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2.9. Levma. If o5 R(X), then
n(ag) = inf (I > 0: A lo5 (@) < M a5 (@) [l2ll} < l12e;— @5 (e3) ||| ]
De.

We shall omit the proofs of lemmas.
Proof of Theorem 2.7. Let xR (X) and ) e a3 then

x3(e) =liman(e) =0 and a(e,) = liman(e,).
00 Nero0

From Lemmas 2.8 and 2.9 we have
lem (2°)) < () lon () ] < (12— e () el hll [l [ (a2) |
< |26, —ah(eDell M - |l 13 (w)]
Hence from. the last inequality we obtain (as »n —> co)
I (2%)] < |12e,— a5 (e)ell - M |y (@) [Jol] < DL* oy (@) [}

Consequently, if @ (z) =0, then @ (2") = 0 too, which completes
the proof.
2.10. CoroLLARY. We have

o a%(0) = (o) LE oo 3,4, 4 < ),
where the line on the left-hand side denotes weak sequential closure.

Now we can reformulate Problem 1 as follows:

ProBrEM 1'. Does the equality

R(X _:{ * X, gt — 91 (2)— g.(@) ¥ ‘o}
(X) (4 =" () gl(el)_ga(elyglygzssm( )s g1 # (s
hold?

Problem 1 (or the equivalent Problem 1') can be generalized in the
following manner.

Let X be an arbitrary B-algebra with unit. Let
U(X) = {g"eR(X): 0" = e(g,—g4), g1, §acM (X), gy 5 ¢, € 7 0}

* 21\ 2
(evidently U(X) = {m: e%(X):x:{Xw:(m.,) #0, 3(‘”"5(;”")) o (mo)m:;(mﬁ)}).

_PROBLEM 2. Is it true that U(X) = R(X) (where U(X) denotes,
as in the previous cage, weak sequential clogure U(X))?
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A modern version of the E. Noether’s theorems
in the caleulus of variations, I

by

J. KOMOROWSKI (Warszawa)

INTRODUCTION

A growing interest in problems connected with the Noether's theo-
rems can be noticed in the last years. It it a result of a popularity of the
Lagrange approach to physical theories.

In the period of time following the original paper of E. Noether [10]
there were written many works developing its subject (Bessel-Hagen [2],
Rosenfeld [11]) or treating about some mathematical foundations (de
Donder [4]). Since 1950 we have had a lot of papers due as well to mathe-
maticians as to physicists concerning those problems (Hill [9], Bergman
and Schiller [1], Trautman [16], Fletcher [6], Schmutzer [12], Edelen 5],
Funk [7], Steidel [13] and [14], Trautman [17] and [18], Demmig [3]).

In spite of the fact that the Lagrange formalism has a geometrieal
sense the authors use at every level of considerations a coordinate system
for a description of geometrical objects. (One of such geometrical objects
is a function, i.e. a scalar field, which being defined at the points of a space
can not be considered as a function of their coordinates.) Such concept
does not make easier to set off the gist of the matter and sometimes leads
to misunderstandings.

As we will see, the notions of a differentiable manifold, a veetor
bundle and a jet-bundle are very useful in geometrical formulating of
the variational problems ().

A general variation of a functional defined on cross-sections of
a finite-dimensional vector bundle M is considered, wherein the variation
of the functional is induced by a variation of the cross-section, i.e. a one-
-parameter “smooth” family of cross-sections. It is easy to see that all
such variations of a cross-section can be given by differentiable vector

(*) It is pointed out also in the recently appeared paper, Noether equations
and conservation laws by A. Trautman in Commun. Math. Phys. 6 (1967), p. 248-261
(added in proof).
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fields on the bundle M which preserve the fibre structure. Hence we
are interested omly in such vector fields. Our funectional is so defined
that it does not depend directly on cross-sections of the bundle M bug
on induced by them cross-sections of the jet-bundle J(M).

We get an analogue of the Euler-Lagrange equations as a necessary
and sufficient condition of invariance of the functional with respect to
variations of a cross-section when these vanish on the boundary of the
domain of a cross-section.

A goal of this paper is to formulate The First 1. Nocther’s Theorem,
ie. to state a necessary and sufficient condition for the functional to
remain invariant with respect to a given general variation and for every
restriction of a cross-section satisfying “the Huler-Lagrange condition?.

At this time I would like to express my thanks to Dr. W. Tulezyjew
for hig help and many profitable conversations. I am also indebted to
Professor K. Maurin and Professor A. Trautman for their lively interest
and early encouragement.

PRELIMINARIES

Let M be a vector bundle with a base Z (paracompact, orientable,
n-dimensional differentiable manifold of class 0®) and with a standard
fibre F = R1. The following comsiderations concern also finite-dimen-
sional vector bundles. (It is sufficient to treat some objects not like scalars
but like vectors). The assumption F = Rt is made for simplification of
the notation. Let x be a projection of M on E. Different coordinate charts

I
of the manifold M will be distinguished by indices r,s,... If U c F,
1 I
then on #1(U) we have defined the coordinate map M o o 1(U)sm —

I I I I I
- (xom(m), o(m)) eR’”I“ where g(m) = 7, (m), ¥, a7t (p) — B for pe U,
p = Azs(p)rpfor peU ~ U amd Ay — a function (in the case of a finite-

- . I g

-dimensional vector bundle — a matrix) of clags C® on U ~ 1.
The eoordinatezeharts of the manifold ¥ will bear also indices I, 0

, I
and tg a don}a,m [ 113here corresponds the coordinate chart (», U) where
. I

B> U9P = #(p) = (&(p), ..., £%(p))eR™. When we have some fixed
coorflmate chart, we will skip the indices. By I'(M) we denote the space
of mﬁerentiable crosg-sections of the bundle M with relatively compact
domains. By l?u and &, we denote respectively the domain and the graph
of & cross-section « I"(M). Let B be any vector bundle over % and Q < E;
then by I'(2, B) we denote the set; of cross-gections of the bundle B, global

fver £. Let (x, U) be a coordinate chart on B, el (M) and peDynT;
then by [u], we denote the set of cross-sections u'e I'( M) such that peD,,

icm°®

E. Noether's theorems

uw'(p) = u(p) and

0
(}{? gou'o;s—l) (=(p)) = (“—655 gouoz—l) (@), i=1,...,n,
Jpi = U [ul,, J% = JdJb.
wel'(M) DeE

Jt = :J* (M) is called the first order jei-bundle of the vector bundle I,
Taking into account, in the definition of [u],, derivatives higher than the
firgt order we get higher order jet-bundles. The results of this paper ob-
tained for J* (M) can be generalized for the case JH M), where & indicates
the order of the jet-bundle. In the following J* (M) will be denoted by J.
The map J>[u], ~ w([ulp): = peF is a projection of the bundle J on E.
It will be denoted by the saine symbol as the projection of the bundle

1 3
M on E. In the manifold J we introduce coordinate charts (y, = ( U))
b 1
J 2w (U)>[ulp — g ([ulp)

1, I I I I i1
P= (w ([ulp)y -+ vy @ ([ulp), v([ulp), v ([w]p), ..., 'Un([u]ﬂ))sR ’
where

I, 1, I I
@ ([ulp): = £(p), o([ul): = rpou(p),
I 0 I I I
vi([ulp): = (‘6‘?90“0”_1) ((p)).
If wel'(M), then #: = {[u],: peD,} = J is an n-dimensional differ-
entiable manifold. On @ we introduce coordinate charts bearing also the

I 0
indices 1, s, ... A coordinate map on {[#],:peU nD,} =4 is given by
I I
3 [ulp = (2 ([ulp), -, L™ ([u]p) R,

I I,
where (*([u],): = &'(p).
Let iz be the imbedding of % in J defined by 5 ([#]y): = [%]p. By :1z::,
we denote the 1-1 map of D, on % defined by =5 (p): = [ul,. I feC(J, R),
then

f: =foigomzeC(D,, RY).

‘When on a manifold P we have a field @ of curves (a curve @(p)
through p <P, ie. @ (p) = p), then by [D] ([(15(.1))]) we denote the vec-
tor field (the tangent vector at p P) induced by it.

Let P, @ be differentiable manifolds and feC*(P,Q); then

2
FRAT@Q=RT'@), f RAT@~ATQ

are the maps canonically induced by f.
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THE FIRST NOETHER'’S THEOREM

We introduce the notion ofva differentiable curve in the space I'(}).

Let Cu(dl) be the set of fields ¥ that
AV [—ee]lxXM>(t,m)— WPym)e M
YeQu(dM) e>0

differentiable and

1. ¥, (m) =m,

2. (m(m) = m(m')) = (o ¥y(m) = w0 ¥y(m')).

The map [—e, e]ot — Wi(m)e M iz a differentiable curve in I

through me M. ) '
Every field ¥YeCu(M) defines the field =¥ of curves in B

[—e, e]x B2 (t, p) > (7¥)i(p): = woWy(my)e B,

where my,ed is such that =(m,) = p.

The map [—e, el — ¥ (u) eI (M), u eI (M), where Ry = (R,
is called a differentiable cwrve in I'(M) through wel'(M) and induced
by the field ¥eCu(M).

By an integral functional on I'(M) we mean a map

T(M)>u — & (u) :== f.z’ueRl,
Dy,

where %, is defined by a differentiable map

J2[uly — L([uln)e A T5(B) = f T*(B)
as follows:
Bop =%y ()= L([ulp)e A T*(B).
Taking various maps L we get various integral functionals F. An

integral functional # is called differentiable at v < I'( M) if for every YeCu(M)
there exists

=

d o
s (1) lmg-
By & we denote the algebra spanned by all the integral functionals

differentiable on I'(M). The curves !lof(u) and (5(%), where ¥, & eCu (M),
are called equivalent if

d o d
,/E\,. %JO‘IG(%)],,,, = d‘tfo ét(“)l&o-
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The equivalence class obtained in thig way is denoted by [‘f’(u)].
Let us define the vector space
Wy (L) := {F () We Ou(I)}

of linear functionals on &, where, if £eZ, then
i) d ]
I @)D = 7 7o W)l

The vectors of the space B, (F(JII)) will be denoted by [?lof(u)] or %,.
It is easy to see that %38, (e )) satisfies the Leibniz formula, Hence
it can be considered as a kind of a veetor tangent to I'(M) at wel'( M)
provided that an analogue of a differemtiable structure of a manifold
is so chosen for I'(M) that it coincides with &, Any pair (u, ¥)e'(M) x

X Cu (M) induces the field ¥ of curves in J through points of submanifold
@ = J, as follows:

~ * o
[—&, el x> (t, [u]p) - Yi([ulp) := [l*yi(“)](nmt(zz)e‘]-
The map f’([u]p): [—e, ] = J is a differentiable curve in J through
[#]yed. The curve Y*/([u]p) defines the vector X[u]pel’[u]p (J). The field

on & of vectors tangent to J defined by the field ¥ of curves in J will be

denoted Dby [Y*/]. For interrelations between components of this field
see Appendix.

Now we define a map which will be needed in the following. By j we
denote an element of the bundle J. Let us recall that

J2j > L(j)e A Teg(B) = |\ T*(B).
We know that #*: A 7*(B) — X T*(J). Then we define
7y A Lagy(B) = A T*(J)
as follows: if we A Tn;) (B), then nf () 1= (a*w)(j) € & ().
Now we define LeI'(J, A T*(J)) as follows:
(1) J2j = L(j) := a7 (L(j))e A T*(J).

If X is a field on 4 of vectors tangent to o, , then by X we Wlll denote
any differentiable extension of X on the manifold J such that 7t X = my X.

Levma 1. If Fe&, PeOu(M) and wel'(M), then

1) = [afoil (£9), where X = [¥].
D‘M
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Proof. We introduce the following notation:

Uy = lf’t(u),
5 0
wulp) = @Ph(p), X:=[¥),  w _/\(aéz)

agp), L'([uly) 1= {Way L([ulp)),

Vp =
1

2

>s

V[u]ﬂ Izi/\'1 dmi([“]h) )

where coordinate charts are fixed.’ p
g v
Let {z,}¥ be such that D, = |J U. By {5} we denote a partition
v=1

I,
of unity subordinate to the covering {U ~ Dy};. Then
)= [Ly=2 [n%y=) [Zyog.
D“t ¥ D“t v Dy,

It should be noted that in view of the relative compactness of D,
the above sum has only a finite number of non-zero terms.

2 fdt (. &
= § f -?u"'—ﬂvo‘]’t ]
- Du[ at e {=0
d d
S5 van) oo [ & o
D{ v at Lt:o * Dy & ) t=
_ [ig
_D,,‘ T uLO‘PtL=

—-—/(%t oqo,‘

d
0+ 771"(7{ ’?uto &

0

1
Let peU; then

a : l
— %
g Luon@ |

d d ;
= Tlt—(<w’ Loy V)OfPt(P)llmo = 'J['T/ (Lo gyn) Yoo,

t=0

a ., !
== T (o) |,_y Vot L' ([w]y) %VW)
= £ L'(0)vp+ L' (p) (£ v)(p),

X Xy

where X, = . X.

icm
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] Now we will bring the mght hand side of the thesis to the form above.
We must find the form of iE( £ L) and therefore we are interested
.£ € only on #. Thus sted in

(ﬁ L) ([uly) = (}5 L'V)([uly)
= (£ I')([uly) V[u]jo+L’([u]p)(‘;£ V) ([ul,).

Since V = a*v, we have .-€V =L£aty =gt £y = n*£v
X EN
Above we have made use of the identity x

(2) f £o= £ f @,
hx
where o is an exterior differential form
It is easy to see that the thesis does not de i
end on th
extension X of the field X defined on @ only, q?e. d. ? cllce of an
In I'(M)x Cu(M) we can introduce three equivalence relations:

((w, ¥) o~ oy (@, O) & (u =0, (9] = & [2]),
(v, ®) IR NS (=0, [F]= [41),
((w, ¥) = (o ®) & (u =0 )] = [dw).

LeEMmA 2. r <7, =>r3.
Proof. Let WeQu(M). If the field [‘f’] hag the form

a I .
NI
on* v ovt
. I
at points of the set 71 (U) A 4, then the field [¥] has the form

(%] =

‘—l—i“of—%
6( o m) do

[#] = X'of

. I
at points of the set =1 (U) A Ry, where f is the canonical 1-1 map of
B, on 4 given by

By 2 u(p) "f( Z’)) 1= [ulped.

Hence », = »,, For the proof of the 1mp110at10n 75 =7y see Appen-
dix 1.

It follows from Lemma 1 that Ty =74, q. 0. d.

Remark. Let us notice that in general the implication 7, =7, does
not oceur. For example, a curve Y’(u) in I'(M) such that

ORpyy= 0R,
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can be given by a field PeCu(M) that curves ¥(m), me M, lie inside
of fibres as well as by a field ®<Cu(M) that for some me M curves &(m)

are transversal to fibres. ' . '
Now we can pass from dealing with fields of curves to dealing with

vector fields. We define the following vector spaces:

Ty o= {X (M, T(M)): w(m) = m(m') = my Xy = ma Xu'},

War(w) 1= {X DRy, T(M)): /\WGOVu(M)X_[IIj]IR b
W) 1= {Xel(il, T(J)): QM/J(M)X=[3P]}.

Now we can formulate Lemma 2 in a new form:
LeaiA 2. There are canonical homomorphisms onto — hy, H and the
canonicel tsomorphism I:

H ,
Ty Waglu) = W (w)—> W (T (M)).
Proof. It is sufficient to give the explicite form of these maps:
.TMP.X - hu(.X) 1= .XIRuf W]u(u)

Wa ()2 [Pz, ~ L([¥]lg,) : = [¥]e Wslu),

Wa(w)> [¥] - H([P]) := [¥(w)]e Wy (I(I)).

The correctness of above definitions follows from Lemma 1 and
Lemma 2, q.e. d. .

Now we formulate Lemma 1 in terms of vector fields.

LeMMA 1'. Let £ F, %ueclBu(I’(M)); then

(F, Xy = fnf:o’iﬁ (£8), where XeH(%,).
Doy X

There is a unique decomposition X = X -+ (igon;)« X, for XeW,(u),

where X,eI'(Dy, T(B)) and (n)X, = 0. Using (2) we have

s oiy (£ Q) =unloik (£8Q)+Lakoik®
X X
=t oil (£ L)+dX, |atoitl
X
The last expression follows from the identity £ o=X_ldo-+dX_|eo
and from the fact that daf omuSE = 0.

icm
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Let {5,}7° be as before a partition of unity subordinate to a covering

{U ~ Dy} of D,. We define the following (n—1)-form on E:

-_— v 3
L, 3L I, ~ 1,
®) N, (20 = Y (=100 X Tad a2 p abh,
33 aka

Iﬂ‘
where L, » == 1,2, ..., are the coefficients in the expressmn of the form

L in the coordinate system connected with the domain U
For the proof of correctness of this definition see Appendix.

By an Tuler-Lagrange’s derivative of the n-form Zu with respect
to Xe Wy (u) we mean :
[Zulx := 7 04k (£ Q)_dNXL('%)’ where X = I(X).

Xy
We define Noether’s expression for the n-form Zu and X e Wy (u)
as follows:

H (L) =Ny (

where X = J(X).
Hence if X< Wpy(u) and %, = HoI(X), then

L) +X, ok oik g,

{4 Fry %y = [[Lx+arx(2,).
Dy

We define vector subspaces:
Daps(u) :=

Dy(u) 1= I(Dy(w),

{Xe Wa(u): X =0},
ey

Dy (1)) := H(Dy(w)).

A cross-section uel'(M) is ca,lled extremal for #e# if and only if,
for every %,¢ D, (I'(M)), (F, %> = 0. By £(#) we denote the set of
all uel'(M) extremal for a given £ e%.

LEMMA 3. We have

(wes(#)) = (

Z, =0).
XEW/I\”W)[ ulx Dy )

Proof. If XeDy(u), then # x(#,)=0. Hence for XeDy(u) we

ot
have (#,HoI(X)> = J[Zu]x and so the implication < is proved.
D

u
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Let X ¢ Wy (u) and X = I(X). It follows directly from the definitions
I
that for peU ~ D,

[ZLulxly= X\ |~ — -1 —F| Vs

T 7
7 (aL AR
dw OE Oy

I, I,
L'lor o oL \|%
[Zu]x = 2 U e “‘I,‘,)V
v ov 05% Ovi
and, which is of the highest importance, that [ﬁu]XI(p) depends on X,

only. We will prove that if ue 5 (#), then for every U

I I
oL 0 0L I
(6) A=—T—‘T—TEO on UF\-DM.
67) (95"“ c'm

I
Let us suppose that there exists a point pe U ~ Dy suchI that A(p)

# 0; then there exists a neighborhood £ of p that @ = U ~ D, and
A(g) # 0 for ge Q. Now let XeDy(u) be such that X, =0 on Cw;(2)
I I

and X > 0. Then X} 4 has a constant sign on Q. Hence Df [Z.x #0

2
(a contradiction). Now from (4) and (5) the implication = follows, g.e. d.
For every % and for every open 2 < F we define the functional
Fo e# in the following way:

ID(M)>u — o (u) :=f(u]9npu)eR1.

FeF is called invariant at a point wel'(M) with respect to XeTy
if and only if

(FyHoIoh, (X)) = 0.
THE First NOETHERS THEOREM. Let FeF ueS(F), Xely; then

(For every Q < Dy, Fqo i8 invariant

at the point u with respect to X = (Mh“(x) (Fu) )

Dy

The proof is an immediate consequence of (4) and Lemma 3.
It is easy to see that for X, ¥e Walu), a, be R*

Haxror (o) = 0¥ (L) + 0Ny (2,).

Now we can state the second variant of

E. Noether's theorems 271

THE FIRST NOETHER'S THEOREM. Lot FeF, ues( )y {3} be a base
of a subspace T < T'y; then

For every Q = Dy and every
XeT, 7, is invariant ot < (d.AfM(Xi)(,?u) =0,i=1,..,7).
D
the point w with respect to X “

Remark. The agsumption D, ag relatively compact is not weighty.
It we introduce a new definition that a cross-section of M is called extremal
for fFe& if and only if

Kéﬁ(]f-compact) = (ulxe (7)),

hen it is clear that for w extremal in thig sense The First Noether’s Theo-
tem is valid.

APPENDIX

1. Let XeT'(J); then in the base induced by the coordinate chart
I I
{x, =1(U)) the vector X, has the form

I 0 I. 0
X=X 4V~
v 0v;
But if Xe W, () and X = [, then
I *
z, dr = d [ dooW(u
Vi ([uly) = 000 Bl oy — = | 2205408 )
dt at I
0& =0
0 dgoyu)(p) ax?
(o) Uw
= B = (),

T
& t=0 87"

I J
2. The following identities are valid on a(UA~AT)cd:

J I
v == AJIO?'E v,

I,
6A,;I I 651 I
onv+Asom —5 omwy,

0 ﬁA” i}

—I"=A.J[O.7'E*—f+ OTE‘_—J,

i
dv v i3 oy

J
Vp =
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I.
0 * 7
- = Ajom —TkOﬂ )
81)-; 85 017k
‘I.
I, J oLt
X1=Xk f o,
0&r
I _J T a4 J
Xo——XoAIJOn—i—X'zm:,{.ion@),
0
J J
I
L= }I‘) om L.
D(x)

3. The above identities are used in the following proof of correct-
ness of the definition (3). We define

—_ I k
I oL I -~ I
L)y, = g (=1 X) —aéa ... A ag™
k 0?}15

I
Taking into acdount that X =0,i=1,...,n, we will prove that

I J
(7) 1{$u}xl = J{'gu}X_L on Un~nU~n _Du.
A o " A\ X I
s ] 0 | D(x ~
I{gﬂ}x_’. :2(—1)’:X1AIJAJ’I 5 T (;;) onl dsl/\ ces A d&n
2 & \0v* | D(x)
| P
— I J J I A I , " 5
S D L 1, ..., &8 f
= ) (—1)'X} EJ (’? —a—f D(i’ ,’—fl Ag A A dE",
) *1D T IS
Bl oF (%) | dv. D, e
o, 2
Ay 1= (= 1) e
I T
D&, ..., &Y

I g
is the a,lglebra,ig complement of the element ay, : = 0£*/0€ in the matrix
4 1= D(x)[D(%). The following identity iy valid:

ZaﬂikAlk = 51;1 det 4.
k

icm°®
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This finish the proof of (7). As a consequence we have that Ny (2,)
does not depend on a choice of a partition of unity and that N xl(—?u)

I
={Lulx, o0 U~ Dy
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