [pid-

, we have

([pla, 2*[p]) ([p]=, 2" [p])
(16) ————([p}s,s*[p]) <I&lf(1&D) < 13—*————-—~18 o))

(™) Og=1¢— | U[p].
afpf=0
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Therefore, we have, by Lemma 7,
([plz, 2™ [p]) » a*
lim ——1 —— = — (2 — .
ws (215, 5 [p)) (s ’ g’)(s* ’ g’) for 2<lm:s
so that
_ @ z* @ z*
(17) (‘; -W) (s—*’ 9”) < [&If(1&:]) </9(;7 9) (?7 9’) for ZeUp,.

8

On the other hand, (z/s, &) = & for Pe Upg (6 =1,2,...,n) and
by Lemma 8
o z* z
— P\, & * = (_gz)gz*= *) =1.
(5 2)(%, o)ass, S5 2)azea) = @,a =1
Consequently, on account of (15) and {17), we have
@ @
SIS P

For ¢(¢) finding in Lemma 3, there exist two constants 0 < y<9é
< oo such that |&|f(1€]) < D(8-]&]) and B(y]|£) ) < |€1f(|&]), because
[€[f(1€]) is equivalent to M(]£]). Consequently,

(19) 1<f¢(5 (g, Q)J)dﬂ and J@(y'(?, gvmd,zgﬂ
for any zeS-E.

&
In [8], we prove that for any 0 # z<R there exists a sequence of
step elements z,eE such that 0 < 2,12, |»l. Hence, by the Lebesgue’s
bounded sequence theorem,

s [l #))eu= fo| (5 2] Jo

so that, from (19),
»
—, Z|1 14
(52

(20) 1 <]1n1 f (“%“ (mn gf))du = lf@(f;}

and simﬂarly
@
('8_7 ‘@)l)dﬂ <8.

4
(21) f @(—
&\l

Thus, the function space A == {(#fs, #); <R} eomes to a modulared
space, with the modular
)tl/t,

= o7

&
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which is topologically isomorphie to R, that is, for the modular norm Now, for any & > 1, we take a projector [p,] satisfying || Elpels] =1

e 7 nf 1
| (s : )M e €]
it follows that |jz[l[d < [|[(z/s, P)|I < Blxll/y for each xeR.

Therefore, the modular norm |||-||| on 4 is continuous (b.y.the con-
tinuity of ||| on R (%)) and 4 is non-atomic (by the non-atomicity of .R).
Consequently, the modular ¢ on A4 is finite ([1; p. 62] and [9; § 10]), i.e.,
o(z) < +oo for every wed. )

These facts show that B is topologically isomorphic to a subspace
A4 of the Orlicz space Lj (&, u), however, we can verify that & satisfies
the (A,)-condition, so we know the inclusion L} (&, ) <= 4, by the same
method as in the end of the proof of the theorem in [7; p. 150 and p. 580].
In what follows, we shall only prove that @ satisfies the (A,)-condition.
By property (v) for R, which is described in section 2, there exists a posi-
tive integer k, such that

g:1sll < %o Isll

and for any orthogonal partition

ko
[pls = D)[g:ls
=1

(t=1,2,...,k) for any projector [p]

with [g,]sll = [i[g=]8ll = ... = llgx,]sl. (The possibility of such a ortho-
gonal partition arises from the facts that R is mon-atomic and has the
continuous norm). We have therefore

ko
I3l Is* (o0l = ((p1s, s*[p]) = D)([ails, s*[as))
kg =1 ko
= Y laIsll-Is* [l < $lp sl Y lls* [a]l
t=1 fe=1

and hence B
0

Is* (o1 < 3 D)ls* [l
f=1

On the other hand, we have, by (13),
*
< =)

STyl

for non-zero projectors [z], [y] with [z][y] =0 and eels]l = |I[y1s]l.

Accordingly, we have
k,B .
(22) ls* pTIl < ~;—Ii8* el (i=1,2,..., k).

(%) Bee the footnote (9).

and use [p,] instead of [p] in (22). Then, for the orthogonal partition

ko
(pels = D'lasls  with  |gals] = gslsl = ... = [gs, ],
=1
we have
2é[q:lsll <1 , k).
Therefore, considering & = 2£[¢,]1s+ 7 [r]seS - B, where [r] iz a pro-
jector with [¢,][7] = 0, we have
fla* [g I
lls* (g2l
1
lIs* (g1l
28 1
S Bty W0l
_ 28 (ELpes) [l
Bk, lIs*[pell

(i=1,2,...

feaH<s (by Lemma 1)

<p

(by (22))

< 26 Li 1
\ﬁ:f(f) (by Lemma 1).

Namely, we have
’(2'5 < H£ for all £>
)\ Bko )

and hence M (£) in Lemma 3 satisfies the (A,)-condition and consequen tly

(&) satisties also the (A,)-condition, because (&) is equivalent to M (£).
Thus, the normed lattice R having the properties (i)-(v) is topologically

isomorphie to the Orlicz space Lj (&, p).- The theorem is proved.
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A norm satisfying the Bernstein condition
by

ROY 0. DAVIES (Leicester)

In the research that recently culminated ([1],[31, [4]) in the proof
that all separable infinite-dimensional Fréchet spaces are homeomorphie,
one step (not however used in that proof) was the introduction into ¢,
of a new norm, equivalent to the original norm but in addition satisfying
the ‘‘Bernstein condition”. Bessaga [2] gives a rather complicated con-
struction and proof, communicated to him by Kadets. The purpose of
the present note is to point out that the very simple norm

llalll = lzll+ 3 aclesl  for @ = (ay)<cy,

where }'a; is any fixed convergent series of positive numbers, will serve
the purpose equally well. In view of the inequalities

]

lell < flall] < (14 3 adf
it is obvious that |||-]|| is an admissible norm, equivalent to [|-]j, and it

remains to be shown that it satisfies the Bernstein condition. Thus, we
have to prove the following

THEOREM. If ©; >0, ;>0 (i=1,2, )y > 0,y; — 0, and

ey Sup @it D' aigs = sup yit N aiyi = & (say)
i1 i=7 =7 i=7
for j=1,2,..., then @ =y, for all i = 1,2,...

Proof. Suppose not. If k is the first index for which u; = Y1, and
88y @ > Yi, then the inequality «; > y; cannot hold for all © # k, other-
wise (1) would fail for j = 1. Hence there exist indices m and = such
that

1 <M < Ny T > Yy Bn < Yy, and @ =1y for m < i < m.
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