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1. INTRODUCTION

The main purpose of the present paper is to give a new presentation
as well as new applications of the results contained in Grothendieck’s
paper [17]. In this remarkable paper Grothendieck outlined the theory
of tensor products of Banach spaces. The climax of this paper was a theorem
called by Grothendieck “the fundamental theorem of the metric theory
of tensor products”. This theorem is equivalent to the following assertion:

Let {a;;}i ;1 be a finite matrix of real numbers such that

n
1 Z ai,,-tisj-

1,f=1

<1

whenever {t;| <1, |s;] <1. Then for every set of unit vectors {w:}i
and {y;};—, in a Hilbert space

lzai,i(mﬁ ¥5) ; <K,
€7

where K is an absolute constant and (-,:) denotes the inner product
in the Hilbert space.

This inequality, as well as many of its applications, are meaningful
and interesting also outside the framework of tensor product theory.
Though the theory of tensor products constructed in Grothendieck’s
paper has its intrisic beauty we feel that the results of Grothendieck
and their corollaries can be more clearly presented without the use of
tensor products. The paper of Grothendieck is quite hard to read (*) and
its results are not generally known even to experts in Banach space theory.
In fact, by using these results some problems which were posed by various
authors in the last decade can be easily solved. All these considerations
persuaded us to write this paper in its present form. We do not use here
the notion of tensor products.

(*) An elegant exposition of the introductory part of [17] can be found in [56].
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In Section 2 we present a proof of the inequality mentioned above
and of its immediate consequences. The proof we present is just a refor-
mation of the argument of Grothendieck. The proof is elementary and
no knowledge of functional analysis is needed for its understanding.

Section 3 is devoted to functional amnalytic preliminaries. In parti-
cular, we introduce in it the class of % -spaces, 1 < p < oo. These are
Banach spaces whose finite-dimensional subspaces are the “game?” ag
those of an L,(u) space for some measure . These spaces are introduced
since most of the results proved in the present paper depend not on the
whole Banach space but rather on the structure of its finite-dimensional
subspaces. We present also the notion of p-absolutely summing operators
(1 <p < oo) which is due to Pietsch [51] (ef. Saphar [52], [58] for P =2)
and which for p =1 goes back to Grothendieck. The applications of the
inequality of Section 2 to the theory of Banach spaces are made through
the use of this notion of p absolutely swmming operators. This is done
in Section 4. We prove there that every operator from an Z,-space to
2 Hilbert space is 1-absolutely summing and that this property charac-
terizes, in a certain sense, %, and Hilbert spaces respectively. As a corollary
it follows that the inequality of Section 2 (which was stated above) charac-
terizes Banach spaces which are isomorphic to Hilbert spaces. It also
is shown in Section 4 that every operator from an £, space to an %,
space, 1 <p <2, is 2-absolutely summing.

The results of Section 4 are used in Section 5 for obtaining factori-
zation theorems for certain classes of operators. The main result here
is that every linear operator 7' from an Z,-space X into an Z-space Y
where p > 2 > can be represented as T = T,T,, where T, is a linear
operator from X into a snitable Hilbert space H and T, is a linear operator
from H into ¥.

Section. 6 is. devoted to various applications of the preceding results.
One application iy the following: In the spaces I; and ¢, all normalized
unconditional bases are equivalent to the usual unit basis. The space
I, (resp. ¢,) is the only complemented subspace of an %, (resp. %) space
‘which hag an unconditional bagis. A qualitative version of this result gives
-anew connection between the projection and symmetry congtants of a finite-
-dimensional space X and its distance from the space Iy, (with # = dimX).

The results in Sections 4 and 5 concerning operators defined on
Zp-spaces provide a tool for proving that certain subspaces of ZLy-spaces
are not complemented subspaces. We show in Section 6 how to use this
‘ool in order to give a new proof to the result of D. J. Newman that the
Hardy space H, is not a complemented subspace of Ly (u) (where u is the
Haar measure on the circle).

Another application which is presented in Section 6 is Grothendieck’s
<characterization of a Hilbert space- as the only Banach space which is
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isomorphic to a subspace of an #,-space and fo a quotient space of an
Z-space. We also present in this section several characterizations, due
essentially to Grothendieck, of Hilbert-Schmidt and trace-class operators
in a Hilbert space.

Section 7 is devoted to a study of subspaces of L, (p)-spaces. This
study eclarifies somewhat the relation between general &,-spaces and
Ly(p)-spaces. We show in particular that every Z,-space, 1 < p < oo,
is isomorphic to a complemented subspace of an L, (u)-space for a suitable
measure u. Examples, given in Section 8, show that this is no longer
true if p = 1 or oo and that unless p = 2 the class of Zp-spaces properly
includes the class of spaces isomorphic to L,(u)-spaces. In Section 7 it is
also shown that by combining known results it is now possible to give
a complete solution to the problem of the linear dimension of Ly (u)-spaces
(ef. Banach [2]).

The last section contains, besides the examples mentioned above,
some open problems and various additional remarks and results. The
main rvesult in this section is the proof of the existence of a “universal”
non-weakly compact operator.

Notation and terminology are given in Section 3. Let us only mention
here that unless stated otherwise we consider only spaces over the reals
though all the results and proofs carry over to the complex case.

Acknowledgment. The authors would like to express their grati-
tude to M. I. Kadec who turned their attention to some of the problems
discussed here*and to C. Bessaga for valuable discussions during the
preparation of this paper.

2. THE BASIC INEQUALITY

In this section we present the inequalities which form the basis
of most of the proofs in the following sections. These inequalities are
of interest in themselves and may be of use also to mathematicians who
are not working in Banach space theory.

Let 8 = 8" = {zeE"; ||z|| = 1} denote the (n—1)-dimensional sphere
in the n-dimensional real Buclidean space E = E" Let m be the rotation
invariant Borel measure on S normalized so that m(8) = 1. Let

3
(,y) = D'y’
=
denote the usual inner product of the vectors x = (2',...,2™ and
¥y =(y*,...,y") in B". For realtlet signi = ¢/|t]if ¢ % 0 and sign0 = 0.
LEMMA 2.1. Let @, y<S™; then

2
(2.1) fsign(m, w)sign(y, w)dm(u) = 1— —0(z, ),
5/” i
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where 6 = 0(x, y) is the u%ique number satisfying cos6 = (x,y) and 0 < 0
< = (i.e. 0 s the angle between @ and y).

Proof. We choose the basis in E" in such a way that # = (1, 0, ..., 0)
and y = (cosf,sin6,0,0,...,0). Let g be a bounded measurable func-
tion on 8" Using polar coordinates ¢ = (g1, @, ..., gn_y) We express

the integral f g(u)dm(u) by the (n—1)-dimensional Lebesgue integral.
o
‘We have the relation

Jowamw) = 18" [ g(u(p))J (¢)d(e),
i -1
where
N1
u(p) = (W(g), w(g), ..., w"(g)), wi(p) =[] sing,,
i=1
n—1
w(g) = eos%_ln sing; for k=2,3,...,n—1,
i=k
w"(p) = co8g_s,
I'"' ={p:0<p, <2m; 0< < for £ =2,3,..., n—1},
n—1
I(p) = [ ] (sing)*,
= n—1 m
18" = [ J(p)dlp) = 2= [] [ (sing)*dg;.
m—1 =2 0 .
Let h(u) = (w, w)(y, u) = u'(u'cos 6+ u?sinf). Then

n—1
h(u(g)) = [H sin%]zsinqol(sinqalcos 6+ cosg, sin 6).
=2

Hence, for g(u) = sign[h(w)], we get

g(’“’(?’)) = sign [sing, sin (¢, 4 6)] = f(gu, 0).
Clearly, f(p., 6) is equal to +1 on the intervals (0; ©—0) and (r;

2n—0), and is equal to —1 on the intervals (r—0;m) and (2w — 0; 2m).
Thus

Jowam) = 187 [ f(g,, 0)T(p)d(g)
i -1
e n—-1 7
= 8" [ flos, O [ | [ (singy=" do;
0 i=2 0

= @07 [ flgy, 0)dp, = 1— 20/

This completes the proof.
‘We are now ready for the proof of the main result:
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THEOREM 2.1. Let {a;;}i5m15, v be a real-valued matriz and let M
be a positive number such that

N
' 2 a,.i,,-fis,-} < M

for every real {t.}1_1 and {s;}f. -1 satisfying t;] <1 and |s;) < 1. Then for
arbitrary vectors {m}r., and {W¥Ly in a real inner product space H

(2.4)

(2.5) 1 2 @405, 43) | < Ko Msup o sup ),
=1 i
where Kq is the Grothendieck wniversal constant (Hg
L a2
—e %) /2).
Proof. Let us first make some observations.
1° If a matrix {a;;} satisties (2.4), then for arbltra.ry real numbers
0, and ¢ (z,] =1,2,...,N) the matrix {ai;} with ai; = cia; ;¢ for
i,j=1,...,N sa,tlsﬁes (9 4) with the constant

< sinhz/2 = (™ —

M’ = Msuplejlsup |e].
i )

2° Since every 2N vectors in H belong to some 2N-dimensional
linear subspace of H which is isometric to B*", we may assume without
loss of generality that {w} , and {y,}, belong to B*V. From observation
1° and a standard homogeneity argument it follows that we may assume

also that |ln| = |lys] = 1 for every ¢ and j.
For an a.rbltrary eS8 we define ti(u) = sign(u, x;) and s;(w)
= sign(u, ), 4,j =1, ..., N. By (24)

N
—M < D agtu)s(u) <M for  weS,
1i=1 -

Hence by integrating over 82 with respect to the normalized rotation
invariant measure we get, by formula (2.1),

N
——:—M< Zai.j(%_e(mi: %‘)) <

1,5=1

M.

w| A

Let us pub aff} = a;;(r/2— 0(w;, y;)} for 4,5 =1,2,..., N. Tt fol-
lows easily from observation 1° that the matrix (af)) satisfies (2.4) if we
replace M by =M /2. Hence, by repeating the averaging argument we get

N N
2 x - 2 o \2
fe e Sl o) - Sl v <[z

4,j=1 1,f=1
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In this manner we obtain inductively

u = " w\"
Z @; 5 ('2— - 6(9777 @/1)) < (5‘) -ﬂ[7

%=1

2.6) — (—;E—)HM <

Since

. ki3
(@, y5) = cosb(wy, y;) = sin (-2— — 0w, ?/7))

e - 2n41
= Z (—1)n(‘2“— 0 (w:, .1/1)) [(@n+1),

n=0

inequality (2.6) implies that

~ had on+1 1 =

' . T

’ § agg (g, y:) | < M E (E) ——— = Msmh?
1,7=1 N=(

(Zn--1)!
and this concludes the proof of the theorem.
COROLLARY 1. Let {as;} be a real-valued matriz for which (2.4) holds.
Then for arbitrary vectors {m}i., in an inmer product space H

N N
@.7) c D X asge]| < Kom sup o
= tiE

Proof. Choose for j =1,..., N vectors y;eH such that [y =1
and

N N
(2 @i, %, ?/7) = HZ 41, %4 !
i=1 =1

By using these «; and y, in (2.5) we get (2.7).

COROLLARY 2. Let {ts5}is10,.. be an infinite veal matriz and let M

be a positive constant such that .

N
(2.8) [Zai,,t{stM for Wl <1, <1, 4,5, N=1,2,..

1,7=1

Then for an arbitrary veal matriz {1} such that for some ¢ >0

(2.9) (Z wi_i)m <O for i=1,2,..
%

the following inequalities hold:

2 (Zk: (2 mrp,iaz‘,-/)‘z)]‘/g < KgOM,
7 7

(2.10)
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“general Littlewood inequality”, and

(; (72 | Donaass|' ) < oo,

“general Orlicz inequality.”
Proof. Observe first that (2.8) implies that

(2.11)

Dlal <M (j=1,2,..).
1

Since, by (2.9), |#sx < C for every ¢ and %, the series D tria;; is
absolutely convergent for %,j = 1,2, ... Therefore, since the l;smm; over
kand jin (2.10) and (2.11) have non-negative terms, it is enough to restrict
our attention to the case where {@,s} is & matrix with an arbitrary but
finite number of elements different from zero (we pass to the general
case by a standard limit procedure). Hence in the sequel we shall assume
that each of the sums appearing in (2.9), (2.10) or (2.11) has exactly &
terms.

Let @; = (@) denote the ¢-th column of the matrix {ors} (i=1, ...
...y N). We consider the »; as vectors in the N -dimensional Ruelidean
space E~. Then (2.9) means that llesll < € for every i, and thus (2.10)
is just a reformulation of (2.7).

Inequality (2.11) is an immediate consequence of (2.10). In fact, let
bj}k == ’ Zwk'iad’jf.

By the triangle inequality for the vectors by = (bis), j=1,.
N )

DARLRIAEHIUALS

Le. the expression in the left-hand side of (2.11) is not larger than the
expression in the left-hand side of (2.10).

Remark. If @, = 6f(=1 for i =% and =0 otherwise), (2.10)
reduces to the inequality

(Y e < xent.
<4

2

N,

This inequality (with a better constant, V3 instead of Kg) is due to Little-
wood [38] (see also [50], p. 39, and [49]). For the same choice of Tr,1
formula (2.11) reduces to the inequality

(S13a

) )"2 <KglM.
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This inequality was obtained by Orlicz in [42]. As in the proof of Theorem
2.1, the inequalities of Littlewood and Orlicz were obtained from (2.8)
by using an averaging procedure. It would be of some interest to know
the best possible value for Kz as well as the best constant in the in-
equalities of Littlewood and Orliez (i.e. inequalities (2.10) and (2.11) with
B = 51‘). Grothendieck proves in [17] that Kg > «/2.

Let us finally note that if we consider also complex-valued matriceg
{a;;} for which (2.4) holds, then (2.5) will be valid (in complex or real
Hilbert spaces) if Ky is replaced by 2Kg. In order to see this we have
only to take the real and imaginary parts of the matrix {a,,;} and to use
inequality (2.7) which is equivalent to (2.5).

3. NOTATIONS AND PRELIMINARIES

We begin with some notation. Let X and ¥ be Banach spaces. We
denote by B(X, Y) the space of all the operators from X into ¥ with
the usual operator norm

[Tl = sup ||Tal.
lr<1

By “operator” we always mean a linear and bounded operator.
The distance d(X, Y) between the Banach spaces X and Y is defined
ag inf[{T|| T, the infimum is taken over all invertible 7' in B(X,Y).
If no such T' exists, i.e., if X and ¥ are not isomorphie, 4(X, ¥) is taken
a8 co. (Remark. Clearly d is not a metric but we find it more convenient
to use d instead of logd which is a metric. Thus two spaces X and Y are
“near” if d(X, Y) is close to 1.)

If X is a subspace of a Banach space Y, we say that X ig comple-
mented in Y if there is a bounded linear projection from ¥ onto X. A Ba-
nach space X is said to be a P-space if it is complemented in every Banach
space Y containing it as a subspace. A Banach space X is said to be
a P;-space, 1 < A < oo, if for every ¥ o X there is a projection of norm.
< 4 from Y onto X.

A geries Yo; of elements in a Banach space X is said to be wuncondi-
tionally convergent it the series 2% converges for every permutation o
of the integers. The series Y is said to converge absolutely if 2 Il < eo.

1

A set {x,}52, is called a basis of the space X if for every x X there is a uni-
que sequence of reals {a;}$>; such that z = Dlogx;. If this series converges

14
unconditionally for every <X, then {@i}i2 is said t0 be an wnconditional
basis of X. More generally, a set {#,}, of elements of a Banach
space X ig called an unconditional basis of X if for every <X there is
a unique set of scalars ay, yeI', such that # = Da,x, and this series con-
k4
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verges unconditionally (in particular, for every # at most a countable num-
ber of the a, ave different from 0).

Most of the results in the coming sections are concerned with
Ly(K, Z, ) spaces, 1 <p < oo, i.e., the spaces of measurable functions
f on some measure space (K, X, u) for which (if p < o0)

[1f@)Pdp(z) < oo
K
and with norm
WAl = (17 @) du(o))™

(if p = oo, the space consists of those measurable f for which ||f} = essen-
tial supremum |f(z)] < co). We shall often omit the measure space K
and the o-field X from the notation and speak simply of an I, (u)-space.
If (K, 2, p) is the unit interval with the Lebesgue measure we shall
denote L,(K, X, u) also by L,(0,1). A special kind of an I,(u)-space
is the space 1,(I") = the space of all real-valued functions f on the abstract
set I' for which

(2 If(y)l”)”p <oo i p<oo,

sup | f(y)l < oo if  p=oo.
v
If I' is a countable infinite set, we denote Ip(I') also by 1, and if I
consists of a finite number, » say, of elements, we shall denote I,(I") also
by Ip. The subspace of I, (I") congisting of those f for which {y; [f(y)| > &}
ig finite for every & > 0 is denoted by ¢y (I) (or ¢, if I'is countably infinite).
In the context of the present paper it is more natural to consider
a larger class of Banach spaces than the class of L, (u)-spaces.

Definition 3.1. A Banach space X is called an Zpaspace, 1 < p
< 00,1 <1 < oo, provided that for every finite-dimensional subspace
B of X there ig a finite-dimensional subspace B of X containing B such
that d(%,1;) < A (where n = dimE).

A Banach space X is called an %,-space, 1 <p < oo if it i3 an
Zpy-space for some 1> 1.

Related notions have been considered recently by various authors,
cf. e.g. [35], [19] and [39].

By using subspaces which are generated by the characteristic functions
of sets in a decomposition of the measure space into a finite number of
subsets, it easily follows and it is well known that every Ly (u)-space
is an %, ;-space for every i >1. By using partitions of unity, it follows
also easily that every (/(K)-space ( = the space of continuous functions
on a compact Hausdorff space K) is an &, ;-space for every 4 >1. More
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generally, every Banach space whose dual is isometric to an L, (u)-space
{e.g. every M space in the sense of Kakutani [29]) is an Z ;-space
for every A >1 (see [32]).

As we shall see in Section 7 every Z-space is isomorphic to a subspace
of an L,(u)-space for a suitable measure . In particular, since every sub-
space of a Hilbert space is again a Hilbert space, the class of Z,-spaces
coincides with the clags of spaces isomorphic to a Hilbert space. In Section
8 we shall give examples of L,-spaces which are mnot isomorphic to
L, (u)-spaces for 1 < p < oo, p # 2. For p = oo it iy clear that not every
L-space is isomorphic to an L. (u)-space (observe for example that
there are no infinite-dimensional separable L. (ux)-spaces) but it is an
open problem whether every L.-space is isomorphic to a O(K)-space
for a suitable compact Hausdorff K (see [35], chapter ITT, for a discussion
of this problem).

We shall often use the following notion which was introduced and
studied by Pietsch [51] (cf also Grothendieck [15], p. 160, for p =1
and Saphar [52] for p = 2).

Definition 3.2. Let X and Y be Banach spaces, let TeB(X, ¥)
and let 1 < p < oo, Put

a(T) = int{C; (j o) < 0 sup (71" (@) "
&~ <1 i

weX,t=1,2, ...,n,n=1,2,...}.

It ap(T) < oo, then T is said to be p-absolutely summing.

We shall say “absolutely-summing” instead of “l-absolutely sum-
ming.” The source of this terminology is the easily checked fact that an
operator T'is absolutely summing if and only if the series ) T'z; converges

11
absolutely whenever the series O%; is unconditionally convergent. (Observe
that for every {mw), g

sup {Zn: 2" ()5 "] = 1} = max {H ﬁaimi

It is not hard to see that if p, < p,, then a, (T) > ap, (7). This is
for example an immediate consequence of the proposition below. Hence
every p,-absolutely summing operator is algo ps-abgolutely summing.

The following basic result is due to Pietsch [61]. (In Pietsch’s original
formulation the measure 4 is concentrated on the unit ball of x*)

PROPOSITION 8.1, Let 1 < p < oo and let TeB(X, XY). If T is p-absolu-
tely summing, then there is a probability measure (= regular positive Borel

8= ﬂ:l,'b':l,...,'n/}).
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measure with totel mass 1) u on the compact space K* = the w* closure
of the set of all extreme points of the unit ball of X*, such that

(3.1) 122 < ap(D) ([ 10" @) Pdu(e*)”,  sex.

K*
Conversely, if for some TeB(X,Y) there is a probability measure
w on K* such that (3.1) holds with a,(T) replaced by some constant € < oo,
then T s p-absolutely summing and a,(T) < C.

A detailed proof of this result can be found in [51], Theorem 2. For
self-containedness of our paper we indicate briefly the proof of the first
part of the proposition (the second part is trivial).

Proof. TLet TeB(X,Y) and let a,(T) < co. Put

W= {QEC(K*); g = [ap(T)]pZ‘ (feyl WichHTmi]]” =1},

where f,(#*) = @’ () for #*<K* and zeX.
It immediately follows from the definitions of W and a,({T) that W
is a convex subset of O'(K*) which is disjoint from the seb

N = {f<0(E"); supf(*) <1}.
We use the fact that

n n
sup D' [a* (@) = sup 3 o* (@)
le*=1321 areRr Ty

for arbitrary {u;}7.,in X. Since N is an open convex set, it follows from the
separation theorem and the Riesz representation theorem that there
is & measure g, on K* such that [ fdu, <1 for feN and [ gdu, > 1 for
ge W. Since N contains the cone of negative functions in C(K™) as well
as the open unit ball of this space, it follows that u, = au, where u is
a probability measure and 0 < o < 1. For any zeX with T # 0 the
funetion ¢ = (|a, (T)fsl/||T])” belongs to W and hence [ gdu > [gdpu, > 1,
or

72l < (ap(D)P [ I2* (@) dp(a*),
K\i

and this concludes the proof.

CorOLLARY 1. Let TeB(X, Y) be o 2-absolutely summing operator.
Then there is a probability measure u on K* (= the w* closure of the extreme
points of the unit ball in X*) and an operator S: Ly(u) — Y such that

() I8l = ay(T);

(i) T = 8JI, where I: X — O (K*) is the canonical isometry o —> z(x™)
and J: C(K*) - L,(u) is the (formal) identity map f— f.
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Proof. Proposition 3.1 asserts the existence of an operator § from
the closure of JIX in L,(p) into Y such that HS’H = a,(T) and T = §J7.
Sinee in the Hilbert space L,(u) there is a projection of norm one onto
the closure of JIX, we can extend § in a norm-preserving manner to an
operator §: Ly(u) - Y. This operator § has the desired properties.

4. ABSOLUTELY SUMMING OPERATORS BETWEEN .%,-SPACES

The first theorem we prove in this section is a reformation of [17],
Corollary 1, p. 59.

TaeoREM 4.1. Let X be an %,-space and let H be a Hilbert space. Then
every TeB(X,H) is absolutely summing.

Proof. Let 1 be such that X is an 2, ,-space, let {#;)%, < X be
such that

D) (@) < lla”|
i=1

for every #*X*. By Definition 3.1 there is a finite-dimensional subspace
¥ < X containing {w;}i_, and an operator S: 1" —F (m — dim¥) with
I8l =1 and 87| <A Put y; =8 'a,i=1,...,n, and let a;; be
the j-t£ coordinate of y; with respect to the usual basis {es}i2y of " (ice.,

f’/i'—‘jz Gigei, i =1,...,n). Let ¢ and S{E=1,..,0;5=1,...,m)
=1

be real numbers of absolute value < 1 and let y* be the element in [
= ()" whose j-th coordinate is s;. Then

lza'i,y'tisj <2 [t] Zai,fsi} < 21 Zai,i'gi(
(%] 3 7 T i

= 2 W@ = XS m) = 31y )] < 87y <

Now let m
= To; = TSy = D a;;T8;, i=1,...

j=1

y M.
Then
2= 3| 2 a8 |
and by Corollary 1 to Theorem 2.1
1__2: 1To| < Kalsl}p IT8e;| < Eqa|T8|| < K|
Thus a, (T) < Kgd|T)| < co and this concludes the proof.

‘ It is conceivable that Theorem 4.1 actually characterizes .#, and
Hilbert spaces respectively. By this we mean that the following result
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may be true. Let X and Y be infinite-dimensional Banach spaces such
that every TeB(X, Y) is absolutely summing. Then X is an Z,-space
and Y is isomorphic to a Hilbert space. We shall prove now a partial
result in this direction.

THEOREM 4.2. Let X and X be infinite-dimensional Banach spaces
such that X has an wnconditional basis and such that every T ¢B(X, Y)
is absolutely summing. Then X is isomorphic to 1,(T) and Y is isomorphic
to a Hilbert space.

Proof. We remark first that by our assumptions there is a constant
K such that a,(T) < K||7] for every TeB(X, Y). (Use the fact that by
Baire’s category theorem there is an M such that the subset {T'; a,(T)
< M} of B(X, ¥Y) has a non-empty interior.)

Let {w;}32; be a normalized (i.e. |jmy}] = 1) unconditional basis in X
and let #» be an integer. (We agsume that X is separable, but the same
proof works also if # is non-separable and has an uncenditional basis
{#,},er). By the main lemma of the paper of Dvoretzky-Rogers [12] (cf.
also [8], p. 61-63) there are {y;}i_, in ¥ with |y;| = 1 for every i and such

that
= il 1/2
| X m <2(3')
i=1 =1
for every choice of {A};_,. Let {u;}i_, be positive numbers such that

Jui=1, and define 7: X — Y by
i=1

if T = i‘mw.;.

i=1

n
Ty = Z MY
1=1
Let ¢ be a constant such that

]lzeiam! < eHmei”
% i
whenever ¢ = +1 and Z‘aimi converges. Then clearly

%:a'i,wi]

3 '1;=l,2,...,

o] < 9‘
and hence

el <2 Z (ap?) " < 2ellall.

Consequently, «,(T) < 2pK. Since

n
“ 2 &0
i=1

[

[ <ol for every @ = Za,‘:miex

=1
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and every choice of &; = +£1, we get by the definition of a,(7T) that
(4.1) Dledus = D] < ay(T)elloll < 202 K ]
i=1 i=1
n

Since (4.1) is valid whenever 3'u? = 1, we get by Landau’s theorem

d=1
n

(4.2) (D) <2eKlol it 2= 3 s

Pzl

n n ’
Define now the operator §: X — Y by Sv = Y a;y, if # = N
i=l i=1
Then

18el < 2 (_}f @) < 49K o],

=1

and hence a,(S) < 4¢2K2 Consequently,
n n n .
e = secal < (8 up | 3 wain,
=1 i=1 g= f=1

Therefore for every = Y a;z,¢ X we get
bt

< @ (8)ella]l < 40 K2jo|.

0

lol < D'lel < 40> K2 |w]

=]

and this proves that X is isomorphic to l,.

Now let Y, be.a separable subspace of Y. Since every separable
Banach space i a quotient space of I, [3] there is an operator T, from X
onto ¥,. By our assumption 7, is absolutely summing and hence also
2-absolutely summing. By Corollary 1 to Proposition 3.1 there is a Hilbert
space H and operators 7,: X — H, Ty: H — Y, such that T, = T,T,.
Since T, is onto ¥, T, must also be a quotient map and hence ¥, being
isomorphic to a quotient of a Hilbert space, must itgelf be isomorphic
to a Hilbert space. Hence every separable subspace of Y is isomorphic
to a Hilbert space. This implies (cf. [34], Lemma 3, or section 7 below)
that ¥ itself is isomorphic to a Hilbert space.

Remark. The proof above did not only show that X is isomorphic
to I, but that the given unconditional basis in X is equivalent to usual
basis of ;. Thus by combining Theorem 4.1 with the proof of Theorem 4.2
we get that all normalized unconditionsal bases in 1, are equivalent. We
shall return to this result in a more detailed way in Section 6. We shall
state here only the following consequence of the proofs of Theorems 4.1
and 4.2 which shows that algo Theorem 2.1 can be uged to characterize
spaces isomorphic to Hilbert spaces.
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COROLLARY 1. Let Y be ¢ Banach space for which there is a constant

K such thai the following s true: Let {#i3}55-1,. v be amy finite real-valued
matriz for which

‘ Z autis,[' <1
[

whenever [t <1 and |s;] <1, %, =1,...,N. Then for every choice of
i = ¥ and @i, < ¥*

| 2 9309 | < Esuplvlsup 11,

Then Y is isomorphic to a Hilbert space.

Proof. By the same proof as that of Theorem 4.1 every operator
in B(l,, ¥).is absolutely summing. Hence, by the second part of the
proof of Theorem 4.2, ¥ is isomorphic to a Hilbers space.

TeEOREM 4.3. Let X be an L-space and let Y be an Lp-space, 1 < p
< 2. Then every TeB(X,Y) is 2-absolutely summing.

Proof. Let 2 and ¢ be such that X is an PLospace and Y an
Zp,-sDace, and let {22, = X be such that

D) la" (@12 < 2”2
i=1

for every z*«X*. By our assumption on X there is an integer m and an
invertible operator 8 from I into X such that St > {o:,;}fil, IS =1
and [87Y <A Pub 2z = 8 'mel™ (i =1, ..., N). By our assumption
on Y there is a finite-dimensional subspace B of ¥ containing 7'87%
and an invertible operator U:E—>lﬁ (h = dimE) with ||U]] =1 and
U] < o. Thus we have an operator Ty=UTS: 1% — l;‘ and elements
{#i}iey = Uy such that for every z+<I™

(4.3) Z(z*(zi))" = Z(z*(S'lmi))z

= D (877 @) < US™)*="lp < et

T
Our aim is to show that > |72 is bounded by a constant depending
7

only on 4 and [|T,]l. Lebt {e;}j~, and {fi}s_, be the usual bases in I™ and [
respectively and let a;; be defined by

n
Toe; = Za'y',kfk; i=1,...,m.
o

19 — Studia Mathematica
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For every u* = (ay, 0y, ---, az){ly)* with u*| =1 and every real

{07, and {s;}i_, of absolube value <1 we have

@8) | Y wpats] = |u (Y Totses) < Ikl WTl1 | Xty < il
5k 7 7

where by ! we denote the vector (syay, Sactay ...;Spou) in (IX)*. Let 2
denote the j-th coordinate of 2, i.e.

m
R = Z %€,

j=1
By (4.3) we get

9 . .
g, j=1,2,...,m

g

(4.5)

=1
(take z* = the j-th unit vector in 1", in (4.3)). By (4.4) and (4.5) we get
from the generalized Littlewood inequality (2.10)

Do Y (Xeswa))” < Aol
& 4 7
Since this holds whenever Xof =1 (1/p+1/g=1) if p > 1, and
whenever max |az| = 1 if p = 1, we get by Landau’s theorem
k

(2 (2 (e )")"” < amelmal.
k kA i

(4.6)

Put

P

bo = | Y aiga
7

By using the triangle inequality in I, (vecall that p < 2), i.e.

B < S ma
[ W

[3 k

we geb from. (4.6)

“.7) (2( ﬁ'\szi,,-a,-,h 1“”)2’”)”2 < AK |1

k
Now

Tz = Zzi,iT("a‘ = Z(Z zt,j%‘,k.)fk
7

k Fi

icm°®
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and hence
Tzl = ( _gj] %jzi,fa,-,kl“‘)””.
Thus‘ we may rewrite inequality (4.7) as
DTzl < 22EE|T 1 < 22EE|T]2.
i

Consequently
D ITaile = YNU- Toait < o222 E3|T)e,
i i

or a,(T) < gAEg||T|| < oo and this concludes the proof.

Remark. For a version of Theorem 4.3 which is valid for p > 2
see Proposition 8.2.

CoroLLARY 1. Let X be a Banach space whose second dual is & P-space
and let Y be isomorphic to a subspace of an L, (u)-space for some measure u.
Then every TeB(X, XY) is 2-absolutely summing.

Proof. Clearly, a,(T) < ay(T**) for every operator T since T**
is an extension of 7' (if X is canonically embedded in X**). Therefore
it is enough to prove that I™* is 2-absolutely summing. Let Z be a C(K)-
space containing X** isometrically (take e.g. as K the unit ball of X***
in its w*-topology). The space Z, like any C (K)-space, is an Z.-space.
Since X** is a #-space, there is a bounded linear projection, say P, from
Z onto X**. The operator T** P maps the &, -space Z into an .#,-space.
(We use the fact, due to Kakutani (cf. [28], [29] or [8], p. 100), that the
second dual of an I, (u)-space is again an I, (u’)-space for some u’.). By
Theorem 4.3 the operator T**P is 2-absolutely summing. Since 7™
is the restriction of T™* P to X**, we get

85(T) < a;(T*) < a5(T™P) < oo,

and this concludes the proof.

Remark. Theorem 4.3 is actually a special case of Corollary 1.
This assertion follows from the following two facts.

(i) Every #Z,-space, 1 <p <2, is isomorphic to a subspace of an
L, (u)-space for some measure u (see Section 7).

(i) If X i3 an & -space, then X** is a #-space (see [35], Theorems 2.1
and 3.3).

We state now explicitly a special case of Corollary 1:

COROLLARY 2. Let X be a Banach space whose dual is an L (u)-space
(in particular X may be an abstract M-space in the sense of Kakutani [29]).
Let Y be an Ly(v)-space for some 1 <p <2 and some measure ». Then
every TeB(X,Y) is 2-absolutely summing,
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5. HILBERTIAN OPERATORS

Let X and Y be Banach spaces and let T'e B(X, ¥). We say that T
can be factored through a Banach space Z if there exist bounded linear
operators Ty: X —+Z and T,:Z — ¥ such that T = T,T,. An operator
T is called Hilbertian if it can be factored through a Hilbert space H.

Prorosirion 5.1. Let X and Y be Banach spaces and let TeB(X, Y).
Then the following assertions are equivalenmt:

(1) T 48 Hilbertian.

(2) T* is Hilbertion.

(3) There is a Banach space Z and a Hilbertian operator S:7 — ¥
such that 8Z > T'X.

(4) There is a Bamach space Z and a Hilbertian operator S: X — %
such that ||Ta|| < ||Sw|| for zeX.

Proof. The implication (1) = (2) is an immediate consequence
of the fact that the dual of an Hilbert space is again a Hilbert space.
Conversely, if (2) holds, then T** is Hilbertian and hence 7, which is the
restriction of T** to X, is also Hilbertian. Hence (1) and (2) are equi-
valent.

The implications (1) = (3) and (1) = (4) are obvious. Assume now
that (3) holds. By the definition of a Hilbertian operator we may assume
without loss of generality that Z is a Hilbert space. By considering the
orthogonal complement of the kernel of S we may also assume that §
ig one-to-one. Define now a map §,: X -2 by putting S,z = 8~ T4,
zeX. By our assumptions S, is a well defined linear map. The fact that
8, is bounded follows from the closed graph theorem. Indeed, if
len—al -0 and ||Sy@,—h| -0, then T2, — T - 0 and ||Tz,—Sh|
= [[88,2,— Sh|| =0, and thus T2 = Sh or h = &y2. Hence T = 88,
is a Hilbertian operator and (3) = (1).

Finally, assume that (4) holds. Again, we may assume without loss
of generality that Z is a Hilbert space. For every heSX define 8,1 = Tz,
where @ is any element in §7*7. Since the kernel of 7' containg the kernel
of 8,8, is a well defined linear map. For every welX, |[Ta| = ||8, 8|
< |82 and hencg [8:h]l < [[A]l. We ean extend therefore 8, to a bounded
linear operator §, from Z into Y. Since T = 8,8, we proved that
(4) = (1).

From what we have proved in the preceding sections we easily get
the Grothendieck factorization theorem ([17], Corollaire 2, p. 61):

THEOREM 5.1. Let X be an & -space and let Y be an Z,-space, Then
every TeB(X,Y) is Hilbertian.

Proof. By Theorem 4.3, every T'eB(X, Y) is 2-absolutely summing.
Hence the result follows by using Corollary 1 to Proposition 3.1.

icm°®
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The proofs of Theorem 4.3 and Proposition 3.1 show that the follow-
ing more preeise version of Theorem 5.1 holds:

THEOREM 5.1'. Let X be an L, ;-space and let ¥ be an %) space.
Let E* be the w*-closure of the ewtreme poinis of the unit ball of X*. Then
for every TeB(X, Y) there is a probability measure u on K* and an opera-
tor 8: Ly(u) — Y with ||8) < Kg||T||Ae such that T = 8JI, where I denotes
the canonical isometry I: X — C(K") and J: C(K*) — Ly(u) s the formal
identity map.

For X a C(K)-space, Theorem 5.1’ gets the following simpler form:

COROLLARY 1. Let X = C(K) and let ¥ be an P, space and let
TeB(X, Y). Then there is a probability measure p on K and an operator
8: Ly(u) — ¥ with |8} < KgellTl| such that T = 8J, where J:C(K)
- Ly(p) is the formal identity map.

Proof. If X = ((K), then, as well known ([9], p. 441), K* can be
identified canonically with K. Also, since a C(K)-space is an Lo 145 8PACE
for every ¢ > 0, we get by the proof of Theorem 4.3 that a,(T) < Eg(l+
+&)ollT|} for every >0 and hence a,(7T) < Kgo|T|. Hence we can
apply the corollary to Proposition 3.1 to get the desired result.

Another variant of Theorem 5.1 is

THEOREM 5.1". Let X be a Banach space such that X** is a P-space
and let Y be a subspace of an Z,-space. Then every TeB(X, Y) is Hilbertian.

Proof. Use Corollary 1 to Theorem 4.3 and Corollary 1 to Propo-
sition 3.1.

In the final result of this section we shall use some results which
will be proved only in Section 7.

THEOREM 5.2. Let X be an Ly-space with 2 <p < oo and let Y be
an Z-space with 1 <r < 2. Then every TeB(X, Y) is Hilbertian.

Proof. The space X is isomorphic to a quotient space of an £ -space.
This is clear if p = oo and for p << co this follows from the results of
Section 7. Indeed, by Theorem 7.1, X is isomorphic to a complemented
subspace of an L,(u)-space. Since p > 2, it follows (cf. Theorem 7.2 and
its corollaries) that L,(u)* is isometric to a subspace of IL,(») for some
measure ». Passing to the duals we get that X = X** is a quotient space
of L,(»)* which is an %.-space.

Now let U: Z — X be a quotient map, where Z is a suitable £ -space
and let Te«B(X, Y). By Theorem 4.3 the operator TU: Z — Y is 2-absolu-
tely summing and henee (by the corollary to Proposition 3.1) Hilbertian.
By (3) = (1) of Proposition 5.1 it follows that 7' is Hilbertian and this
concludes the proof.

In the proof of Theorem 5.2 we used two results from Section 7,
namely Theorems 7.1 and 7.2. The use of Theorem 7.1 can be avoided
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if we use instead the following proposition which shows that for an operator
TeB(X, X¥) the property of being a Hilbertian operator is actually a local
property, i.e. depends only on the action of 7' on the set of finite-dimen-
gional subspaces of X. )

PROPOSITION 5.2. Let X and X be Banach spaces and let T e B(X , ).
Then the following assertions are equivalent:

(1) T is Hilbertian.

(2) There is a constant C such that for every finite-dimensional subspace
B of X there are operators Ty g: B — 1, and Ty g ly — Y such that VY
is the restriction of T to B and |[Ty gl ||Ty ] < C. o

(8) There is a consiant C' such that for every finite real-valued matrip
{@ii}isos,... v and dlements {m}il, = X, [y, < ¥*,

| ) assyf (Tm)| < OMsup s 971,
1,7 v

M= su a;18:%;
l3i|<1,:1%|<1 ‘; W
E:ro of. Clearly, (1) = (2). We shall prove that (1) <> (3) and since (3)
has, like (2), a local character, it will follow that all three agsertions are
equivalent.
(1) - (3). Assume that 7 = T,-Ty, where Ty: X > H, Ty H Y
and H is a Hilbert space. Then

D 0¥ (To) = 3 ayy(Toos, THy))
(%3

where

%7

and Theorem 2.1 implies that (3) holds.

] (3) = (1). Assume that (3) holds and that U is an operator from I,(I")
1}11:0 ZX. Then, by the proof of Theorem 4.1, the operator 7U: 1,(I" -~ ¥
is ajbsqlutely summing and therefore Hilbertian. By taking as U a quotient
map, it follows from the implication (3) = (1) of Proposition 5.1 that T
is Hilbertian.

Rema,rk: The proof of Proposition 5.2 shows that if (2) holds, then
I=1T-T, vylth T X—>H,T,:H->Y and 1T 1Tl < EgC.

After this paper has been submitted for publication, the first named
author obtained the following strengthening of Proposition 5.2: '
Y**,Let X and Y be Banach spaces such that there is a projection P from

onto Y. Let 1< p< oo and let TeB(X, Y). Assume that there is
o C >0 such that for every finite-dimensional subspace I < X there are
:?emtors Tog: B—1, and Ty g5 b, — Y such that IzTon is the restrie-
won of T to B and |T, g 1Tzl < C. Then there is a measure u and opera-

tors T): X > 1T, .
copp) e ot T Lylu) > T sudh that T =1T,1, and (2]
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6. APPLICATIONS

Our first application is concerned with the notion of equivalent
bases. A basis {#;}i2; in a Banach space X is said to be equivalent to a basis
{y:}i2; in a Banach space Y if the series E’ a;®; converges if and only
if the series f’ a;y; converges (and hence,t?y the closed graph theorem,
the ma,ppingi’;l: X — Y defined by T(Ya;i) = Yay: is an isomorphism).

i 3

THEOREM 6.1. Let- X be o complemented subspace of an £.-space (resp.
Zo-space) Y and let {x:}32, be a normalized (i.e. \|u]] =1 for every ¢) un-
conditional basis in X. Then the basis {w:}i2, is equivalent To the unit vector
basis in 1, (resp. ¢,). )

Proof. Let ¥ be an &, ; (resp. L, ;) space and let P be a projection
from ¥ onto X. Let p be such that

& ATy “

| el <],

(==} (=]
=1 i

whenever 3 a;x; converges and & = +1.
We consider first the case when Y is an %, space. Let {u;}iZ; be

L]
any sequence of vectors in ¥ such that Z u; converges unconditionally.

i=1

Consider the operator S:c,— Y defined by

8(ay, agy.0) = D) @ity
1=1
By Theorem 4.3 we get

(Z Iluiﬂf‘)l'2 < }'Kgfllfl ” _S_: sm!

(6.1)
because for every y* in ¥* with |y*] =1,
| D e = (X wrar)™.
T 3
(Inequality (6.1) is in fact the theorem of Orlicz [42]. Using his argnment

one can replace in (6.1) Kg by 1/5.)
Let T be the operator from Y into I, defined by

sup

gg=+1

[N

Py = 2 a;d;.

i=1

Ty = (a7, 05y ...) if
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By (6.1)
Izl = (3 et)* < atcgmup | 3 even

Hence, [|T|| < olHg||P|| and, by Theorem 4.1, a(T) < o? 1((2;”13”‘
Thus for every z = Zaia:ieX

< oMK\ Pyl| <oAKg Pl ly).

62 3l = 3 Tai S a(D)sup]| Y eans|| < o2 K32 [,
1=l i=1 & 2=l

Since, clearly, || Yaa| < 3 las], (6.2) implies the equivalence of the
1

basis {m}i2, with the unit basis in 1,.

Assume now that ¥ is an Leo8pace. In order to show that {w)82,
is equivalent to the unit vector basis in ¢ it is enough to show that there
is a constant M (independent of n and {a}ivy) such that

” 2"1 a‘mm]‘ < _Mmax lai].
i=1 «

Fix an » and let B, be the subspace of ¥ spanned by {w;}i.,. Let
Qn be the projection from X onto B, defined by

% 00
da=1 =1

Let E, be a finite-dimengional subspace of ¥ containing B, such
that d(H,, [) < A, where m = dim E,. The restriction P, of Q,P to E,

is a projection from I, onto B, with ||Pfl < 1. 1P < o|IP||. Tet
{@}_1¢ B}, be defined by oy (@) = 8. Clearly

| 3 stat < o] 31t

fm; every choice of real {§;} and signs {e}. Since d(Bp, 1") < 4 and
2™l < IPRa¥|l < o) |lz*] for every a*eBy, it follows from the first part

of the proof that
n n
0{2 18il < H Zﬁﬁm;‘
=1 1=l

where the positive constant ¢ depends only on 1, ¢ and P (but not
on n and {;)7 ). Thus
= sup lZa,iﬂ,-

K
|
| e
i=1 IZb<1’ {5

and this concludes the proof.

?

n
< sup 12%&] < C7'max |ay],
(251 MBS R
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Remark. The theorem holds, with the same proof also in the non-
separable situation. Thus if X (in the statement of Theorem 6.1) has
a normalized unconditional basis {#,},er, then this basis is equivalent
to the unit basis of I, (I") (resp. ¢o ().

COROLLARY 1. All normalized unconditional bases in L (D) (resp. ¢y (1)
are equivalent to the unit veclor basis in L(T) (resp. ().

Corollary 1 solves a problem raised in [44] (cf. also [48]). In [44]
it iy shown that in L, 1 < p < oo, p #* 2, there is a normalized uncon-
ditional basis which is not equivalent to the unit vector basis. (For p = 2,
i.e., for the Hilbert space, it is well known, that all normalized nunconditional
bases are equivalent; see [4] and [1381).

COROLLARY 2. Euvery complemented subspace of an Zi-space (resp.
Lo-space), and in particular every £i-space (resp. Lo-space), with an
unconditional basis is isomorphic to I, (I) (resp. ¢o(I')) for o suitable set I

Since L; (0, 1) is not isomorphic to L,(I"), Corollary 2 implies in parti-
cular that there is no unconditional basis in L,(0,1) (cf. [44], [54] and
[45] for a slightly stronger result). If K is an infinite compact metric
space, then by a result of [5] C(K) is isomorphic to ¢, if and only if K is
homeomorphic to the space [a] of all ordinal number < a (with the order
topology) for some ordinal ¢ with o <a < %, where o denotes the
first infinite ordinal number. Henece as a special case of Corollary 2 we get.

COROLLARY 3. Let K be o compact metric space; then C(K) has an
unconditional basis if and only if K is homeomorphic to the space [a] for
some ordinal a < o®. In particular, the spaces C(0,1) and C([w®]) have
no unconditional bases.

Corollary 3 was obtained by the second named author in 1958 in
his Ph. D. thesis but the proof of it has not been published. The case of
€(0,1) is due to Karlin [30] (cf. also [8], p. 77).

COROLLARY 4. Let X be a separable infinite dimensional Banach space
with an unconditional basis. Then X s complemenied in every separable
space containing it if and only if X is Wsomorphic to c,.

Proof. If X is isomorphic to ¢y, then X iz complemented in every
separable Banach space containing it by a result of Sobezyk [65] (cf. also
[44], p. 217). Conversely, every separable Banach space is isometric
to a subspace of the .#.-space C(0 ;1) (see [21]) and hence the desired
result follows from Corollary 2. ’

COROLLARY 5. Let X be a Banach space with an unconditional basis.
Then X is isomorphic to ¢y(I') for a suitable set I if and only if X*™ s
a P-space.

Proof. If X is isomorphic to ¢,(I’), then X** is isomorphic to I, (I')
which is a 2,-space ([8], p. 94). Conversely, let {x,},.r be a normalized
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unconditional bagis of X and assume that X** is a Z,-space. Let I', be
any finite subset of I" and let B be the subspace of X spzu}neq bY {@}yery,-
By the definition of an unconditional basis there is a projection of norm
< o from X onto B (where o does not depend on 1’0).. Hence, by [35],
Corollary 3, p. 16, B is & #,-space. By embedding B in ¢(0,1) and the
proof of Theorem 6.1 we get that there is a constant M (independent
of I'y) such that for all a,, yel,

suploy| < || 3 0,0, < Msupla,l.
vellg yely 7elo

The set {#,}, is therefore equivalent to the unit basis of ¢,(I") and,
in particular, X iy isomorphic to ¢, (I").

In order to state more quantitative vergions of Theorem 6.1 let-ug
make the following definitions. If X is a Banach space, the projection
constant p(X) of X is defined as inf{l; X is a Zp-space} (p(X) = oo
if X is not a F-gpace). The symmetry constant s(X) of X is defined by
inf{g; there is an unconditional basis {#,}, in X such that

| Semn <] Saa]
k4

whenever s, = +1 and 3 a,, converges}.

Again, we put s(X) = co if X has no unconditional bagis. Some
equations relating p(X), s(X) and the distance of X from various spaces
were obtained recently (for finite-dimensional spaces X) by Gurarii,
Kadec and Macaev [20] (they called s(X) the coordinate asymmetry of X).

COROLLARY 6. Let X be a subspace of an &, ,-space ¥ and assume that
there is a projection P from Y onto X. Then

(X, L(I) < P Eg|P|sH(X),
where I' is a set whose cardinality is the densily character of X.
Proof. Use the first part of the proof of Theorem 6.1.
. CoROLLARY 7. Let X be a finite-dimensional Banach space (dim X
=, say). Then ' :
WX, 1) < Kgp*(X)s*(X).
Proof. Let I: X — C(0,1) be an isometry, let ¢ > 0 and leb P*b_e
& projection of norm < p(X)+e from (/(0,1) onto IX. Then P*I *15
& projection of the #, ., -space €(0,1)* onto P* X*. Since s(X) = s(X*),
we get, by Corollary 6,
A(P*X*, T < KR(1+ el (p(X)+ ¢ - *(X).
Hence
(X% A(X", PX*)A(PX*, 1) < K3(1+ o) (p{X) + o2 s*(X).
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To complete the proof observe that
d(X: l:o) = d(X*y Z?)

and let ¢ tend to zero.

Remark. The infinite-dimensional version of Corollary 7 is useless
since there is no infinite-dimensiona]l Z-gpace with an unconditional basis.
(Use e.g. the fact that a Z-space has no infinite-dimensional separable
complemented subspaces (cf. [14] or [44], p. 222). Hence for every in-
finite-dimensional Banach space P(X)-8(X) = oo.

The preceding result concerning unconditional bases can be easily
generalized to Schauder decompositions of Banach spaces. This notion
wag introduced by Griinblum [18] and studied by MeArthur and his
students. Let X be a Banach space and let {X,}yer be a set of closed sub-
spaces of X. The set {X,}, is said to be an unconditional Schauder decom-

position of X if every e X has a unique representation of the form » = S,
k4
with @,¢X,,, yel', and if this series converges uncondifionally for every

zeX. Exactly as in the case of an unconditional basis it follows from the
definition that there is a constant p sueh that

| Sea] <e] I=

whenever ¢, = 11, 5,¢X, and 'z, converges. If {X,}yer is a set of Banach
spaces, then by (X@X,), (resp. (X®X,),) we denote the direct sum of
these spaces in the I, (resp. ¢,) sense. With this notation we have

CoroLLARY 8. Let X be an %Z;-space (resp. ZLw)-space and let {X,},
be an unconditional Schauder decomposition of X. Then X is isomorphic
to (Z0X,), (resp. (ZaX,),).

Proof. The proof is very similar to the proof of Theorem 6.1. We
shall sketch only the proof in the #;-case. For every yel let o X be
a functional with norm 1. For every # = Y'w, in X we have

k4

(X @) P < (3 el < 213wl

where M, is a constant which depends only on the constant ¢ of the de-

composition and the A for which X is an &, 1-8pace. Hence, the operator

T: X — 1,(I') defined by T(3w,)(y) = @3 (,) is of norm < M;. By Theo-
k4

rem 4.1
D @) = 3 \a,)| < Malll, o= Ya,
el yel'

el
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where again MM, is a constant depending only on 4 and ¢. Since, in parti-
cular, M, does not depend on the choice of the zy, yel, we geb

Nyl = sup{ 3l @) 1 75 € X5, o5 = 1} < Mya],

and this concludes the proof. .
In our next application of the results of the preceding sections we

shall consider the complex Banach space I,(u), where u is the Haar
measure on the circle {z; 2| = 1}. Let H, be the closure of the polynomials

' " in Iy (cf. [23]). We prove first
k=0

PROPOSITION 6.1. There is an operator T in B(H,,ly) which is not
absolutely summing.
Proof. For feH; with

o0
= Zakzk for
k=0

=

By a theorem of Hardy ([23], p. 70),

] <1

we pub

D el [ < =]
k=1
Since
1 rfle)
= [ e
we get lax| < |fll, and hence
D laP b <zl|fle.
fe=1
Therefore TeB(H,,1,) and |T| < V. Let

o6 = oy Viein(k-+1) i

Since

: 2;(1/7;1%(10—}-1))‘2 < oo,
%
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the series

Z‘(l/%l'n(lw—l))‘1 k
%

converges unconditionally in H, and therefore in H,. However,

S‘”T Viln (k+1))7124 = 5’ (kTn(k+

k-—l

) = oo

and therefore 7' i3 not absolutely summing.

From Theorem 4.1 and Proposition 6.1 we immediately get the
following result of D. J. Newman (cf. [23], p. 154):

CoroLLARY 1. Every isomorphic image of H, in an arbiirary Z-space
X is uncomplemented.

Proof. The operator I from H; to I, of Proposition 6.1 does not
have (by Theorem 4.1) an extension to an operator from X to Iy

We pass now to applications centered around properties of Hilbert
spaces. The first is Grothendieck’s characterization of Hilbert spaces
([17], Proposition 5, p. 66).

TeroREM 6.2. 4 Banach space X is isomorphic to a Hilbert space
if and only if 4t is isomorphic to a subspace of an Ly -space and o a quotient
space of an L,-space.

Proof. If X is a Hilbert space, then X is isomorphic to a subspace
of an I, (u)-space. This fact is well known, at least for a separable Hilbert
space, since the subspace of L, (0, 1) spanned by the Rademacher functions
is isomorphic to 7, (see [27] for details and further references). In Section 7
(Corollary 1 to Proposition 7.5) we shall present a proof of this fact in
the general case. It follows that X = X*isa quotient space of the %_-space
L3 (u) and this proves one part of the theorem.

We pass to the converse. Let ¥ be an &,;-space containing X and
let 7'be an operator from an % -space Z onto X. The operator T considered
as an operator from Z into Y is by Theorem 5.1 a Hilbertian operator.
Hence there is an operator from a Hilbert space onto X. Thus X is iso-
morphic to a quotient space of a Hilbert space and it is therefore itself
isomorphie to a Hilbert space.

COROLLARY 1. Let X be a Banach space such that X and X* are both
isomorphic to subspaces of %,-spaces. Then X is isomorphic to a Hilbert
space.

Proof. By Proposition 7.1 every #,-space is isomorphic to a sub-
space of an I, (u)-space. Since the dual of I, (x) is an .Z.-space, it follows
from Theorem 6.2 that X*, and hence X, is isomorphie to a Hilbert space.

COROLLARY. 2 Let X be a Banach space such that X and and X* are
both quotient spaces of L-spaces. Then X 4is isomorphic to a Hilbert space.
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Proof. Use Theorem 6.2 and the fact that the dual of an &, -space
iy isomorphic to a subspace of an L, (u)-space (cf. Proposition 7.4)

Remark. Theorem 6.2 and its Corcllaries remain valid if we replace
everywhere % -spaces by Z,-spaces and Z-spaces by Zp-spaces, where
1<r<2and2 <p < co. The general case reduces to the case of #,-spa-
ces and £, -spaces via results of Section 7in the same way as in the proof
of Theorem 5.2.

The next theorem gives several characterizations of Hilbert-Schmidt
operators. For the basic facts concerning these operators the reader may
consult the books [10] or [53].

THEOREM 6.3. Let H, and H, be Hilbert spaces and let TeB(H,, H,).
Then the following assertions are equivalent:

(1) T is o Hilbert-Schmidt operator.

(2) T has the lifting property, i.e. for every Banach space Y and every
epimorphism U: Y — H, there is an operator 8: Hy — X such that T = US.

(3 ) T admits a factorization through 1,(I').

(4) T admits a factorization through some £ -space.
(5) T'is absolutely summing.

( Y T admits o factorization through ¢o(I').

(7) T admits o factorization through an Z.-space.

(8) T is 2-absolutely summing.

(9) T has the extension property, i.e. for every Bomach space X and
every isomorphism S: H, — X there is an operator U: X — H, such that

= US.

Proof. (1) = (2). Let,{e,},r be an orthonormal basis in H,. Since
T iz a Hilbert-Schmidt operator, we have }'||Te,|? < co. By the open

Y
mapping theorem there exist {y,}, in ¥ such that }'|y,|? < oo and
Y

Uy, = Te,,yel. Let 8: H,—~ Y be defined by Sz = } (,e,)y,, veX.
It is eagily checked that S has the desired properties
= (3). This is a consequence of the fact [3] that every Banach
space is a quotient space of 7,(I) for a suitable I'.
(8) = (4). This implication is obvious.
(4) = (5). This implication is a consequence of Theorem. 4.1.
(8) = (1). Let {e,},r be an orthonormal basis in H,. Then the geries
Z’aye, is unconditionally convergent whenever 2 |y |? << co. Hence, sinee

T is absolutely summing, 3 |a,| | Te,|| converges whenever Z,’]otyl2 < o0
k4
and therefore 3'||Te,||? < oco.

td
(1) = (6). Since T is a Hilbert-Schmidt operator, it is compact. Hence
there is an orthonormal basis {éy}yer in H, such that (Te,;, Te,,) =0 for
71 7 75 (of. e.g. [53], Section 14). Define §: H, — ¢,(I') by Sa(y) = (@, ¢,),
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@eH,, yel. Define U: (I~ H, by U({a,}yr) =2ay_’l’e for {a},r

in ¢y(I'). Since the vectors {Te,},.r are mutually orthogonal and 2 |Te, |2
< oo, U is a well defined operator. Clearly US = T.

(6) = (7). This implication is obvious.

(7) = (8). This implication is a consequence of Theorem 4.3.

(8) = (9). It follows from the corollary to Proposition 3.1 that there
is a probability measure u on the unit cell of H, and operators 8,: H
= Ly(u) and Uy: Lo(u) - H, such that T = U,8,. Since L,(p) is
a Zyspace, there iy an operator U:X - L,(u) such that US = 8,.
The operator U = U,U has the desired properties.

(9) = (4). Let 8 be an isomorphic embedding of H, into an #,-space
X. Then, by (9), there is an operator U: X — H, such that 7 = US
and thus we get a factorization of 7' through an .#,-space.

Remark. Almost all the implications in Theorem 6.3 are contained
in Grothendieck’s paper [17] (see in particular Theorem 6 on p. 55).
Pietsch [50] and [51] proved the equivalence of (1), (5) and (8). These
equivalences imply that 7' is a Hilbert-Schmidt operator if and only if T
is p-absolutely summing for some p < 2. The same is true for p > 2
(ef. [477).

An operator T': X — ¥ is called nuclear if it can be represented in
the form

(o]
To = })yi(@)y:
=
with {32, < T, {#i12, < Y* and Zlyi lyill < oo (cf. [50] for a discus-
sion of the properties of these operators which were introduced by Gro-
thendieck [15]).

COROLLARY 1. Let X; (1 =1,2,3) be Banach spaces and let T,: X,
= Xo, Ty: Xy - X3 be both 2-absolutely summing operators. Then T,T,
is nuclear.

By the Corollary to Proposition 3.1 there are compact Hausdorff
spaces A, and K, and probability measures u, and u, on K, and K, res-
pectively such that 7T; = 8;J;I; (¢ =1,2), where I;: X; > C(K;) are
isometries, J;: O(H;) — L,(u;) arve the formal identity maps and S;:
L, (p;) — Xy, ave suitable bounded operators. We have thus the following
sitnation:

I J1 8 I, Ty A
X, = C(Ky) = Ly(u) > Xo— O(Ky) = Lo(pg) > X,

By (7) = (1) of Theorem 6.3 the operator J,1,S; is a Hilbert-Schmidt
operator. Hence, by [50], Satz. 2, p. 56, J,I,8;J, is nuclear and conse-
quently 7,7, = 8,(J-I,8;J,)1; is also nuclear.
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Remark. This corollary is in [17] (Corollaire, p. 34), see also Pietsch
[61], Theorem 6. "

COROLLARY 2. Let H, and Hy, be Hilbert spaces and let T e B(H,, H,).
Then the following assertions are equivalent:

(1) T s nuclear.

(2) T admits a factorization of the form T': Hy — co(I) -1, (I') — H,.

(3) T admits a factorization of the form I': Hy — X ~ ¥ — H,, where
X is an ZL-space and Y is an £, -space.

Proof. The corollary follows immediately from Theorem 4.3, Theo-
rem 6.3 and the well known fact that an operator T'eB(H,, H,) is nuclear
if and only if it is a product of two Hilbert-Schmidt operators (cf. e.g.
[53], Section IIT, 1).

7. SUBSPACES OF Ly(u)-SPACES

We show first that for a Banach space X the property of being iso-
morphic to a subspace of an L, (u)-space is a local property, i.e., depends
only on the finite-dimensional subspaces of X.

ProrosirioN 7.1. Let X be o Banach space, let 1 <p < oo and let
A2 1. Assume that for every finite-dimensional subspace B of X there is
a subspace B of 1, such that A(B, B) < . Then there is a measure Hoand
a subspace Y of Ly(p) such that (X, ¥) < A

Proof. Since every Banach space is isometric to a subspace of an
L (u)-space (e.g. an I (I') for a suitable I'), the proposition is trivial
if p = co. We assume from now on that p < oo.

Let U* be the unit ball {&*; |*|| <1} of X and let B(U*) be the
space of real-valued bounded (not necessarily continuous) functions
on U*. For <X let f,eB(T*) be defined by f,(2*) = 2*(z), 2" U*. Let I
be a subspace of X with Aim® =n < oo and let Tq: B — 1, be such
that

el < | Tgal < o))

for every zeH. Since TpF is a finite-dimensional subspace of l,, there
exists an integer m such that

P Tsal > (1——71?7) T zal

for every.meE (P denotes the projection of l, onto its subspace generated
1.oy the first m basis vectors). Thus Ty — P, Ty is an operator from ¥
into I, such that

1 1 7
- (“Z) loll < |Tall <loll, weB.
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m

Let {&}iL, be the usual basis of ' = (I)* (p~*+¢~* = 1). Put

m

guf = Y f(TRt), feB(UY).

=1

(7.1)

The functional ¢z is clearly linear and positive (i.e. f > 0 = pgf > 0).
For every wel
m m

(7.2) pulfel” = Y 1 T&(@)P = Y 1&(Tpa)f = |Tpalf?,
=1 =1

and hence

1 1 .

(=t < ety <ol ac, aimp = .

A n

Let B be the one point compactification of the reals and let
I =

[] &
feB(T*)
be the produet of B(U*) copies of B. For every finite-dimensional sub-
space B of X let nzell be defined by wz(f) = ¢zf. Since, by Tychonoff’s
theorem, /7 is compact, the net {mz} (the spaces E are ordered by inelusion)
has a subnet converging to a limit point =. Let

Z = {f; feB(U"), n(Iff") is finite (ie. not oo)}.

Then
(i) Z is a linear subspace and sublattice of B(U*) and, moreover,
f€Z7gEB(U*)7 gl < Ifl = geZ.
@) AN = (=]fIDH? is a semi-norm on Z which has the property
that
min(|f(#")], lg(@"))) = 0

for every #*eU* = |If £gllI” = HIFIP+ gl

(iii) For every weX, f, belongs to Z and 2 'zl < ||Ifolll < llol] (use
(7.3)).

By (i) and (ii) and the characterization of L, (u)-spaces given by Na-
kano ([41], ¢f. also [6]) the completion Z of Z[{f; H[fll[ = 0} is isomcttric
t0 an Iy (u)-space for some measure x. The operator I' sending zeX into
the class determined by f in Z satisfies, by (iii),

Pl < W) < el
and this concludes the proof.
Remark. Proposition 7.1 is essentially known. For p = 2 the argu-

ment of Lemma 3 of [84] provides a proof of this proposition (begil} the
transfinite induction one step earlier, i.e., from the finite-dimensional

20 — Studia Mathematica
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case instead of the separable case). An explicit statement of Proposition
7.1 for p = 2 is given in [25]. For a general p but 1 = 1 the Proposition
is proved in [7]. The proof of [7] (cf. also [57]) can be modified so that it
will hold for a general 1. Like the proof given here, the proofs in the
papers mentioned above are essentially a combination of a compactness
argument with an application of an isometric characterization of
Ly (u)-spaces.

COROLLARY 1. Let X be an %, ;-space. Then X is isomorphic to a Hilbert
space. Precisely, there ewists a Hilbert space H such that d(X, U) < A

COROLLARY 2. Let X be a separable Banach space which satisfies the
assumptions of Proposition 7.1. Then there is o subspace ¥ of L,(0, 1)
such that d(X, ¥) < A

Proof. By [9], Lemma 5, p. 168, every separable subspace of an
Ly (p)-space, 1 < p < oo, is isometric to a subspace of a separable L, (v)-
-space. Every separable L, (v)-space is isometric to a subspace of L,(0,1)
(use [21], Theorem C, p. 173). Corollary 2 immediately follows from these
facts and Proposition 7.1.

CoROLLARY 3. Let X be o Banach space, let 1 < P < ooandlet 2>1.
Assume that for every &> 0 there is a measire u(e) and o subspace
Y = Y(e) of Ly(u(e)) such that d(X, ¥) < A-s. Then there is measure u
and o subspace ¥ of Ly(u) such that d(X,Y) < A.

Proof. It follows from the assumption that for every ¢ > 0 and every

finite-dimensional subspace E of X there is an operator T'y: E — 1, such
that

ITzel <ol < (A+ o) | Tpal, xeB.

We may now proceed exactly as in the proof of Proposition 7.1.

For Z,-spaces X a stronger result than Proposition 7.1 can be ob-
tained.

TEEOREM 7.1. Let 1 < p < oo and let X be an ZLp-space. Then there
s a measure y and o complemented subspace Y of Ly (u) which is isomorphic
to X.

Proof. Let X be an Zp,-8pace. By Proposition 7.1, X is isomorphic
to a subspace of an IL,(u)-space and hence, in particular, X is reflexive.
We are going to show that by the construction described in the proof of
Proposition 7.1 we get that X ig isomorphic to a complemented subspace
of the L, (u)-space Z. Let U*, B(U*) and fz (#€X) have the same meaning

as in the proof of Proposition 7.1. We consider now ounly those finite-
dimensional subspaces B of X for which

(7.4) a(B,1;) <1 where 2= dimB.
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By our assumption on X the set of those spaces B for which (7.4)
holds is ordered by inclusion. For every such E let Tg: B — Iy satisfy
el < |Tesll <o, weB,
and define the functional ¢z on B(U*) by
n
ouf = D f(T5E),

=1

where {£}7., is the usual basis of (I;)*. By using in the proof of Propo-
gition 7.1 only those spaces E for which (7.4) holds, we construct the
spaces Z and Z. Thus Z consists of all fe B(U*) for which

(7.8) AP = limeg |f’ < oo,
?
where {#,} is a net of subspaces satisfying (7.4) which is directed by in-

clusion, and Z is the completion of Z/{f; [|If|| = 0}. -
For every F satistying (7.4) let Pz: B(U*) — E be defined by

n
Pxf = T5*( ) f(ThéIm),
im
where {#;}i—; is the usual basis in 7;. Then, for z¢E,

(1.6) Ppfy = T5' (Zn T5 &(@) mi) = T5" (ﬁ‘ £:(Tpa)ns) = T3 (Tgo) = 2.

Also, since [Tzl < A and ]l._zl'f(TE&)m“p = eulfl
Pefll < Alge|fF)*, feB(UY).
Hence, by (7.5),

(1.7)

Lim |[P oo if eZ.
Em[Pefl <o i f

Therefore, since every bounded set in the reflexive space X is w-con-
ditionally compact, we infer by Tichonoff’s theorem that there is a subnet
{B,} of {B,} such that

Pf = h'xlnPEy, f
14

exists in the w-topology for every feZ. Clearly, P is a linear map from Z
into X. By (7.6) we infer that Pf, = o for every <X and, by (7.5) and
(7.7), IP|| < A. By passing from Z to Z we get from P an operator Piz -X
such that ||P|| < A and PTx = o for every weX. Here'z’: X 7 is the
operator appearing at the end of the proof of Proposition fi.l, namely
the operator mapping every @ to the equivalence class of f, in Z. Hence
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TP is a projection from the L,(u)-space Z onto its subspace TX which
is isomorphic to X. This completes the proof.

In the next section we shall show that Theorem 7.1 does not hold
if p = 1 and it is very easily seen that it fails also if p = oo. (A separable
infinite-dimensional C(K)-space is not a Z-space and hence not comple-
mented in an L (u)-space.)

Some information concerning Z,-spaces for those values of p is
contained in

CorOLLARY 1. Let 1 < p < oo and let X be an Zy-space. Then X is
isomorphic o complemented subspoce of an Ly (u)-space for some measure
p if and only if X is complemented tn X**.

Proof. For 1 < p < oo the corollary is equivalent to Theorem 7.1.
Assume now that p = co. Since an L, (u)-space is a Z-space, it follows
that every complemented subspace X of an L (u)-space is a P-space
and hence is complemented in X™**. Conversely, if X is an Z_-space and
.is complemented in X**, then by [35], p. 28, X is a P-gpace and hence,
in particular, is isometrie to a complemented subspace of 7, (I") for a sui-
table I
) We turn to the case p = 1. Since every L, (u)-space is complemented
In ity second dual, it follows that every complemented subspace of an
L, (u)-space is complemented in its second dual (ef. [15], p. 101, or [35],
p. 16). Conversely, assume that X is an Z,-space and that there is a projec-
tion @ from X** onto X. In the proof of Theorem 7.1 we used the fach
that 1 <P < oo only in the proof of the existence of the limit P of the
mappings Pg,. We can avoid using the reflexivity of X if we embed X
in X* and use in X** the w*-topology. Then the proof of Theorem 7.1
for p = 1 (and this argument can be used also for p = oo) will give an
operator P: Z — X* such that PTw =@ for xeX = X**. Hence TP
will be a projection from 7 onto 7'X.

COROLLARY 2. Zet X be an £, -space; then X* is o P-space.

Proof. As observed in the proof of Corollary 1, there is an I, (u)-space
Z and operators T: X — Z and P: Z — X** guch that PT is the canonical

erilhedding Jo of X in X**. Let J, be the canonical embedding of X* in
X™, and consider the operators

J; P+ A
% J1
X* s X***'—} Z*'—> .X*.

@ .TheI} T*P*J 1= Jyd, and Jy J, is, as well known and easily checked,
e 1dent1ty* map})mg (lf X*. Hence X* is isomorphic to the complemented
subspace P*J, X* of Z*. Since Z* is a Z,-space, the result follows.

. COR*O.LL:ABY 3. Let X be a separable infinite-dimensional &y-space.
Then X* is isomorphic to [
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Proof. This follows from Corollary 2 and [44], Corollary 6, p. 222.
The next corollaries deal with spaces which are %, ,-spaces for

every & > 0. For those spaces we can say much more than for general

Lp-spaces. .

COROILARY 4. Let 1 << p < co. A separable Banach space X is iso-
metric to an Ly(u)-space for some measure u if and only if X is an Ly, -
space for every &> 0.

Proof. We remarked already in Section 3 that an I,(u)-space is
an Zpyq.-space for every e > 0. Assume now that X is an %, .-space
for every &> 0. It follows from the proof of Theorem 7.1 that there is
a measure pu and a subspace Y of L,(u) such that ¥ is isometric to X
and there is a projection of norm 1 from IL,(u) onto Y. Since X is separa-
ble we may assume that u is a finite measure (use [9], Lemma 5, p. 168,
and the fact that whenever an L, (u)-space is separable u is o-finite and
hence Ly,(u) is isometric to L,(x’) for some finite measure x’). By the
results of Ando [1], Theorem 4, there is a measure » such that ¥ (and
hence X) is isometric to L,(»).

Remarks. (1) The assumption that X is separable can very probably
be removed. Ando deals in [1] only with L, (u)-spaces with p finite. His
Theorem 4 seems to be true even for general u. However, the reduction
of the general case to the case of finite x is not straightforward and we
did not work it out.

(2) M. Zippin in hig Ph. D. thesis, which is being prepared at the
Hebrew University, has proved the following result:

Let 1 <p < oco. A Banach space X is isometric to an L,(u)-space
for some measure u if and only if there is a net {#,} of finite-dimensional
subspaces of X, directed by inclusion, such that (JE, is dense in X and

X4

every B, is isometric to I with » = dimH,. For p > 1 and X separable
this is & weaker version of Corollary 4. For p = 1 Zippin’s result is con-
tained in

COROLLARY 5. A Banach space X is isometric to an L, (u)-space for
some measure u if and only if X is an Ly ,.,-space for every & > 0.

Proof. Let X be an %, -space for every > 0. By the proof of
Corollary 2 it easily follows that X* is a #-space. Hence, by a result
of Grothendieck [16], X is isometric to an I, (u)-space. This proves one
direction of the assertion of Corollary 5. The other direction is trivial

Let us mention that in [32] the analogue of Corollaries 4 and 5 for
P = oo was obtained: A Banach space X is an %, i,-space for every
&> 0 if and only if X™* is isometric to an L, (u)-space.

Remark. There exigt no infinite-dimensional %, ;-space if 1 <p
< co,p # 2. This immediately follows from Corollaries 4 and 5 and
the fact that the space I, is not an %, -space (if p # 2). There exist,
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however, infinite-dimensional Z,, ;-spaces. It was proved in [35], p. 100-101,
that X is an %, -space if and only if X* is an L, (u)-space and the unit
cell of every finite-dimensional subspace of X is a polyhedron. The sim-
plest such space is ¢,. More general examples are given in [35], p. 103.

The problem of a functional representation of general %,-spaces
ig still open. The next three propositions give some further information
on %y-spaces.

ProposITION 7.2. Let X be an &p j-space with 1 < p < oo and lei
Y be a separable subspace of X. Then there ewists a separable subspace 7
of X containing Y such that Z is an Ly, -space for every e > 0 and such
that there is a projection of norm 1 from X onto Z.

Proof. We show first that there exists a separable subspace Z, of X
containing ¥ which is an &, ,,,-space for every &> 0 (this part of the
proof is valid also for p = 1 and oo). Let {y;}i=, be a dense sequence in Y.
For every finite subset o of the integers choose a finite-dimensional sub-
space B, of X such that B, o {y;}i, and d(B,, ;) < 1, where n = dimJ,.
Let ¥, be the closed subspace of X spanned by |J B,. Cleary,] Y, is

separable. Using Y,, we construct next a subspace ¥, of X in the same
way as ¥; was obtained from Y. Continuing inductively we get an in-
creasing sequence {¥,},_, of separable closed subspaces of X. It iy easily
verified that Z, = (JY, is an %, -space for every &> 0.

Bince we assume that 1 < p < oo we infer by Proposition 7.1 that X
ig reflexive. By the result of [37] it follows that there is a separable sub-
space Z, of X containing Z; such that there is a projection P, of norm 1
from X onto Z,. Let next Z, be a separable subspace of X containing 7,
which is an %, ;,,-space for every ¢ >0 and Jet Z, > Z, be a separable
isubspace of X on which there is a projection P, with norm 1. Continuing
enductively we get an increasing sequence {Zp}m-y of separable subspaces
f X such that Z,,,, is an Lp,1+e Space for every ¢ > 0 and every integer

o0 and such that there is a projection P,, of norm 1 from X onto Zgy, for
nvery n. The space

Z =\ Z,

Ne=]

h‘as. '.nhe properties required in the statement of the proposition (any
hmltll.lg point P of the sequence {P,,}2., in the w-operator topology is
& projection of norm 1 from X onto Z).

Remarks. Proposition 7.2 fails obviously to hold if p = co. It is
very likely that it still holds if p = 1. If ¥ ig not a geparable subspace
of X and 1 < p < oo, then the same proof as that of Proposition 7.2
shows that there is a subspace Z > Y of X such that Z i3 an & 34.,-5pace
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for every ¢ > 0, Z has the same density character as ¥ and there is a pro-
jection of norm 1 from X onto Z.

PROPOSITION 7.3. Let X be an infinite-dimensional Lp-space with
1 <p < oo. Then X has a complemented subspace isomorphic to 1.

Proof. Assume first that 1 < p < co. By Proposition 7.2 we can
assume that X is separable. The desired result follows now from [27],
Corollary 3, p. 168, and Theorem 7.1 (use the argument of the proof of
Corollary 2 to Proposition 7.1).

Now let p = 1. By Proposition 7.1, X is isomorphic to a subspace
Y of L,(u) for some measure u. Since Y is not reflexive (this follows e.g.
from Corollary 2 to Theorem 7.1), ¥ has a separable non-reflexive sub-
space ¥,. By [9], Lemma 5, p. 168, there is a separable subspace Z of
L, (p) which contains ¥, and which is isometric to I, (») for some measure v.
From the construction of Z it follows that there is a projection of norm 1
from L, (u) onto Z (a conditional expectation operator; cf. [1] for details).
By [27], Theorem 6, there is a subspace ¥; of ¥, which is isomorphic
to I, and which is complemented in Z. Since Z is complemented in L, (u),
Y, is also complemented in I,(x) and thus also in ¥. This concludes the
proof of the proposition.

PROPOSITION 7.4. Let X be an Z-space. Then X* is isomorphic to
a complemented subspace of an Li(u)-space for some measure u.

Proof. By [35], Theorems 2.1 and 3.3, X** is a #-space and is there-
fore isomorphic to a complemented subspaee of a C(K)-space for some
compact Hausdorff K. Hence X*** is isomorphic to'a complemented
subspace of O(K)* which is an L, (x)-space. Since the canonical embedding
of X* in X™* is a complemented subspace of X™* (the projection being
J*, where J: X — X** iy the canonical embedding of X in X™), the
desired result follows.

We state now without proof the following result which was used
already in Section 5. This result is contained implicitely in Levy [33]
(cf. also Herz [22] and [7]), and in the context of Banach space theory
it seems to appear first in Kadec [26]. .

THEOREM 7.2. Let 1 < p <r < 2. Then for every integer n, Iy is 4so-
metric to o subspace of Lp,(0,1).

COROLLARY 1. Let 1 < p <7 < 2. Then L.(0, 1) is isometric to ¢ sub-
space of L,(0,1).

Proof. Use Corollary 2 to Proposition 7.1 and Theorem 7.2.

Remark. This corollary together with results of Banach and Mazur
[2], Paley [43] and Kadec [26] solve the problem of linear dimension
of L,(u)-spaces (cf. Banach [2]).

COROLLARY 2. Let 1 <p <7 < 2. Then every Z,-space is isomorphic
to a subspace of an Ly,(u)-space for some measure u.
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For p =2, Theorem 7.2 and in fact a more general result can be
proved very easily. We have
ProrosrrioN 7.5. Let 1 <p < oo and let w be an integer. Then 1 is
isometric to a subspace of L,(0,1).
Proof. The case p == co is trivial; s0 we consider only p < oco. Let
8" = {w; wely, lofl = 1} and let m be the normalized (i.e., m(§™) =1
rotation invariant measure on 8”. The integral £1(m, )7 dm (y) elemly
depends only on |j»|. Hence, if

o = [, yPamy)|"  for  wes”,

§
the map taking wely into f, = c;n(w, ) ely(m) is an isometry. Since
Ly(m) is isometric to L,(0,1) (cf. [21, p. 173]) the result follows.

Remark. Proposition 7.5 is a special case of a deep result of Dvo-
retzky [11].

CoROLLARY 1. Let 1 < p < oo. Then every Hilbert space s isomelric
to @ subspace of Ly(u) for o suitable measure u. Fvery separable Hilbert
space is isometric to o subspace of L,(0,1).

From Theorem 7.2 and Proposition 7.5 it is casy to obtain some
inequalities which resemble the inequalities of Section 2. These ineqnal-
ities are probably useful though they are less deep than Theorem 2.1,

PROPOSITION 7.6. Let L < p < oo and let p <7 < 2 ifp <
if p > 2. Let {a1 Diger,...x ond (b3, be real numbers such that

20ry =2

(7.8)

! >0  for every veal {t;},.
j=1

Then for every measure ,u and every vector {wj}j\;l in L,(u)

(7.9)

20 2 s >0
Proof. Assume that (7.8) holds and let » be any measure on a measure
space Q. Let {f;},<L,(R, »). Then for every mwefl,

(@[ =0
By integrating with respect to » we infer that
i E“i,ifiup =0

The desired result follows now from Theorem 7.2
and Proposition 7.5 (if r = 2 and 1 <<p << oo,

r<2)

(it p <
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As an example of an inequality of the form (7.8) we take Hornich’s
inequality [24]. It is easily checked that for every real {#)f,, {;}7:
and u with

m
1 = Zs,

J=1

M:

o

=

the following inequality is valid:

(|t+u|~|m <2(l81+ul—18;[)~|-(n+m 2)lul.

= J=1

Hence, by Proposition 7.6, for every vector {w}i,, {¥;}f—1 and z with

n m
Zwa; = 2%‘

i=1 F=1

in an L,(u)-space with 1 <7 <2 (and, in particular, in a Hilbert space)

n m

D et 2ll—llad) < X (s +21— lal) +

i=1 7=1

(n+m—2) el

We conclude this section by presenting a characterization of sub-
spaces of L,(u)-spaces which is related to Proposition 3.1.

THEOREM 7.3. Let X be a Banach space and let 1 < p, A < oco. Then
there is a measure u and o subspace Y of Ly(u) with d(X, Y) < A if and
only if whenever for every x*eX*

m

(7.10) Dl )P = Yl ()P, (i, {0l e X,
i=1 j=1

then

(r.11) 2 3P = ) ol

1=1 j=1

Proof. Assume firgt that there is a measure x4 and an opera,i,:r?r
T: X = Lp(u) with ||z] < |[T#] < A|jw]| for every @ ¢ X. Let {u;}i_, and {'u,-}.,-=l
be vectors in X such that (7.10) holds and let B be the subspace of X which
they generate. Let ¢ > 0. Since Ly, (p) is an .2’,, 1+e-5Dace, there is & subspace
B of L,(u) containing 7'B such that a(B, l,, < 14-ewithh = dim B < oo.
Hence there is an operator 7': B — I with
wreB.

llol] < |Tall < 2(1+ ) lle]ls
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Let {&)e_, be the basis vectors of (12)*. Then

n

n n b
Pate? 3wl = 3 1Tulf = 3 3 16 (Tuy) P
=1 =1 =1 m1
h o on L om m m
= M Mg )P = Y 31T P s (10
% ; IT* & (ws) | kz gl & ()] ,..21””’” > 1;:”7,,”11_

Since & > 0 was arbitrary, (7.11) holds.
Assume conversely that (7.10) implies (7.11). By Proposition 7.1
we may assume without loss of generality that dimX << co and hence
8% = {o*; @ e X, 0| = 1}

is & compact set. For every weX let f<((S*) be defined by f (0*) = o*(a).
Let Ky = C(8") be the convex hull of the set {f;f = |f,", weX, ]| = 1},
and let

I, = U (oKy— K,).

e>A?

K, i{s a convex set which is disjoint from the negative econe of ¢(X*).
Indeed, if geoK,—K,, 0 > A%, then

gla*) = 1”2795 g™ () P — Zﬂ, l* (o), ot eX*,
7 7

with o, §,

‘ >0, Yai= 38 =1 and |usl] = [los]] = 1 for every i and j.
Since K i

;uﬂ;’”vfu“ =1<o# = Yo a3 u; AP,
4

it f*ollows from our assumption that for at least one x*<S§* we have
g(a%) = 0.

By the {;e.pa,ra.tion theorem and the Riesz representation theorem
there is a positive measure 4 on §* such that for every f, g XK, and every

e> 7,
fod,u >fgd,u.
Hence for «,yeX with |a|| = il =1

(7.12) » s[ o™ (@) du(@*) > [ |o* ()P du(a®).
S’

Lt y" =int{[ |o"(2) " du(a"); o)) = 1). Th i
. =1;. e T § 5 0.
Indeed, if » = 0, then by (7.12) ’ ! mumber 7 % no

[ 1#* @) Pap () = o
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for every weX and this is impossible since
13

Dot (@) >0
h=1

for every @*eS* if {m)5_, is any algebraic basis of X.
The operator T:X — L,(u) defined by Tz = y~'f, satisfies |l
< [Tl < Allw]| for every weX and this concludes the proof.

8. REMARKS, EXAMPLES AND OPEN PROBLEMS

This section contains some problems and a few results and examples
which are related to the material of the preceding sections. Some of the
problems were mentioned already in those sections.

We begin with examples.

Exaveir 8.1. There ewists an %y-space which is not isomorphic to
a complemented subspace of any L,(u)-space.

Let {e;}2; be the usual basis of 7, and let X be the subspace of I,
spanned by the vectors

Ty = bp— Hemt+my), n=1,2,..

This space was discussed in [36]. It was shown there that X is not
isomorphic to a complemented subspace of an IL,(u)-space. The proof
of this result in [36] was based on the fact that there is an operator T
from I, onto I, (0, 1) whose kernel is X. As observed in [36] it is easily
geen that {@;}i>, forms a basis of X. Let

B, =span{w;)i;, n=1,2,...

We shall show that d(B,, ) <2 for every # and hence X is an %, ;-space
for every A > 2. It is easy to see that every B, is spanned also by vectors
{Yi}i-1 of the form

on+t1 2841
Yr=e— 3 Mue with Ae>0and ) Ax =1.
jody Fmtl

Hence for every » and every real {akm1

el < Il}j‘awﬁ]! <2 Yla.
k=1 k=1 k=1

and this proves our assertion.

BxAwern 8.2. Let 1<p #2 <oo. Then the spaces Ly, Ldls,
(1,@5,®...)p and Ly(0,1) are mutually non-isomorphic and all of them
are Zy-spaces. Hence L@l and (1,0LO...)p are examples of Lp-spaces
which are mot isomorphic to Ly(u)-spaces.
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Proof. We show first that @1, is an Z,-space. Let {g:} and {fi}
denote the unit vector bases of I, and I, respectively. For 1 << b < < o0
let Gui (vesp. Fny) denote the spaces spanned g, gy, ..., gi_y (resp. fi,
Jus1y -5 foo1). Let B be a finite-dimensional subspace of 1,&1,. Without
loss of generality we may assume that there are indices n and m guch
that B < Gy,n®Fyn. By using some properties of Rademacher functions
it wag shown in [44] (cf. the proof of Proposition 7 there) that in the

* space Gy ym.n, which is isometric to lf,m, there is a subspace R, such that
A(Bny ') < ap and a projection P, from G, gm., onto R, with 1P|
< by, where a, and b, are constants depending only on p. Let
T =kernel P, and let 1 = (610® Yn)p®Fym. Clearly 7 5 G,
®Fym > B. Let leasz denote d(X,, X,) < a. Then, taking in account
that F, , is isometric to I;* and G i is izometric to l,’Q“h, we have

p
B = (Gl,n@ Ym)p@ Fl,m ~ Gl,n@(ym@pl,m)

dy €,
~ G n®(Yn®Ry,) 2 (@10 ®Cngm pn)p ~ lgzam+n~

Hence d(B, "™ < eyd, ¢p; where ¢,, d, and e, depend only on p (through
b and by). Thu{s 1,®1, is an #,-space. Since the direct sum of Ly 1-Spaces
in the I,-norm ig an %,-space (acutally an %, ;. ~space for every &> 0)
and since

:0L0La...), ~ (LOR)®(1L,®R)®...),
~LOLS... )@l ~ (O ...),®(LELO...),
~((L0L)®(LOL)®.. ),

we infer that (I,®0,®...), is also an Zp-8pace (R denotes the 1-dimensional
space and X, ~ X, denotes d(X,, X,) < 00).

Clearly, neither 7,®1, nor (1.:®15,®...), are isomorphic to I, (because
they contain 1,). It ¥ is a subspace of (1,81,®...), which is isomorphic
to I,, then, as easily seen, B is a complemented subspace and its comple-
ment is again isomorphic to (L.®1,®...),. Hence 1,®1, is not isomorphic
%0 (1,@1,@...),. In order to show that both these spaces are not isomorphic
.to L,(0, .1) we have just to remark that they do not contain subspaces
%somorph%c to 1, for r # 2, p while L,(0, 1) containg, if p < 2, subspaces
Isomorphic to 1. for all p < r < 2. (It P > 2, we pass to the dual spaces
and thus come back to the case p<2)

. (ORle.n;La,rk. Since (1,@1,®...), is an Z,-space, it easily follows that
,,1 /15 2) = the space of Bochner p-integrable functions on (0,1) with
tva ues in I, is an ¥,-space. By Theorem 71, Ly(0,1;1,) is isomorphic
0 a complemented subspace of Ly (0, 1). Since clearly Ly, (0, 1;1,) contains
:heeodmplement.et.l subspace isomorphic to I,(0,1), it follows by using
the ec‘omposmon method (cf. [44]) that L,(0,1) is isomorphic to
»(0,1;%). It can be shown that, for 2 <p < o0, (L,@®...), is not
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isomorphic to any subspace of L,(0,1). Hence, for p # 2, (,0L,®...),
is not an Zy-space.

In Section 7 we gave for spaces which are Zp,1s8paces for every
g> 0 a functional representation. The preceding examples show that
for general .Z,-spaces the situation is more complicated.

ProBLEM 1. Give a funciional representation for gemeral ZLy-spaces.

This problem is quite general and vague. We formulate now some
concrete problems which are essentially contained in Problem 1.

PROBLEM la. Is every & ,-space isomorphic to a space O(K) for a suitable
compact Hausdorff space K%

PrOBLEM 1b. Let X be an Z)-space, 1 < p < oo. Is X* and Ly -space
(' +p =1)% :

PrOBLEM lc. Let X be an Lp-space, 1 < p < oo, and let Y be a com-
plemented subspace of X. Is Y either an £p-space or (isomorphic t0) a Hilbert
space?

Remark. If p =1 or oo and Y infinite-dimensional, ¥ cannot
be a Hilbert space. ’

In view of Proposition 7.3 the solution of Problem. 1 for separable X
will give important information in the general case. For separable X
a more specific version of Problem 1 is: ' )

PrROBLEM 1d. Is every separable infinite-dimensional Zp-space (1 < p
# 2 < oo) isomorphic to one of the four spaces of Example 8.2¢%

Another problem in the separable case is:

PrOBLEM le. Let X be an infinite-dimensional subspace of 1, (1 < p
< o0). Assume that X is isomorphic to a complemented subspace of L, (0, 1).
Is X isomorphic to 1,%

We pass now to problems connected with p-absolutely summing
operators.

ProBLEM 2. Let X and Y be infinite-dimensional Banach spaces such
that every TeB(X, ¥) is absolutely summing. Does it follow that X is an
Zi-space and Y is isomorphic to a Hilbert space?

A partial answer to this problem is Theorem 4.2. 'We make now
some further comments on this problem. We call a pair X, ¥ of Banach
spaces unconditionally trivial (u.t. in symbols) if for every T e«B(X, Y),
4, (T) < oo. It ig clear that if (X, ¥) is w. t., then there is an M < oo
such that a,(T) < M7, and let us set a,(X, ¥) = inf M.

PrROPOSITION 8.1. Let X and Y be infinite-dimensional Banach spaces
such that (X, Y) s u.t. Then

1) (X,1,) is u.t.

2) For every unconditionally convergent series dm; in X, ) |lwill* < oo

3) Huery operator from an L -space into X is 2-absolutely summing.
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Proof. 1) This is an easy consequence of Dvoretzky’s theorem on
spherical sections [11].

2) Let }@; be an unconditionally convergent series in X. Then there
is a constant o such that

Dl (@) < el
i

for every #* eX*. Let {e;}32; be an orthonormal basis in I, and let {Ad2,
be a sequence of reals with Y23 = 1. Choose o] in X* with |lo}|| =1 and
7 (#;) = [y for every i. Define TeB(X,1l,) by
Ty = Zl;m’{(m)et.
Clearly
70 < (DJAlei)" =1 and o= | 25 w)es | > .
Henc-e,
2 Wl < ;‘umn < as(T) sup le*(wi)!
< 001(T) < 003 (X, 1) |71 < 00y (X, o).
Bince thiz inequality holds whenever 2% =1, we infer that

(D) < oan(X, 1) < oo

3) It is clearly enough to show that every T eB(cy, X) is 2-absolutely
summing. Let TeB(¢,, X) and let @, = Te,, where ¢, is the n-th unit

vector in ¢g,n =1,2,... Let & = {&(n)}r.1 e a sequence of elements
in ¢, 50 that

sup (Z[Q(W)P)m =M < o0.
K T
We have to estimate
(2] Dawman)”.

, Choose numbers 4; and functionals #* so that o3| =1,¢=1,2,...,
Zh =1 and
T

(] 2 &stmyan

)" = PRI PN ADLAR

® ©
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Let 8: X —1, be defined by
Se = Y iat(@)f,

where {f:}i=, is an orthonormal basis of I,. Then I8 <1 and hence
@ (8) < a,(X, 1) < oo (by 1)). By the Schwartz inequality

D et ( Ja(man) = 33 1at @) ()
< (D 1emie)” (X120t @) < 1 3 s
n 4 I3 n

S ay(8) M sup M ot (@a)] < ay(X, 1) M|

llz*=1 45
since
*(@n)| = *Tn= T* ¥ = | 7% = ||T]].
“:};g;lw ()] = sup ;’Iw( o)l = sup IT*0"| = |T°] = 7]
Hence

(Z”Té'ilh}llz _ (Z “ ; Ei(n)m;

ie. a(T) < @,(X, 1) ||T|| and this concludes the proof.

Remark. The proof of part 3) can be considered also as a derivation
of Theorem 4.3, for p = 1, from Theorem 4.1.

Problem 2 is closely connected to the following problem of Gro-
thendieck ([15], Chap. IT, p. 47):

Let X and Y be Banach spaces such that every TeB(X, Y)is nuclear.
Is either X or Y of a finite dimension?

Clearly a positive answer to problem 2 would imply a positive answer
to Grothendieck’s problem. By using the theorem of Dvoretzky [11]
it is also easy to see that in order to answer the problem of Grothendieck
it is enough to show that if X is infinite-dimensional and if (X, Y) is
u.t., then Y is isomorphic to a Hilbert space.

ProBrEM 3. Let X and Y be infinite-dimensional Banach spaces such
that every TeB(X, Y) is p-absolutely summing for some fized p yl<p <2,
Does it follow that every T eB(X, Y) is absolutely summing?

By using the proof of Theorem 4.2 it can be shown that if every
TeB(X, Y) is p-absolutely summing (p < 2), then for every normalized
unconditional basis {@;}32, in X or a complemented subspace of X there
is a constant M such that

| 5 e

2)1/2 < au(X, 1) |[I[’|["s%p1 (2 ln*(&)ls)uz;
=1 "%

< (Y lairr)”
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for every real {}i2;. Let us mention in this connection that by [44]
there are for every 1 <p <r <2 a normalized unconditional bagis
{m}izy in I, (or Z,(0,1)) and a sequence of reals {«;};2; such that Yo
converges but D’ |a;|" = oo. [

%

ProBrEM 4. Leét p > 2. Is every operator from an Z.-space to an
Zp-space p-absolutely summing?

The notion of a p-absolutely summing operator can be generalized
a8 follows (ef. [40]). Let 1 <r <p < oo, and loet X and ¥ be Banach
spaces. An operator TeB(X, Y) is said to be (p, »)-absolutely summing
if there is a constant ¢ such that

n n
(3 1) <0 (uﬁlﬁplz @* @), {odae X,u=1,2,..,

=1 =1 i=]

The (p, p)-absolutely summing operators coincide with the p-abso-
Iutely summing operators of Definition 3.2.

Let us observe that Theorem 4.3 can be completed by the following
proposition:

ProrosirroN 8.2. Let 2 < p < co. Them every operator from an
ZLspace 10 an Lp-space is (p, 2)-absolutely summing.

Proof. In the proof of Theorem 4.3 we used the fact that p<2
only by passing from inequality (4.6) to inequality (4.7). Hence we can
use here proof of Theorem 4.3 up to (4.6). Now, since p > 2,

DS (Fasoaf V"> (3 5 S amd )
- (;‘ %’ ‘;’ 2 a“ﬂ, p)ma _ (;’||Tozin”)l“’.

i

Thus, by (4.6),
(DTl < 1Eo|To) < 2Kg)T).

Hence, as in the proof of Theorem 4.3, we infer that
(X 120l < oadtg |
]

which means that 7' ig (p, 2)-absolutely summing.

Recently Kwapied [31] obtained the following generalization of
Theorem 4.1:

Every linear operator from an £,-space into an %,-space is (a(p),1)-
absolutely summing where a(p) = 2p/(3p—2) for 1 <p <2 and a(p)

=2p/(p+2) for 2 <p < oco. We refer the reader to [31] for further
information.
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It follows from Proposition 3.1 that every (p, p)-absolutely summing
operator is weakly compact (cf. [517). This fact suggests the following
problem: .

ProBLEM 5. For which values of p and » (1 <7 < p < oo) is every
(p, 7)-absolutely summing operator weakly compact?

By Orlicz’s theorem (cf. [42]) every operator defined on an .#,-space
is (2,1)-absolutely summing. It is easily seen that a (2, 1)-absolutely
summing operator T<B(X, Y) is (p, #)-absolutely summing if 1 <r» < 2
and p > 27/(2—r). Indeed, let {w;}i_, = X be such that

(310" @) <ol
for every x*eX*. Then

2 lo* (Am:)] < o*||  whenever 2 A <1 Where}— + 1 =1.
- r s

[

Since T' is (2, 1)-absolutely summing,
(X Bz’ < &

for some constant K depending only on 7. This inequality holds when-
ever D' (A)”* =1 and therefore
7

0

DTz < K*  where -i- + i =1,ie. g=2r/2—7).

We have thus seen that if 1 <7 < 2 and p > 2r/(2—7), then there
are non-weakly compact (p,r)-absolutely summing operators. For other
values of (p,”) we do not know the answer to problem 5. Let us remark
that the argument above indicates that the most important case is that
ofr =1and 1 < p < 2. By Theorem 8.1, given below, problem 5 reduces
to the question whether the operator ¢ defined below is (p, r)-absolutely
summing.

PrOBLEM 6. Let oo = p>s>r=1. Can every operator T from
an Ly-space to an Lp-space be factored through an ZLe-space?

The answer is yes, if p > 2 > ». Indeed, by Theorem 5.2 every such
T can be factored through a Hilbert space H. Since H is isomorphic to
a complemented subspace of Ly(u) for some measure u (this is well known
see, e.g. [27]), it follows that 7' can be factored through Lg(u).

Factorization theorems were obtained and applied by Grothendieck
in many different situations (cf. [15] or [17] which is the basis of the
present paper). It seems to us that there are many other areas in Banach
space theory where factorization theorems can be obtained and used.

21 — Studia Mathematica
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We present here one result in such a direction. Let o: I, — I, be the “sum

operator”, namely the operator mapping the sequence {ag®, in I, into
n

the sequence of its partial sums {i_Z;a;};'f;l in 1,,. The operator o is obviously

not weakly compact. We shall show now that it is a universal non-weakly
compact operator in the sense that any non-weakly compact operator
is a factor of o.

TaeoreM 8.1. Let X and Y be Bamach spaces and let l"eB(X , Y).
The operator T is not weakly compact if and only if there ewist operators
8:1, ~X and U: ¥ — 1, such that UTS = o.

Proof. It is clear that if such U and § exist, then T' is not weakly
compact. To prove the converse, assume that T is not v.vea;kly compact
and let W = {y; y = To; || <1}. The subset W of ¥ is bounded* a.n%
its closure is not weakly compact. Hence by [46] there are 6 > 0,y Y
and a basic sequence {w,}m—, in W such that y*(wy) > & for every .
(A sequence is called a basic one if it forms a basis in the subspace it spans.)
Pub ¢, = W[y (wa), n =1,2,..., and let man be such that T, =Yn
and |o,l < 67' (this is possible since yn,ed™" W for every m). Define
8:1, -~ X by .
S{{a)in) = Y anm,  for  {aliel.

=1
Clearly, § is an operator of norm < 6~'. Let B denote the closed

linear subspace of Y spanned by the basic sequence {y,}i.,. Hence every
eeE has a unique representation of the form

€ = Zy;(e)yny
=1

where {yn}o, < B* and y(ym) = 0, and there is a o such that for

every ¢ and n, n
[PXHCIT
=

Since y*(y,) =1, we have

< ollell-

X (@3) = v (e)

%=l

n
Lim Y ¥ (e) =limy*
m 3i(e) =lir |

fore in B. Define U: B — ¢ (¢ denotes the gpace of convergent sequences) by

Ue = { 2 vi O,

Tl

U is bounded since

\Z"ytml =|v ﬁyt(e)m)! < Il <ely*| lel-
i=1 i=1

n
| Yot
t=1
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Regardjngf as a subspace of 1, and using the fact that 1l 18 a 2, -5pace,
we infer that U can be extended to a bounded linear operator U from Y
into ly. For {a;}2,el,

UTS ({a}ily) = U—'Ij (2' a'imi) = ﬁ(j a,,-yi) = {Zn: a‘i}::;z'

=1

This concludes the proof.

Remark. If ¥ is separable, we can replace‘in the theorem the space
lw by ¢. Indeed, by Sobezyk’s theorem [55], there is a projection P from
the span of ¢ v UY onto ¢ and so we could replace U by the operator
PU:Y —e.

We pass now to a “well known” problem which has been already
raised by several authors in the last decade:

PrOBLEM 7. Does there exist a real-valued fumction f(1) such that for
every finite-dimensional Banach space X, d(X,1%) < f(p(X)), where p(X)
is the projection constant of X1

By Corollary 6 to Theorem 6.1, Problem 7 is equivalent to

ProBLEM Ta. Does there ewist a real-valued function g(t) such that
Jor every finite-dimensional Banach space X, 8(X) < g(p(X)), where s(X)
(resp. p(X)) is the symmetry (resp. projection) constant of X ?

A more general problem than problem 7a is

PROBLEM 7b. Does there ewist a real-valued function g(t, A) such that
whenever Y o> X are finite-dimensional Banach spaces for which there
8 a projection of norm < A from Y onto X, then s(X) < g(s(Y), },)"!

An infinite-dimensional analogue of problem 7b is

PROBLEM T7c. Let X be a complemented subspace of the Banach space Y.
Assume that Y has an unconditional basis. Does it follow that also X has
an unconditional basis?

The example of [36] mentioned in the beginning of this section shows
that the answer to Problem 7c is negative if we do not assume that X
is complemented in Y.

Finally, let us introduce a notion which is suggested by Proposition 7.1.
Let X be a Banach space. A Banach gpace Y is said to be of a finite type
not emceeding X (Y -3 X) if for every finite-dimensional subspace B of ¥
and every &> 0 there is a finite-dimensional subspace B of X with
d(B, B) < 1+ e A Banach space Y is said to be an envelope of a Banach
space X if

a) ¥ 3 X.

b) Every Banach Z of density character not exceeding that of Y
and satisfying Z <3 X is isometric to a subspace of Y.
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Corollary 2 to Proposition 7.1 shows that L, (0, 1) is for 1 < p < o
an envelope of I,.

ProBLEM 8. Does every separable Bamach space have o separable en-
velope?
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Some remarks
on (p, g)-absolutely summing operators in 7,-spaces

by

8. KWAPIEN (Warszawa)

A linear operator 4:X — ¥ (X, Y Banach spaces) is said to be
(p, q)-absolutely summing, 1 < p, q < -+oo, if there is a eonstant M such
that for every finite set in X, {z,, #,, ..., #,}, the inequality

n n
(3 14wi?)” < Msup () 1o (i)™
i=1 weKr Y3
holds, where K* is the unit ball of X* — the dual of X.

The definition of a (p, ¢)-absolutely summing operator is due to
Petezyriski and Mitjagin [7] and it generalizes earlier concepts of various
authors. In [3] Grothendieck introduced “semi-intégrale 3 gauche”
operators. They are exactly (1, 1)-absolutely summing operators. In [13]
Saphar considered “Hilbert-Schmidt & gauche” operators in Banach
spaces, which are (2, 2)-absolutely summing operators. In [10] Pietsch
defined “absolut p-summierende Abbildungen”, which are exactly
(p, p)-absolutely summing according to our definition. In this paper we
shall deal with (p, g)-absolutely summing operators in I,-spaces. But all
the results obtained here can be generalized to spaces of .Zp-type (for the
definition see [87). In the first part it is proved that every linear operator
from I, to 1, is (2p/(2p— |p—2[), 1)-absolutely summing. In the second
part we study (p, ¢)-absolutely summing operators in a Hilbert space.

0. Preliminaries. Let (x;).;r be a finite family in a Banach space X,
and K* the unit ball of X*. Let us put:

(Y} it 1<y < oo,
lr(mi’x) — iel

suplles] it 7 = +oo;
iel

woo.
su 2% (@) if 1<r<+o
sup (S ear St

Ula, X] =

sup [ if 7= too.
id
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