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Some remarks
on (p, g)-absolutely summing operators in 7,-spaces

by

8. KWAPIEN (Warszawa)

A linear operator 4:X — ¥ (X, Y Banach spaces) is said to be
(p, q)-absolutely summing, 1 < p, q < -+oo, if there is a eonstant M such
that for every finite set in X, {z,, #,, ..., #,}, the inequality

n n
(3 14wi?)” < Msup () 1o (i)™
i=1 weKr Y3
holds, where K* is the unit ball of X* — the dual of X.

The definition of a (p, ¢)-absolutely summing operator is due to
Petezyriski and Mitjagin [7] and it generalizes earlier concepts of various
authors. In [3] Grothendieck introduced “semi-intégrale 3 gauche”
operators. They are exactly (1, 1)-absolutely summing operators. In [13]
Saphar considered “Hilbert-Schmidt & gauche” operators in Banach
spaces, which are (2, 2)-absolutely summing operators. In [10] Pietsch
defined “absolut p-summierende Abbildungen”, which are exactly
(p, p)-absolutely summing according to our definition. In this paper we
shall deal with (p, g)-absolutely summing operators in I,-spaces. But all
the results obtained here can be generalized to spaces of .Zp-type (for the
definition see [87). In the first part it is proved that every linear operator
from I, to 1, is (2p/(2p— |p—2[), 1)-absolutely summing. In the second
part we study (p, ¢)-absolutely summing operators in a Hilbert space.

0. Preliminaries. Let (x;).;r be a finite family in a Banach space X,
and K* the unit ball of X*. Let us put:

(Y} it 1<y < oo,
lr(mi’x) — iel

suplles] it 7 = +oo;
iel

woo.
su 2% (@) if 1<r<+o
sup (S ear St

Ula, X] =

sup [ if 7= too.
id
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By R we denote the real 1111@ fl<s< —|—oo, then s* = s(s—1)71
if s =1 (resp. § = +oo), then s* = +oo (resp. sf=1), If 1.n a stat-
ement the braces { } are used, then this means that both assertions which
are obtained by replacing in this statement the braces either by square
brackets or by the round ones are true.

The following facts are simple consequences of Iélder’s inequality:

(0.1)  U{m&i, X} <V {ms, X}T (&, BY), 1 <7,8< +oo;

(0.2) Fw, X} = sup Dwé, XY= sup Pml&', X
¥R <1 R <2

(0.3) Ui, X} < P{wi, X} for rz=s.

Definition. A linear operator A: X — Y is (p, q)-absolutely sum-
ming if there is a constant M such that for every finite family (@;);y in X
the inequality

V(de;, Y) < M2, X]
holds. Let m;,,(4) denote the least such constant M. By I7,,(X,Y)
we mean the set of all operators from B(X, Y) for which s, ,(4) < +oo.
In the same way asin [11] it can be proved that I7,,(X, ¥) is a Banach
space with the norm sy, ,(4).

< oo, then Moo (X, ¥) = BX, ¥) and || 4] = me,i(4)

(0.4) If1<
for eoew A in I (X, Y).
(08) If p < g, then II, (X, Y) {0}

(0.6) Ifr<p,s>=q then I, (X, Y) > I (X, Y) and for every 4 in
I (X, X), 7 s(A) 2 705 (A).

If g <sand 1jp—1fr =1[g—1]s, then Il (X, Y) = I1,4(X, Y)

and for every A in IT, (X, Y) 7.0 (A) 2 75 (A).

(0.7)

The proof of (0. 4) and (0 5) i easy and it is om]tted (0.6) is a simple
consequence of (0. 3). So it remains to prove (0.7). Lot 4 ell, Q(A Y).
By (0.1) and (0.2) we have for a finite family (#;)s; in X and A . JdX,T)

Vido;, ¥) = sup lL(A,m (& )
1L Rh<1 ,
< sup P (Aag & T8 R
tepRh< j
< sup (Awilfl”"*”” Y)

<t

(becanse sup I"(1&"7) R <1 and 1p*—1p*=1/p—1[r=1[g—1]s).
g, Rh<1

icm
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But

sup TP (Aawg £V, ¥) < SUD 7wy q(A)- T [m;) &5, X

e, RY)<1 & RY<a
< mp,q(A) 0[5, X sup IO (|g; =i, BY) < 70 o(A)E[;, X]
(&, RY<t
(because g(s/q)* = sq/(s—gq) and

sup PUC-9(jg -0k 1y 7)),
v Rh<1

Thus for every finite family ()., in X
[r (.A.{Uq;, Y)
and this implies (0.7).

(0.8) If AeB(X,, X),Bell, (X, Y), CeB(Y, Xy), then CBA
€Iy o( Xy, ¥1) and mp,o(OBA) < my4(B) (4] 0]
The proof is an immediate consequence of the definition. (0.8) implies

that if X = ¥, then 11, ,(X, ¥) = [T, ,(X, X) is a two-sided ideal in the
algebla B(X, X).

< 7, (A) V[, X

1. (p, g)-absolutely suinming operators in B(l,,1,) and Bl 1y) ¢
Grothendleck [4] (see also Lindenstrauss-Pelezynski [8] for an elementary
treatment) proved that every operator from I, into I, is a “semi- -intégrale
4 gauche”. In our language this means that if 4 eB(l,, 1,), then
(@)

U(Am;, 1) < 94|02, 1],

where ¢ is a universal constant independent of 4 and of the family (;);-

Orlicz theorem [9] states that if 2 2, 18 an unconditionally convergent

N1
series in I,, then

Dlmall < +oo.
Ne=l -

This implies that the identity operator in I, is (2.1)-absolutely
summing. Combining this with (0. 8) we conclude thab f0r everyA eB(Zl, 155)
(vesp. A eB(l,, 1))

(0) B(Aw;, 1) < 0|40 [m, L], - (vesp. 12(Ami, 1.3) < OlA| [o, L),
where 0 i3 a constant independent of 4 and of the family (%) .

The following theorem is a generalization of these results to the

case of l,-spaces, 1 <p < +oo:
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TEEOREM. Lot 1 < p < +oo. Thm

(1.1) B, ) = r(p) 1{ls L), where ““ - _"
(1.2)  Moreover, if r < r(p), then H,l(ll, p) # B(ly, ).

Proof of (1.1). We restrict our attention to the case where 1 < P <2
The proof for 2 <p < +oc i analogous.

Let AeB(ly,1,) and leb (@), # = (@), be a finite family in 1,.
We need to prove the inequality

U®)(Aay, 1) < MU [m5, 1],

where M is a constant which does mnot depend on (). Let, for
kE=1,2, A(e;,) = ag; o = (af)el, (e denotes throughout this paper
the sequenee (Bf); 8k =0if n % and 6f =1 otherwise).

Since 1/r (p) =1/p—3% (by (0.2)), we can write

re (dws, 1) = sup ll(Awilfdlm—llzy 1p)
(&, Rh<1

= sup &MV Awy)

e, RY)<1 %I
(Il I denotes the norm in 7,). Choose for eI, b; such that
b= (fn)ele =15, [Billr <1,

Madly = b, Aoy = 3 ool
k, =1
Hence

'O (4, L) = sup Y 2 |&:P=2

P, RY<1 Tel Enel

Let (&:)iz be a family of real numbers with (&, B') <1, and let ¥
be a natural number. Consider the function

fe) = Z |&1" ¥ sgm g, |64 70~/ sgm o ¥ P o

il kn=1

in the strip 4 < Rez <1
Putting 2z = 1/p we have

f(%) X Z | &= B, o oo

del ksl
Hence

O (4w, 1,) < sup sup f(1/p).
N e, R
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The function f(2) is analytic and bounded in the strip } < Rez < 1.
If Re# =4 and Imz =1, then

If (&) =
n 1

= 3 = —
'2 Z & sgn £, |63 = BP0 T - sgn ok ok V= ke,

iel kn=1
N
’ZI: 2 |”/2(1’ 1)77 Ianlpﬁ i
'Il

where ¢, and ¢7n are real numbers with Jan| 1 and ]n,’il < 1. Hence, by
Schwartz inequality,

T <2 Z{Z (2 i [ w%)(sﬁ. lﬂﬁ;l”/ﬁ(p—n)’

el n=1

2 [2 (3 o] [Z ki 3P0

el n=1 k=1

<2 Z[513 ]

Gl n=1 k=1

(because ||byll < 1, ie. 2 IBEPIe=1 < 7).

Deﬁn’? an operator C ll — 1l by putting C’(ek) = ¢, Where ¢; = (y,,),
yno=qr|akP? it k,n <N, and otherwise y: = 0. ¢ is a well defined
bounded linear operator, because

11} = sup eyl < sup Q13" < sup g < pa g,

Now returning to the estimation of f(2) for Rez = } we obtain

If()] <2 2[2(2)};0’@) ]1/2 - 22”0%”2 = 31 (Cm;, 1,).

el M)
By (G)

(0w, 1) < 20|10 [a5, 1,] < & JAIPPE [, 1,].
Thus

(@) <29 AP0 (2, 1,].

@ Using inequality (0) we can prove analogously that if Rez =1,
en

(@) <20]4|PV [x4, 1,].
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Now, let us make use of the following lemma ([1], Chap. VI, § 10,
Theorem. 3).

LeMumA. Let f(z) be an analytic and bounded function in a strip o <

< Rez
< B. If |f(2)l < C on the straight lines Rez = o and Rez = B, thefn, G
< O on the whole strip.

By this lemma we obtain:

{f(—;-)’ < 2max (%A, O)41P) [, 1,].

G

< 2max (9|1 4|P", 0]l A|°) (2, 1],

This together with

U (Aw;, 1,) <sup sup

N g RY<1

implies the inequality
U A, 1,)

ie.
TR (4) < 2max(¥ ”AHP/

This completes the proof of (1.1).

Proof of 1.2. At first we are going to prove the cage 1 <p <
The proof of this case is due to Petezynski. Let f,, fo. ..., f,w be the firgt 2 "N
functions of the orthonormal Walsh system on. the mtelval [o, 1] (zee [6]).
For n=1,2,...,2%,¢=1,2,..., ,f,,)maconstsmt @, on the
interval ((z— /zN 1/2") where wj, = 1. Let us put o) = 0 for n> 2~
ori > 2" Letw; = (o) andlet ] = {1,2, ..., 2%}, If the injection operator
of I, into 1, is (r, 1)-absolutely summing, then there is a congtant M which
does not depend on N such that

U(w;, lp)

% OIP).

< MU [@,0,].
But
N N

sup 3| Y ol

Moo 521 ' A1

= sup zNﬂzgnfn(t)'dt»

IEpMloasl 0

[ Seofa”

Nl

3 [5347 ll] =

< sup
IEn)lloa<sl

= gup = 2% . 9"k,

||(5n)um<1 2N[ 2 & ]

On the other hand,

PLANPY
Ulm, 1) — [2(2 Iwhlp)r/p]m = oNin gNir_
i=1 f=1

icm°®
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So we have 2V/2-2%/" < M2V -2V for every W, but this is impossible
unless
2p
3p—2

11 1
7+5<1+3, ie. 1> =r(p).

Now let 2 <p < +oo. Define an operator 4y:1, —1, by putting
Ax(ex) = ax, where o, = (w}) and o} are as before. It is not difficult
to prove that if B(l, 1) = II,,(l,, ly), then there is a constant I such
that for every AeB(l, 1)

M Al = mp,q(4).
Thus for every N,

U(Aymi, bp) < M| Ax|E (o, 1)

But

oN
Ay, b) = ( X I4wailp )"

—[2( S| Sonot

i=1 N=1 k=1

2N o
>[5 St

<2¥-2V2 angd

I
= NI o¥,

On the other hand, I'[%;, ;] <

oV
- — no\UP _ oN/p
lal = spplay = sup( Y1of)"™ = 2.
Hence 2772V < M -2%P.2Y .92 for every N, but this is impossible
unless 1/r <1/p+1, ie. .
5 P
p+2
Thus the proof of the theorem is completed.
Remarks. 1. Slightly improving the proof of (1.1), one can show that

=7(p).

oy (4) < G- 0P 4

2. For the special case of p =4 and the injection operator, (1.1)
was proved by Littlewood [5].

3. The following result is proved in [8], p. 289 and p. 320:

TI{DOREM If 1 <p < oo, then Blw, lp) = ),z (b s la)s
7(p) = max(2, p).

where
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2. (p, q)-absolutely summing operators in a Hilbert space. Tt
1 <7 < +o0. By &, we mean the class of all operators 4 €B(l,,1,) which
can be decomposed into a product A = UBV, where V is a unitary opera.
tor, U is an isometric operator on the image of B (i.e. [[UBa| = | Ba|)
for wel,) and B is an operator for which B((&,)) = (14,[*"£,) and (An)
is a fixed sequence from ;.

The next result is due to Mitjagin (unpublished) except 2.4, which
ig due to Pietsch [11] and Pelezyndski [10].

THEOREM. Let 1 < ¢ <p < +oo.

21. If 1/q—1[p > % or p = oo, then ”p,(l(lﬂy ly) = B(ly, 1,).

22. If ¢<2 and 1jg—1/p < 3}, then IT,,(ly, 1,) = S, where 1fr
=1/p—1/g+%.

23. If ¢ =2, then II,,(1,,1,) > S,, where 1fr = q/2p.

24. If q = p, then II,4(1y, 1) = S,.

Proof. By Orlicz theorem the identity operator in 1y is (2, 1)-absolu-
tely summing. Hence by (0.8) all operators from B(ly, 1,) are (2, 1)-absolu-
tely summing. Thus to obtain (2.1), it is enough to apply (0.4), (0.6) and
(0.7). Now we shall prove the inclusion 11, ,(ls, 1) © G, in item 2.2 and
simultaneously in item 2.3. Let AeC,, 1)y = 1/p—1/g+% (vesp. 1jr
= ¢/2p in item 2.3) and let 4 = UBYV be a decomposition of 4 as in
the definition of &,. By (0.8) it i enough to prove that Bell, 4 (15, 1,).
Consider operators By:l, -1, (0 <8 < 1) defined in the following way:
By((&n)) = (12" 2,); By is an operator of the Hilbert-Schmidt type.
But every Hilbert-Schmidt operator is (1,1)-absolutely summing (see
(12], p. 42); this, by (0.7), implies that B, 18 (g, g)-absolutely summing.
By 2.1, already proved, B, is (2g/(2—q), q}-absolutely summing (resp.
(oo, g)-absolutely summing). Thus there is & constant M such that for
every finite family (w;);.; in I, the inequalities

V(Bypmiy ) < M [, 1],
P (Bowi, b) < MV [a, ]
hold, where p = 2¢/(2—¢) (vesp. p = +oo).

Let ()5 be a finite family in 7,, o, = (¢b). Let us choose a family
(#3)iex such that y; = (83), Iyl <1,

0

WBaill = 1Byrwil] = By, yi> = 310 1621 12al"

N==l
Tl/p = ljg+1j/r—% (resp. 1/p = 2/gr), then

P(Bai, 1) = sup U (B | £M7°; 1,)
¢, RY<1

= sup SBya (&1 = sup

00
JUBY 2 e G pt
o & 20 DI 2 0 163

(g, RY<1 167 71

@
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Congider the function

N
F(s) = D) DTIEPP03, 1% ok 1

i€l m=1

N
for 0 < s < } (resp. f(s) = g glffill‘ﬂ’“"lhl“Jal.l 18nl) Where ()7 is a family

of real numbers with I'(&;, R') <1, N is a natural number and (An),
(a4), (Bn) are as before. For s = 0, and s = } (by Holder inequality)
f(0) < Z &[*= 11| Byayl| < Pae-9(B,a;, lo) < MV [wi, 1]
el
(resp. f(0) <.ZI' [&il 1Bowsl] < U°(Bowz, 1) < MU [, 1,]),
1€

fd) < Z &P Byytil] < Uy(Byjatiy 1) < MB[a;, ]
iel
Now the following lemma will be useful:
LeMMA. The function )

. ;
fl&) = Xlad il’, —o0<s<oo
k=1

(&, 7 are real numbers) is conves; thus if a < b, then
sup f(s) = max (f(a), £(b)).
a<ce<ch

By this lemma we easily conclude that

f(%) < max(f(0), f(3) < MV @i, 1,].

But
sup sup f(i) > P (Bw;, 1y).
§odgRh<t \7
Thus 1 (Ba;, 1) < M¥[w;, 1], i.e. Bell,(ly,1,). This proves 2.3
and one part of 2.2. To complete the proof of 2.2, it remains to show the
inclusion &, > IT, (15, 1) for ¢ <2 and 1/r =1/p—1/g+3>0. Tt is
easy to verify that the identity operator is not (p, ¢)-absolutely summing
in this case. Since IT,,(l,, 1)) is a two-sided ideal, Calkin’s theorem (see
[2], p. 89) implies that every (p, g)-absolutely summing operator is com-
pact. But if 4 iy compact, then 4 = UBYV, where V is a unitary operator,
U is an isometric operator on the image of B and B is an operator for
which B((£,)) = (1,&,) and (4,)ec, (see [2]). Since 4 is (p, g)-absolutely
summing (resp. A «S,) is and only if B is (p, ¢)-absolutely summing (resp.
BcG,), it is enough to prove that if Bell, (L, ly), 1/r = 1/p—1/g+}
and g <2, then

(ST < +oo.
G=1


GUEST


336 8. Kwapien
So let Bellyy(lyy Io), I ={1,2,..., N}. Then (e; denotes as before
the i-th unit vector)

N
(3 )" =r i, &

=1

sup  U(L]&M™, BY <

sup  P(A &M B (18 BY
e RY<1

1, BY<1

sup  P(Be; &' 1) <
15, )<t

< Sup 7,0 (B) I 6] &N 1,

e, Ry

Spg(B) sup  Pleg, LI CA (16,12 BY < o, (B).
¢, RY<t

‘We have useci the equalities

1 1 1 1 2\* - 2¢
I, “(?)ﬁ:g, Plos la] =1,
Thus

N |
(31" < pa(B);

=1
his implies that (4,)el,, whence BeS,.

2.4 was proved by Pelozyriski [10] and Pietsch [11]. This completes
the proof of the theorem.

ContmerURE. If 2 < ¢ <p < +oo, then ITy,(ly,1,) = Soppa-

I wish to thank Professor A. Pelczyfski for suggestions the topic
and for his help and advices.
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