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By considering the two cases a; <iS>1}£1w¢ and the contrary, it is
eagy to see that

@) &= 8 = max{may, mm+(— supe)}t  (G=1,2,...),

izf+1
and of course similarly for (y). Since, by (2), @nYm < tnIn < Sm— dmy,
it follows with the help of (2) for (y;) that

amfl/m-}'(ym_i;;l]i)l?/i) = Op— Omy1 2 Gnmt (mm“i:E&“"i%

and consequently

. . - SUp ¥i > Sup .
(3) . iﬁl_:lwt 2 (1) (@m ym)+i;=m£1y‘b i>m£ I/i

Hence for m+1 <4

<
By S Yi < SUP i < Sup &y,
i=m4l L izml

1

and therefore
(4) Sup @; = SUp &; > Sup y; > Sup Y.
i>n41 izm+l izm4l izn4l
On the other hand, in the same way that from &, > y» we derived
(3), from ©, <y, we can derive
sup &; < SUp Yy,
i=n41 izn4l
which contradicts (4). The proof is complete. .
I am grateful to P.S. Chow and D.J. White for some stimmulating
discussion, and to the referee for his suggestions.
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On the probability measures in Hilbert spaces
by

R. JAJTE (Léds)

Introduction. In a topological semigroup we may consider integrals
of the following kind. Let g = g(#), & <t < b be a mapping of the interval
[a, b] into G and ¥ (4), 4 < [a, b] — a function of interval whose values
are transformations of @ into itself. If the limit of the sums

8(P) = D F(4)g(t)

(where P = (4,, 4,, ..., 4,) is a partition of [a,b] and #ed;) exists
a8 P runs over a normal sequence of partitions, then this limit will be
called an integral of g with respect to F on the interval [a, b].

The aim of this paper is to study some properties of integrals of
this kind, where @ is a semigroup of probability measures in a Hilbert
space (with the convolution as a semigroup operation and with the topology
generated by the weak convergency of measures), while F is assumed to
take the values from the space of linear bounded operators in a Hilbert
space (and induces a transformation of the semi-group of distributions
into itself). §1 contains the basic definitions and facts of the theory of
probability measures in a Hilbert space. In § 2 we define the convolution
integral and prove its fundamental properties; § 3 contains some theorems
illustrating the applications of the convolution integral (the continual
analogous of classical theorems on the limit distributions of sums of
independent random variables); finally in § 4, employing the notion of
a convolution integral, we construct the Gaussian stochastic process
with special properties.

§1

1.1. Let H be a real separable Hilbert space with the scalar product
{*, *) and with the norm||- . Denote by OR the set of all probability measures
in H (i.e. the set of normed regular measures defined on a o-field B of
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Borelian subsets of H). We regard 9 as a topological spacg.with a weak
convergence of measures. Namely, & sequence of probablhi';y measures
in s 52id t0 e weakly convergent to p (pn — p) if for any continuous fune-
tion bounded in H we have

) tn [ f(0)n (@) = [F(B(d) (2).

To any pair u,veM we assign a probability measure u*» which is
called the convolution of p and », given by the formula

) (u*)(2) = f/u(z—g)'x/(dg) for every Ze.

M is an Abelian semigroup with respect to convolution (2). The
weak convergence in OR is a metric convergence (with the metric of Levy-
Prochorov; [14], p. 188) and with this metric 9 is a complete space,
while the convolution is a continuous operation. VXe denote the con-

volution of probability measures »,, v,,..., %, by knl*vk. For a linear
bounded operator in H and for ue M we put, by definition,
3) (4p)(2) = p(47'Z)

where A7 7 = {h: AheZ}. Tt is clear that if uis the distribution of a ran-
dom variable &, then Ay is the distribution of the random variable A£(2).

1.2. An element M, <H such that

4) (M, b) = [ (g, h) u(dg)

ig called the mathematical ewpeciation of the probability measure u.

For o> 0 let ull. = [ lg]"u(dg).

If |lully < oo, then the mathematical expectation M, exists. If ||ull,
< oo, then the dispersion operator D, of the probability measure u is.
defined by

() (Dug, h) = [(u—3,, g)(u—D,, h)u(du)
A linear operator in H is called an S-operator (compare [14], p. 193)
if it is self-adjoint, non-negative and has a finite trace. Hence it follows

that every S-operator iy compact. The disperssion operator defined for
liwlla < oo by tormula (5) is an S-operator. We write the formulae

(6) ‘Dllng = *Dlllbl_ Dl‘g
(M Dy = AD,Ax,
where A* denotes the operator adjoint to A.

for any Ze3,

for any heH

for every h,geH.

> (1) J --. means an integral over the whole space H.
.. ) By'a random variable £ with the values from H we mean a measurable map-~
Ping of the probability ‘space (2, %, p) into (H, B).
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1.3. The characteristic functional 4(h) of the probability measure

peM (the Fourier transformation of the measure p) is defined by the
formula

(®) i) = [P u(dg) (7).

The characteristic functional (8) defines uniquely the probability
measure u. A functional ¢(h) is the characteristic Sunctional of a probability
measure peM if and only if ¢ is positively defined, p(0) =1 and ¢ is
continuous at the point % = 0 in the topology generated by neigh-
bourhoods of the form (8-topology)

{h: (Bh, h) < 1},

where B is an arbitrary §-operator. We write the formulae

A~
) (Ap)(h) = p(4*n),
N
(10) Hy* pa(h) = py (B) pa(B).

1.4. A family of S-operators B, (feT) is called compact if the following
two conditions are satisfied (4):

(i) S,‘}pTrBt < co,
(i) im sup 3 (Byex, ex) = 0, where {e;} is the basis in H.
M—>00 lel' ke=m

By 6, we denote a measure condensed at a point z,ie. 8(Z) =1
if #eZ and 6(Z) = 0 if ©¢Z. A sequence of probability measures u, is
called shift-compact if there exists a sequence {z,} of elements of the space
H such that the sequence u,, * 0z, is compact in M.

In the sequel we shall often make use of the following theorems:

(A) - (Prochorov [14]). A family of probability measures u;(¢eT)
is compact in I if and only if for any e > 0 there exists a compact family
of S-operators B{(teT) such that .

1—Rei(h) < (BPh, h)+¢ for heH and teT.

(B) A family of distributions is compact in 9N if and only if for any
&> 0 there exists a compact set Z, = H such that

infu;(Z,) > 1—e.
m"ut( o ¢

(C) If the sequence {u,} is compact in IM and if f,(h) — p(k) for
any heH, then u, — pu and p(h) = u(h) (see [14]).

(%) see [9], [12], [16].
(*) see [14]; Tr B denotes the trace of the operator B.
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(D) If for a sequence of distributions. {/,z%}.such.that leenlle < o0
(n=1,2,...) the sequence of corresponding dispersion operators ig
compact, then the sequence {u,} is compact [14]. .

(E) If a sequence of probability meavsuresi Mn = an * Py is compact
in 9N, then the sequences {a,} and {f,} are shiftcompact ([13], p. 203).

§2

2.1. Let a one-parameter family of probability measures u(f)e M
be defined in an interval a <t < b; let us define for A c [a, b] a function
of interval F(A) whose values are bounded linear operators in H. If for
every normal sequence of partitions P, = (4{", ..., 4%)) of the segment
[a, b] the sequence of measures

T

(11) [T FAP uaf),  desd (n=1,2,...)
k=1
converges to the distribution » (in the sense of weak convergence in IMN),
then we shall call » an convolution integral of the family w(t) with respect
to the family F(4) in the interval [a, b] and write

b
(12) v="[ut)F(a).

b
(If u(t) = p, then we shall write *[ uPF (d1).)

If for any normal sequence of partitions of the segment [a, bj the
distributions .

(13) tnge=FAD W), k=1,2,.. kyn=1,2, e

are infinitely small (%), then integral (12) will be called a regular convolu-
tion integral. It is clear that a value of a regular integral can only be an
infinitely divisible distribution.

2.2. A function of interval F ig called continuous if for any e > 0
there exists a J > 0 such that [F ()| < & provided [4] < & (|4] denotes
the length of the interval A).

It integral (12) exists, the tamily wu(t) is compact in 9 and the family
F(4) is eontinuous in [a, b], then integral (12) is regular.

In fact, let {P,} be a normal sequence of partitions of the segment
[a, b]. Then

max [F(AM)] -0 for n -» oo,
1<kecky,

(*) ie. for any e> 0 8D pn g {ll]] > e} 0 as n - oo,
1<kigk,,
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Moreover, by the compactness of the set of measures #(t) there exists
in H a compact subset Z, sueh that
inf p(Z,)>1—-
a<i<h

(see theorem (B) of § 1). In particular, for any &> 0 there exists an 7, >0
such that

Sup w{llof >r} <.
aich
Let > 0 be given. We have

sup (P (48 () (ol > 7} < sup e {IE (AL Jal] > )
1gkgk,, I<kky,

<e

< sup wn{llel sup |[F(AP)) > 9} < sup mtn){llxll >
1<k<ky, 1<k<hy, 1<k, *

. }
sup [F(AP)]|
lgkgkn
for » sufficiently large.

2.3. We observe that in the definition of infegral (12) the additivity
of the set-function # is not required. Convolution integral (12) can be
regarded as a generalization of the ordinary Riemann integral of a mapping
2 of a segment [a, b] into the Hilbert space H. In fact, put u(f) = 2ty 1
F(4) = 4|1, where I is the identity operator in H. Then convolutions
defining the convolution integral take the form

*
];I fdi:”)lam(l(l:‘)) = 5{@%’0),45‘”},

and the existence of convolution integral (12) is equivalent to the existence
of the Riemann integral, the following equality being valid:

b
* f pOF (@) =52, .
a a
In what follows we make use of the following lemma:

2.4. LEMMA. If {2,} 45 @ sequence non-compact in H, then there emist
subsequences of natural numbers {ka} and {1} such that the sequence {z,}
= {@, — a1} is non-compact.

Proof. Considering, if necessary, a subsequence of the sequence
{#n} We can assume that there exists an € >0 such that |z, —m,| > ¢
for n #m. Put %y = 1,1, =2 and consider the sequence {Bs—a,}, n
=4,5,... Since

I]($3~w")——($3—ﬂ2m)]f =2¢e for n F*m,

here exists a natural number s such that
&
”(wl—wz)" (503—5173)]] = 5‘

15 — Studia Mathematica
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Pﬁt %y =3,1, = s and consider the sequence {zs—x,},n >s. Ag
before, we can find a natural number » such that

[[(8, — @) — (s — @,)|| = ¢/2  and (g — 25) — (35— @) || = /2.

Put %y = s-+-1,1; = r. Proceeding in the same way we obtain two
sequences of natural numbers {k,} and {I,} such that

}](wkn~m;n)——(mkm——mlm)|l >e¢e/2 for n #m,
which completes the proof of the lemma.

2.5. In the sequel we denote by x the probability meagure defined
by the formula u(Z) = u(—2Z) for ZeB. Put also |u|® = u*u. Clearly
N ~
lulp(h) = |u(R)|%

Integral (12) defined above possesses a number of regular proper-
ties which are put together in the following theorem.

2.6. TreoREM. (i) If there ewists a (reqular) convolution integral
{* * fb w(t)F (dt)
a
and [c,d] < [a,b], then there exists also a (regular) comvolution integral
*_F,u(t)lﬂ(dt).
a

(ii) If there ewist integrals

b
vi="[w®F @) (i=1,2)

then there ewists am imtegral
b
v =" (s (8) * o (1) F'(d1)

and the equality v = v,%v, holds.
(iil) If there emists an integral (*), a < ¢ < b, then there exist integrals

c b
JuF@, "[umF@
and the equality ‘
b c b
=71

holds.

icm
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(iv) If A is an operator in H,
b
v ="[u))F(a),
a
then
- * 4
Ay = f w(8) (AT (d)
a

and if A is commutative with the operators F(4), 4 < [a, b, then also
b

Ay = *f(Ay(t))F(dt).
(v) If the integral (=) exisis, then there also emist integrals
b »
*
[a@F@), [ |uee Fa
and the relations

b 5 b b
JEOF@) ="[uF@), " [urr@y - |*f )
hold. ‘
(vi) If
b
I'fuoF@], <o, a<o<s,
then ‘

| upan], < .

Proof. Ad (i). Clearly it suffices to prove that if there exists an
integral (*), then there exist integrals

¢ b
[u@F@) ana " [ u(t) F(ar)

for any ¢ from the interval [, b]. Let the integral (*) exist. We state
that for any normal sequence of partitions P,= (4", ..., A}c’:l)) of the
interval [a, c], the sequence of measures

o
*
w= [ PP, deapP,n=1,3,..,

k=1

is compact in IMN. In fact, suppose that (14) is not compact in OR. Put

(14)

lﬂ
= [ [P@P)u(s), s ap,
I=1
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where P, = (4%, 4(™, ..., 4") is a normal sequence of partitions of
the interval [c, b]. By the existence of the integral (*) we have

b
(16) pntvn— " [u(F (@) as  m—>oo.

In particular, the sequence {», * u,} is compact in 9. Hence it follows
that the sequences {»,} and {u,} are shiftcompact (by theorem (E) of §1).
Thus there exist sequences of elements of the space H, {z,} and {y,},
such that the sequences of measures {v,*dy,} and {u,* 4y} are compact.
The sequence {w,} is non-compact (for if it were compact, then the
sequence of measures {s,} = {vn* s, *6_s,} Would be compact, contrary
to our supposition). Put
(17 Yo = (—@p)+2, (W=1,2,..).

Since the sequence vy * 05, * in* O(_a,)* 0s, = ¥ *in * O, 18 eompact in
M and the sequence », * iy, 18 convergent, then the sequence {z,} is com-
pact in H.

Now choose for the sequence {x,} sequences of natural numbers {%,}
and {l} such as in Lemma 2.4. Thus the sequence {2, —a;,} is non-com-
pact. Since the sequences of distributions {v, * 8;,} and {un *pun*§ } are
compact, the sequence of probability measures
(18) {"’Ic,, * 5:51% * phy, * 651% * 5(—:;‘1”)}
is also compact in IN. Moreover, the sequence {y, * P * 6%} is compact
and the sequence {; —m;,} is not compact. Thus sequence (18) car'u}ot
be compact in M. Thus the supposition that the sequence of probability
measures (14) is not compact in 9N has led us to a contradiction. In‘view
of the symmetry of our considerations we have also proved the compact-

ness of the sequence of distributions of form (15). Now suppose that the
integral

(19) fu)F @y

B~

does not exist. Then there exist two normal sequences of partitions of
the interval [a,e¢] such that the corresponding sequences of measures
of form (14), v, and v, converge to different limits: », —> o'y vy ="y
v £,

Let {un} be a convergent sequence of distributions of form (15) corres-
ponding to a normal sequence of partitions of the interval [e, b]. Let
[y~ u. Thus we have i

b
ot =vrp =" u(t) F(dt),
a

which is imposible for », Vy.
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Thus we have completed the proof of (i).

Ad (ii). The proof easily follows from the definition of the convo-
lution integral and from the continuity of the convolution.

Ad (iii). The existence of the integrals follows from (i), the other

properties are an immediate corollary to the definition of convolution
integral.

Ad (iv). This property follows from the formula
Alp*r) = (Au)*(4y).

Ad (v). This property follows from (i) and the following simple
relationships: u*y = k+v; Ay = Ay ~ (—4)p.

Ad (vi) This results from the following lemma (comp. Cramer [1Dn:

If lulls < 00, g = w1%9y, then [y, < oo (i =1, 2).

In fact, the inequality

2(llg-+ B+ [R112) = llgl>+ llg+ 2Rz > [g]j2

implies the estimation

v (E) [llglevs(dg) = [ [ llgliev, (@h)»y(dg)
KH .
<2 [ [lg-+hln(@h)ve(dg)+2 [ [hl5,(an)
HH K

=2 [l u@h)+2 [ b (@) < oo,
2 :

where K is a sphere in H such that »1(K) > 0, whenee ||y, < co.

§3
3.1. A probability distribution ue M is called normal if
£ (k) = expl[i(ho, h)—}(Dh, h)],

where hoe H and D is an S-operator. Then ky is the mathematical expecta-
tion of the probability measure w and D its dispersion operator (hence,
in particular, it follows that every S-operator is the dispersion operator
of a certain probability measure neM)

3.2. THEOREM. Let ||ull, < oo, M, =0, Ay, 0 <t < b be a continuous
Jamily of bounded linear operators im H such that

sup |[4,)] =k < co.
a<i<h
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Put p(t) = Ay, F(4) = V|A4]-1, where I is the unity operator in
H, A — an interval included in [a, b], |4| — the length of the interval A.
Then there emists a regular convolution integral

b
(20) v="[ut)F(d),
a
where v is the normal probability measure given by the characteristic func-

tional
b

#(h) = exp[—14 [ (4 DA, nyt),

(1

(21)

where D is the dispersion operator of the probability measure y and A* de-
notes the operator adjoint to A.

Proof. Let P = (4,, 4,,...,4,) be a partition of the interval
[a, b], tre 4. First of all we will show that the right-hand side of formula
(21) is indeed the characteristic functional of a normal distribution, i.e.
that the operator B defined by the integral

b
Bh= [A.DAthdv, heH,
a

is an S-operator (the integral exists for every heH since the operator
family is by assumption continuous). The operator B, as the limit of
linear forms of self-adjoint non-negative operators with non-negative
coefficients, is self-adjoint and non-negative. We also have TrB < oo,
which follows from the estimation

Tr(Z’ |4k 44, DA}) = 3" |4 Tr (4, DA}) < k*(b—a)TrD.
I3 k

From the same egtimation it follows that all sequences of distri-
butions defining the integral given by formula (20) corresponding to
normal sequences of partitions of the interval [a, b] are compact. Thus,
according to the theorem of Prochorov, we have to prove that the
sequence of corresponding characteristic functionals converge to #(h),

‘We have

is(h) = 1—3(Dh, b)+o([h]2).
Thus »
Log | [ (VI4ui1) w(t) () = 3 log(1—314xl(Dyyh, 1)+ | Ayl bl e0 (VT4 B),
k=1

n
k=1
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where D; = A;DA; and w(h) -0 as h — 0. Hence it easily follows that
for max 4] -0 (n — oo)

1gk<ky,
%, — T~ b
tim [ [ (V1AP11) u () (h) = exp[—,}f(p,h, h)dr].

00 2. 0]

The regularity of integral (20) follows from criterion 2.9. Indeed,
the compactness of the family of measures p(t) = A, a <t < b, follows
from the compactness of the family of operators D; and of theorem (D)
(§1).

The theorem just proved has of course its prototype in the classical
Lindenberg-Levy theorem.

3.3. A family Dy, a <1t < b, of 8-operators is said to be summable
with respect to a family of operators F(4), 4 < [@,b] to an S-operator
D if for every normal sequence of partitions of the interval [a,b]: Py
= (Agb): Agn)’ ney A%n,’,)

1° the sequence of operators

By
D F(4) Dy F(Af)*
k=1
is compact,

2° the limit

Fn
lim 3 '(F(AP) Dy F(Af)* 1, 1) = (Dh, 1)

exists for every heH (obviously #{ea{™)

3.4. THEOREM. Let a family of probability measures ©(t) such that
llee(@)lla < 00, Mpu(t) = 8 for a <t < b be given. Let D, denote the dispersion
operator of the distribution u(t). Let the family Dy, 0 <t < b, be summable
with respect to F(A) to an S-operator D. Then the regular infegral

b

(22) [ ut)Fag =,
where :
(23) »(h) = exp[—}(Dh, k)]

exists if and only if for any normal sequence of partitions {Pn} of the interval
[a,b] and for any &> 0 the limit

o
Im 3 [ PPN g (@h) = 0
=1 yr )z

(24)

exists. (Clearly, in formula (24), thed™.)
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‘We omit the proof of this theorem, because it can be obtained by an
easy modification of the argument employed by Kandelaky and Sazonov
® [801:311§d§1.:ion (24) is to be treated as a genemlizati.on of the wellknown
Lindeberg condition for one-dimensional distributions. Now we . shall
formulate a theorem which hag no analogon in the theory of one-dimen-
gional distributions.

3.5. TurorEM. Let u(t), a <t < b, be a family of probability dism-
butions in H such that Mu(t) = 0, |u(t)|ls < oo, Dy < D, where Dy is the
dispersion operator of u(t) and D is a certain S-operator. Let _E,, a <t <Cb,
be a continuous resolution of the identity in H. Thus there exists ¢ convolu-
tion integral

b
(25) *[uB(a) = &,

where E(A) = B—EBy if 4 =[s,1].
Proof. Let P, be a normal sequence of partitions of the interval
[a,b], #PeAP. We will show that

By
(26) lim 3'(B(A) Dy B(AP)h,h) =0 for any heH.
P00 jizml
Bince D; <D for o <t < b, also E(4)D,B(4) < E(4)DE(4). Thus
it suffices to show (26) for D; = D. Let {¢,} be a basis in H, diagonal with
respect to the operator D, i.e. De, = Ay6, (v=1,2,...). Obviously 1, > 0.
Moreover,

Ay =TrD < oo.

DM

£
]
-

Then we have

by o Iy
27m D (B(AP)DB( APk, 1) = D DB, ef.
=1 V=1 f=1

But
ko, kp,
DB, e < D (B, 1) (B(AD)e,, 0) < max (BCAPYB, D).
k=3 =1 1kl

In view of the uniform continuity of the function (B, b, h) in the
interval [a, b] the last expression converges to zero. Passing in (27) to

the limit as n - oo we obtain (26). It may eagily be verified that the
sequence

- kn
(28) Su= D B(AP) D B(AP)

k=1

icm

On the probability measures 233

of dispersion operators of the distributions

Fn,
(29) = [ [ BOAP) u(t?)
k=1

is compact and thus the sequence of measures is compact. So it suffices

to show that, for any heH, j,(h) -1 as n — oo, This, however, follows
from (26) and from the inequality

1—Rejin(h) = [ (1—cos(ggh) ia(de) <3 [ (g, B*un(dg).

By an easy modification of the proof of Theorem 3.5 we obtain the
following

3.6. THEOREM. If |ju]l, < oo, the resolution {By} of tdentity in H has
o finite number of points of discontinuity (on the left) t,, 1, ceeylny then
there exists a convolution integral

b n
[ uB(@) = oo+ [T (By— Eyy_o)ut,
a k=1

where

n
@y = {I— g(E,k—E%_o)} u,.

§ 4

4.1. The notion of convolution integral has a natural interpretation
in the theory of stochastic processes with independent increments. Let
&, 4 <t <b, be a stochastic process in the Hilbert space (i.e. let the
random variables &, take values from the Hilbert space H).

A process &, a <t <b, is called a Dprocess with independent increments if

1° &, =0,

2° for every system of numbers 1y ...s tn (increasing successively)
from the interval [a, b] the random variable
— &,_, are independent.

A process ¢; is said to be goussian if all variables &— £, (s < t) have
normal distributions. As we know, gaussian processes play a fundamental
part in the theory of processes in R, with independent increments, also
because of the fact that if almost all trajectories of the process are con-
tinuous then the process is a gaussian process. This theorem holds also
in the case of processes with values from the Hilbert space H. Indeed,
let &,a<t<bh, be a process in H with independent increments and
with continuous trajectories. Let e, €5, ... be a basis in H and let E; for
j=1,2,... denote the projection operator on the subspace of H spanned

8 Eo— &y biy—Egyy ey & —
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over ¢, ..., ¢;. Then the process B; & for & fixed j is a process in R; with
independent increments and with contlmllous tra;ectqmeS, and. thus
a gaussian process. Consider a random variable &— &; for s <. L.et p
be its distribution. Then the variable Bj(&— &) havle & 110r'ma1 distri-
bution F;u. It is easy to prove that the limit lim B, u exists and is & normal
distribution equal to g, which completes the proof.

4.2. Suppose that in a gaussian procegs the random wvariables &
have normal distributions N (my, D;). If the process has continuous tra-
jectories, then for ¢ — s we have N (my, Dy) - N(mg, D). Hence it follows
that for any h, for t — s

() (Dghy h) = (Dsh, 1),
(b) [lmy— 1| — 0.
We shall prove

4.3. THEOREM. If a process &, e <t<b, 18 a gaussian process,
the random variables £ have distributions N (my, Dy), the mathematical
expeclations and dispersion operators satisfy conditions (a) and (b), then
the following continuity condition is satisfied:

ey,

. _ < ) =
(30) lim g‘;Prob([[Etgcn) g | =) =0
s max [t — 4%, >0 (n— oo).

1<k,

Proof. For the simplicity of writing we assume m; = 0, ¢ <t < b.
First we observe that if £ is a gaussian random variable whose mathema-
tieal expectation equals zero and with the dispersion operator D, then

(81) M|El* < 3(Tr D).

In faet, let {e;} be the basis in H, diagonal with respect to the opera-
tor D, De; = Aze;. Then the real random variables (& e) (¢ =1,2,...)
are gaussian random variables and M (£, ¢)? = (De;, ¢;) and, moreover,
Mt e)* =3);(i=1,2,...). Thus we have

Mg = M(f‘ (& e) = M[i (e Y (&, )2 (£, 6]

i=1 i=1 ()
=33+ 3 Ak <3(TrDp.
i=1 i%7
. Making use of (31) we obtain the following estimation:
P Ky, ke,
y ; 3
@ gr(iiétgpf Em 1> 6) < _kz T (D — Dy )2
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If s <t, then D, < D;. Hence TrD, < TrD,. Thus if {e;} is the
basis in H, then the series

TrD, = Y (Dses, &)
i=1
converges uniformly in the whole interval ¢ <s <b and it represents
a continuous function with respect to condition (a). Thus the last member
in equality (32) tends to zero, which completes the proof.

4.4. If the convolution integral

b
[ utoy Pay

is given, then there exists in H a stochastic process with independent
increments &, a <t < b, such that for s < t the distribution of the random
variable &— &, is the integral
t
*
[ w@)F(d).
8
This follows from a well-known Theorem of Kolmogoroff ([107], ITT,
§4). Although Kolmogoroff deals in his argument with real random
variables, it can be extended, as Spacek [17] has noticed, to random
variables with values in metric complete spaces.

4.5. A process &, <t< b, is called a process with orthogonal in-
crements with respect to the resolution of identity in H (B a <t <<b) if
for any two numbers s < ¢ from the interval [a, b] we have

Prob {&— &ye(By— B) H} = 1.

A process &, a <1< b, is called an A-orthogonal process with respect
10 the resolution of the identity in H if for any two numbers s < ¢ from
the interval [a, b]

Prob{{— & A(B,—E,)H} = 1.
4.6. Now we construct in the space H = L,(0,1) a gaussian process
£,0<8<1,
(i) with independent increments;

(i) with A4-orthogonal increments with respect to a continuous
resolution of identity in H, where 4 is the selfadjoint and compact operator,
(Ah, h) > 0 provided h s 6 and the sum of squares of the eigenvalues
of the operator A is finite;

(iii) satisfying continuity condition (30);
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(iv) such that the dispersion operator Ds,t. of the random va?ia,ble
&— £, satisfies the condition (Dg.h, k) >.0 p.rowded the vector Ak is not
orthogonal to the subspace (B;— E;)H, i.e. if (B;—H,)Ah 5 0.

We observe that there exists no analogous gaussian process with
orthogonal inerements. More exactly, for the operaton? A' equal 139 .the
identity operator there exists no gaussian procesg satisfying conditiong
(1), (if) and (iv). In fact, if the mentioned process exmted,.thel} the random
variable & = & —§&, would have a normal regular distribution u (i.e. its
dispersion operator D would satisfy the condition (Dh, k) > 0 for i = 0).
On the other hand, for an arbitrary partition P = (4, ..., 4,) of the
interval [0, 1] we would have

n n
w=[] wa; =[] B4,
i=1

=1

where x4, i the distribution of a random variable &, ; = &;— &y, - Hence
it follows that the distribution u is equal to the convolution integral

1

[ um (@),

0

which in view of Theorem 8.6 equals 6M#. Thus u =4 M, which contra-
dicts the regularity in H of the measure .

We proceed to the construction. of our process. Let H = L,(0,1).
Bye, (v =1,2,...) we denote the functions of the Haar gystem in L, (0, 1)
(see e.g. [7]). We introduce the following notation:

¢, >0 in the interval A7,
— in the interval Ay
(33) o) = Oy i e in erx.r L4y,
0 at the remaining points

of the interval (0, 1).

The support of the function e, (i.e. the union of the intervals Ag

and 4;) we denote by 4,. Let {i} be a sequence of positive numbers

such that

V=1

(34) D hnth < oo,
Detine the S-operator D by the formula

(35) De,=lye, (»=1,2,..).
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We define the gaussian distribution in H putting
(36) f(h) = exp[—}(Dh, k)], heH.

Let B(4), 4 = [0, 1] be the resolution of the identity in H defined
by the formula

(37) (B(Af) (@) = 1, (2)f(2),
where x  is the characteristic function of the interval A. Put
(38) P(4) = —=—B(4)

viag

where |4] denotes the length of the interval 4. Let G(4) be defined by the
formula,

(39) G(4) = AF(4),
‘where the operator 4 is given by the formula
(40) APy = sy,

where pu, >0, 3 u, < co and {p,} is the basis in H. We will prove that
V=1
the convolution integral

1
*
(41) [ s (@)
0
exists. To this end denote by P, = (4, ..., A}c:)) a normal sequence
of partitions of the interval [0,1]. To the sequence {P,} corresponds
the sequence of gaussian distributions in H

K
(42) [] 648
k=1
with the dispersion operators
Jen
(43) By = D G(4’) DG (4)*.
k=1
Put
Fp,
(44) D= Y F(AP)DF(AP).
k=1
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Observe that

) ey,

(45) (Duly 1) = 3o D (F (AR, ).

V=1 fe=

A

Now we will show that for any continuous function # in the inter-
val [0,1] and any v =1, 2, ... the limit

INe

(46) lim M (F(AP)h, e,)2 = & [ (h(w))2de
=00 A’D

£
i
-

exists.
In fact, we have

(47) Zzﬂum h, &ff Z‘ T ('f eola) do|
k=1 k=1
=%Zkﬂ' Am)‘( f h(z)do— f h(m)dm)

S'"‘)mA"

Excepting at most four intervals all the other intervals of the par-
tition P, lie either in A7 or in 4; and for such interval we have the

equality
-{ L )da)

A~ A(”‘)nd
Since

max |4 -0
1<k,

and the function & is continuous in [0, 1], we have

hmZ ME €)= ¢ lim sc; 7 ;cn)l(fh dm)

4

-1 n 0
= lim 2{ |A$cn)l (1457 R msr)

= ¢} f (h (@) deo
T—>00 (")C
(obviously afeA™).

Now we show that formula (46) holds also for an arbitrary function
hely(0,1). In fact, let £ > 0 be given. Bstablish a continuous function f
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such that f[f—2]| < e (||-|| denotes the norm in L. 2(0,1)). Estimate the
difference

| 2 (P(AEI, e~ [ (bio)f'da
=|
-|3

+2 Z(F(Aﬁﬁ)(h—n, o) (F(4)f, ) = [ heda|

k=1

=2+ 242 ) —d fhg(w)dml,
DALY

Ms*

(P O~f 4D, ef = [ o]

k:

i
4

by
-
M:s

By
(F(A(”))(h—f), &'+ D (B (A, et +
k=1

T (f = flde)} < ot 31 LI~ < o2,

|3, —a fhzdm|<e+o§[fhzdw— fﬂm]

4y

for n sufficiently large (since 3, — c3 f f2dx). The expression in square
brackets on the right-hand side of the mequahty does not exceed
e—Fl(s+-21R]) < e(e+2]|Rl);

2 V}A‘")I fj —fldw

These estimations easily imply formula (46) for an arbitrary function
heL,(0,1). From (34), (43) and (46) we have

finally

f 1 < h—7: 1l < e(e+ [1)-

(48) lim(D,h, h) = Zx e f h(z)?dz  for any heH.
Since

(49) (Bunh, b) = (D, Ah, Ah),

we have

(50) Lim. (Byh, 1) Zz e f (A (z))de :
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To end the proof of the existence of convolution integral (41) it
suffices to show the compactness of the sequence of operators {B,} and
make use of theorems 1.4, (D), (0). The compactness of the sequence
of operators B, follows from the formula

(51) TrB, < D'ty ) (Agi(@)fds < 32,63 3 4,
v=1 i=1 LS ie=]1

where {p;} is the basis in H from formula (40). Thus integral (41) existe,
Let &,0 <t <1, be a stochastic process in H with independent incre-
ments such that for 0 <s <? < 1 the distribution of the random variableg
&— &, is the integral (see 4.4)

f

a4
From the generalized theorem of Cramer ([1], 4, §6.3) it follows
that integral (52) is a normal distribution and thus the process £ is a gaus-
gian process. Now we show that our process is a process with A-ortho-
gonal increments with respect to the resolution of identity (37 ), the opera-
tor A being defined by formula (40). From the construction of integral
(40), in particular from formulas (43)-(45), (48)-(50), it follows that the
integral is the limit of distributions u, given by the formula

14
(52) ="[uy&@).

o Ty,
(33) (1) = exp[—1 3'7 Y (B (4" ~ 4) a1, )],

=1 k=1

where 4 = [s,1]. On the other hand,
(54) (AR (o)) ez
Andy

k’ﬂ
1im2 (F (AP A ) Ab, e = ¢
ﬂ—)OOk=1

Thus, by (48)-(50), integral equals the limit
lim AR(4)v,,
N300

where the distributions », are given by the characteristic funetionals
(56) ’;‘\n(h) = GXP['—‘%(Dnh: B)]

(the operators D, are defined by formula (44)). From (55) it follows that
the distribution of the random variable §— &, is condensed on the sub-
space AE(4)H, i.e. condition (i) is satistied. To prove condition (lii)
it suffices to verity condition 4.2 (a). As ecan easily be seen from the con-
struction of integral (41),

(55)

t ©0 oo
D * = 2 == 2 2 2 d
Tr ( Df,uG‘(dt)\) gl@%g%r{o,t] (Agi(a)ffdo = ;Av%gﬂfdmf[o’“qﬁ da,
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whence it follows that the function
1
a(t) = TrD (* 1) ,uG(dt)) 0]
]

is continuous on the interval [0, 1], which completes the proof of property
(iii) of our process. It remains to prove property (iv), which we obtain
from the formula

(D (*j,ﬁ(dr)) h, h) = S‘z,,ei [ (B(4) Ah(0)} da.

=1 Ay

(°) D(...) denotes the dispersion operator of the distribution in brackets.
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