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The subspace M is doubly invariant. Indeed, it

m = 2 Temg  with  ngelN,

8eS
we infer by (3.6) that
T,m = Zl’sgnselll, T%m = 2 T myel.

SeS al=-a“‘]8

Since M ~ N = N, = {0}, we obtain H = M and thuy N =N,
ig a 1-dimensional space. This completes the proof of the theorem.

COROLLARY (Wermer). An isometric non-unitary operator 1I' on a Hil-
bert space H is unitarily equivalent to the tramslation operator on H* if and
only if T has mo proper doubly invariant subspaces.
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On multipliers preserving convergence
of trigonometric series almost everywhere

by

[MARY WEISS| and ANTONI ZYGMUND (Chicago)

. . . 3 fe ¥
L. Consider a trigonometric series D ¢,6™, which in the case
—00

C.n =70, can also be written in the form

oo

1 <F
£ ay—+ Z (ancosnb-+b,sinnb) = ZA"(O)’
n=1 [}
say. Its conjugate is

400 0o hd
2 (—isignn)e,e™ = 2 (@SN 00— by cOsMO) = ZB,,(O),
—00 1 0

say (with By = 0).

Omne of the topics of the theory of trigonometric series that enjoyed
popularity a few decades ago was the problem of the behavior (convergence
or summability, at individual points or almost everywhere) of the geries
2 4.(8)n, 3B, (6)n", where a is a constant. The problem has obvious
connections with differentiability or integrability (in general, of fractional
order) of functions, and « was almost exclusively real. In this note we
consider complex values of o, a = g4y, but in view of the fact that
the case of real o has been exhaustively dealt with we limit ourselves
to o purely imaginary, a = iy, which shows some novel features. The
problem we are discussing here arose out of some concrete applications but
the latter are not considered here.

The main result of the paper is the following

o0
THEOREM. If the series ) A,(6) is summable (C, %), k> —1, at
N=0 oo
each point of a set B of positive measure, then the series ) A,(6) ¥ gs
[]
summable (C, k) almost everywhere in . In particular, the convergence of

S A,(0) in B implies the convergence of 3 A, (0)n™ almost everywhere in B.
[]
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Here y is a real number distinct from 0. Without_ loss of gencml}ty
we may assume, wherever needed, that a, = 0, In \Vl}l(‘h case suco%ftlYe
termwise integrations of the series S An(8) lead again to trigonometric
series. We also assume that the a’s and b’s are real numbers.

2. The proof which follows systematically uses the notion of .di.ff'er-
entia,l;i]ity in the metric I, 1 <p < oo, and we recall th(? definition
(for more details see [1]). We say that the function f(6), (1@f1n@f1 ahngst
everywhere in the neighborhood of the point 6y, has an m-th differential
at 8,, in LP, if there is a polynomial

m tj
Pty = 2 o
= 7
of degree < m such that
h
(2.1) (h"” f|f(00+t)—P(t)|”dt )1/” = o™ (h—0).
~h
The polynomial P(f) is called the m-th differential (in L”) of ant 0y,
and the number a,, is the m-th derivative (in L¥) of f ot 6,. The 'dlffelen—
fials in IP have a number of properties missing in the classical case
p = oo (when f(6+1) = P(t)+o(t™) and for this reason are both in-
teresting and useful to consider. )

Theg proof our theorem is based on a few lemmas which we now state.

LevMA 1. If a trigonometric series DAn(0) isv summble (.O, k)',
k=0,1,...,to sum s(0) in a set B of positive measure (thus, n particular,
||+ b = 0(n%)), then the function G(0) obtained by integrating Zf‘ln({))
termwise k-+1 times has almost everywhere in B a (k+1)-st derivative in
the metric L7, p < oo, equal to s(0).

Thig lemma is known (see [4]) and we take it for granted here. .

Lemva 2. Suppose that a trigonometric series D A4,(0) is the .Foum.r
series of a function F(0)eIP, 1 <p < oo, and that r ha.s an m-ﬂ'tr deri-
vative in IP at the point 6, equal to s. Then the series oblained by differen-
tiating 3 A, (0) termwise m times is summable (C, m+4-2) at 0, to sum 8,

This lemma holds even with (C, m-2) replaced bY (C, m-e), v > 0,
but the index of summability is of no importance and, in the form stated,
the lemma is a simple corollary of known results.. o

.For, in the first place, since differentiability in IP clearly immplies
differentiability in L7t if p, < p, we may assume that P = 1. Thus we
have (2.1) with f replaced by F and p = 1. Omitting the sign of absoll.lte
value we see that the indefinite integral G of ¥ has an (m--1)-st deriv-
ative at 6, equal to s, in the classical sense. But then.,.by a vcry well
known result (see [6y], P. 60) the series obtained by differentiating the

©
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Fourier series of G termwise m--1 times — or what is the same thing
differentiating the Fourier series of F termwise m times — is summable
(Cym+141) = (C,m42) to s, and this is our lemma 2.

Levma 3. If F(8) ~ FA,(0), FeI?, 1 < P < oo, then 3 A,(8)n" is
the Fourier series of a function F (6) which is also in LP. Moreover, if B
has an m-th derivative in IP at each point of a set E of positive measure,
then B has an m-th derivative in LP almost everywhere in B.

The first part of this lemma is well ﬁnown (see [617], p. 232, Example;
another proof is contained implicitly in [2]). To the proof of the second

part we return in the next section. Here we only observe that we require p
to be strictly greater than 1.

o
Leyna 4. If o (numerical) series Xy, is summable (O, k), k> —1,

o0 . 0

and the series 3’ u,n' (y real) is Abel summable, then it is also summable
0

(C, k).

The proof of lemma 3 is given in §§ 3, 4 below. That of lemma 4 is
briefly discussed in § 5. We shall now deduce our theorem from the lemmas
above.

Suppose that }'4,(x), with ¢, = 0, is summable (Cy k), k> —1,
at each point of a set B, |E| > 0; in particular, it is summable (C, k),
where %’ i the least integer > . By lemma 1, the sum G(6) of the series
obtained by integrating D' 4,(6) termwise &'-1 times has almost every-
where in B a (k'+-1)-st derivative, in the metric IP, p < co. Suppose, e.g.
that %41 is even, so that

— (1) +1) Bl
G(0) = (=1 314, () nF 2,
By lemma 3, the function
G(6) = (=1 N g (6)nF

has a (k'+1)-st derivative in I?, 1 < p < oo, at almost all points of F.
By lemma 2, the last series differentiated termwise %'4-1 times, that
is the series >4, ( 9)n®, is summable (C » k'-+3) almost everywhere in E;
in particular, it is Abel summable almost everywhere in . Finally, by
lemma 4, at each point where 34,( 0)n™ is Abel summable, and so almost
everywhere in F, it is summable (C, k). This completes the proof of the
theorem provided we supply the proofs of lemmas 3 and 4.

3. In this and next sections we prove lemma 3, which is of indepen-
dent. interest, for general 1 < p << co. It should however be observed
that for the proof of theorem 1 we need only some fixed p,e.g p =2,
in which case the fact that }.A4,(0)n” is, like 3'4,(0), in I? is obvious.

Studia Mathematica, t. XXX, z. 1 8
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The proof of lemma 3 resembles that of the fact that if a function
has an m-th derivative in I?, 1 < p < oo, at each point of a set I, then
its Hilbert transform (conjugate fu_nctmn) has the same property almost
everywhere in Z (see [1], theorems 6, 7). The main idea is in both cases
the same but unfortunately there is enough formal difference, of a not
completely trivial nature, not to leave it to the reader to take care of
the required changes. Thus we must go through certain details of com-

putation.
Let O% be the Cesaro numbers defined by the generating function

3

2 et = (1—2)" "
=0
We have 0%~ n*/I'(a+1) (a5 —1, —2,...), B> oo, and in par-
ticular ) )
Oy =~ n[I'(iy+1).

We first prove lemma 3 with factors n” replaced by Ci and we shall
see later that this easily leads to lemma 3 as stated.

Suppose therefore that F ~ Y A, (0)I¥, 1 < p < oo, that F has an
m-th derivative in I” at each point of a set B, |E| > 0. It is known (see [1],
theorems 9, 10) that given any &> 0 we can find a closed set P < X,
|B—P| < ¢, and a decomposition

F =G+H,
where ¢ and H are again periodic, G is in €™ and 6¥)(0), j = 0,1, ..., m,
coincides with the j-th derivative of F (in IF); thus the derivatives of

order j = 0,1,...,m of H are all 0 on P. Moreover,
(h-‘ fh|ﬂ(6+t)v’dt)”” < MRE™  (§<P)
-k
with M independent of 6 and
(3.1) ' (h—l fh lH(G—i—t)]”dt)l’” = o(k™)  (h->0)
—h
uniformly in 6eP. In particnlar, also
-t fh]H(0+t)|dt =o(l™) (h-+0,0eP).

-3

Basic for the proof of theorem 1 is also the fact (see [1], theorem 10)
that
(3.2) f i 0[M+1 it < oo

for almost all 0eP.

icm
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If we write

F(0) ~ > 4,(0)0%,
n=0

then F = G+ H. Since the multipliers ¢% preserve the class L%, 1 < p < oo
(see [617], p. 232, theorem 4.14), it is clear that G(8) has almost everywhere

an m-th derivative in I” and it is enough to prove that H (f) has an
m-th derivative in I” almost everywhere in P.

Let
K(r,1) =i“|— S’O’% cosnt_i{ li“_i + 1 S ._1}'
2 (A—re?y =™ " (1—pelt¥

Clearly, for almost all 6, " (6) is the imit of the Abel means of its
Fourier series, i.e.,

(3.3) H(6) = hmi H(G—[—t)K(r t)dt
r—1 T
1
= lim = f[H(B-{-t)—E(G)]K(r, Hat+H(6).

r—>l T
-7

On the other hand, it is well known (see [2]) that if f(@) eI’ (—oo,
+ 00), 1 <p < oo, then the expression

r+1)—
9(@) = ff e

)dHlf ﬂ;f:f) s +f

1

(3.4)

exists almost everywhere (clearly, it is only the existence of f that re-
o0 0

requires proof; the integral [ converges absolutely and uniformly);
i .

moreover, if 1 < p << oo, we have

(3.3) < Ay |fllp s

where 4, depends on p only. All these facts remain essentia]_ly unchanged

llglle <

if in the definition of g(x) instead of the decomposition f + f we use
f + f 0 < w < oo, the constant A, in (3.5) remalnmg the same (this
fo]lows by a change of variable). Also, each integral f and f satisfies

an inequality analogous to (3.5).
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Using these facts it is easy to deduce from (3.3) that for periodic
functions H(0) that are merely integrable we have

(3.6) 12(0):-1; f[ (0 1)—H(6) F (1, 1) dt-+H (0)
=1 f _H(O)]K (L, i— 6)dt-+H(0),
T —_TT
where

. 1 1 n
K(1,1) = 11_1311]( (ry1) = 5{(1—0“)1”" + (1— B+ '_J‘J'a

and that if HeI?, 1 < p < oo, then

1Hlp < AplIElp,
where the norms are over the interval (0, 2m).

For example, in order to deduce (3.6) from (3.3) it is enough to
verify that |K(r,t)| < A/6, where 6 = 1—r and that |K(r, t)—IK(1,1)|
< Adfe2 for § < |t| <, so that the expression equal to K (r, ?) for |f] <6
and equal to K(r,?)—XK(1,1) for 6 < |t| <= is majorized by a fixed
multiple of the Poisson kernel.

‘We also add that since K (f) is infinitely differentiable for ¢ =+ 0,
the second integral (3.6) shows that we do not affeet the differentiability
properties of H at the point & if we modify H away from 6.

4. Tf p(z) denotes the function {(1— ¢*)/iz}""7, regular for |2| < 2=,
we have

1] o) p(—1)

K(1,1) =5{W (—_Wm}f

and taking a sufficiently large number of terms of the Taylor series of ¢
we easily see that the problem reduces to showing that the functions

(t— 0"

ml-{ iy oA

(4.1) f LEL()—H(0)) i
have m-th derivatives in L? at almost all points of P; the exponent &
here takes a finite number of values 0 ,1, 2, ... We may restrict ourselves
to the first integral (4.1). We shall discuss only the case & = 0 which
i, in some sense, the most subtle (it corresponds to the constant term
of the Taylor development of ¢); for other values of % the proof is parallel.

]
T, j [H (1) —H (6)]

icm
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Thus we will prove that the function

(42) 8(6) f[H(t —H(0)

has an m-th derivative in I” at almost all points of P.
Let us consider any point 6,¢P at which the integral (3.2) is finite.
We shall prove that S has an m-th derivative in I” at 6 = 0,. Assume,

as We may, that 6, = 0. We fix a small h > 0 and we consider the function
S8(6) in the interval (—h, k). We write

8-3h
8(6) = = d+ dt—H (0 o
J ( 1 ¥4 6+:!7‘ (t 1—}-17 ( )9—,:1; (t— 6)1+,[y
= S1+S2+Say
say. Since, for [8] < h,
3h 3h
$(0) = [ {H (0= B0} at = [ [H {1+ 0)—H ()17 at,
U b

where H,(t) = H(t) for |t| < 4h <1 and H,(t) = 0 elsewhere, an appli-
cation of (3.3) (and the 1emarks that follow it) shows that

R +o0 oo
@3) (w7 [18,Paep < (bt [ 18:7d) "> < 4, (B } |H,Pas)'”
—h —00 —00
h
< A4, (h" f [HP @R’ — o (1™,

—4h

by (3.1). Also, since |S4(0)] < 4,|H(6),

13
f |Sa(IJd0)l/p — O(hm).

—k

< 0+ 3h

(4.4) (h‘l

Now observe that 24 < 4h, so that

f H(t T mwa
1-rw ( (t— 9)1+1y =

2h

Sy +8s .

Clearly,
n3

(4.5) [8,a] < h“f |H (®)]dt = o(h™).
0
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On the other hand,

(4:.6) SZ 1 =t

l+'w

f _HW
- [0 { () <ol

i [ JE()
2 f 7+1+1ydt+0(‘0| i 1'1+2 at).

§=0 2h 2h

. . T H ()
Obgerve now that, by hypothesis, the integral f = dt is
[]

finite, so that
[IH@E 2t = o (™)
2h

and the last term on the right of o(A™), also, if j =0,1,...,m,

b o m
ft1+1+w ! J =f _I_O(hm—d)

2k 0

as easily seen by integration by parts and applying (3.1). Thus 8,,,(6)
is a fixed polynomial of degree < m in @ plus an error term o (x™). Collec-
ting results we obtain that §(6) does indeed have an m- -th derivative
in I at 6 = 0.

We have thus proved lemma 3 with factors n™ replaced by C¥. But
the result holds also for the factors (}“"“’, where s is any positive integer.
For the new generating function is

- (12
ZGW W= 1 (I—a)7T

N=0
and it is clear that the argument above holds for kernels #//(1— By,
j=0,1,2,... Since the asymptotic formula

07 = 0¥ Yo+ Iqgn™ ...+ den ™+ 0 (1)}
leads to . ' '
' = O 4 i 07 - A O+ O (™)

taking s sufficiently large we are easily led to lemma 3 as stated.
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5. It remains to consider lemma 4. We do not give a proof here since
it is implicitly contained in paper [5] (Satz 2, p. 317). It is shown there

that if the Cesiro means of of a series 2 Uy, satisfy the condition =0 (2en),
[

where u, is a sequence monotonically tending to - oo and such that

1 1 , ,
A = o(n,ﬂn) (j=0,1,...,%),
k" being the least integer >k, then >u./u, is either summable (C, k)
or else is not Abel summable. Actually the proof without any change
gives the following result: if {1/u,} is & bounded sequence satisfying
A(Lpy) = 0w for j=0,1,...,% and D, is summable (C, &),
then Yu,/un is also sn.mmable (Cr k), provided it is Abel summable.
The result clearly applies in the case when u, = n~"" (# > 0).
Since the case ¥ = 0 of theorem 1 is of special interest, it may be
worth pointing out that in this case lemma 4 is immediate. For it is very

well known that if a series 3 v, is Abel summable and
0

(5.1) Zw, = o(n),

»=0
then Xw, converges. But (5.1) is immediate, by summation by parts,
it v, = u,»” and Yu, converges.

6. The theorem of this paper has connection with some recent results
of E. M. Stein. As he pointed out to us, the methods of his paper [3]
give the following theorem:

If a funetion

F(z) = f: 2"
[

analytic in |2| << 1 has a non-tangential limit at each point of a set B
situated on [¢) =1, then the function

00
G(z) = chn"”’z"
0

has a non-tangential limit almost everywhere in E.
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Absolute continuity of vector-valued
finitely additive set functions, I
by

W. ORLICZ (Poznah)

1. Throughout this paper we shall use the following notations and
notions. X dcnotes a real Banach space and Z its conjugate space, &
stands for a funetional from E. By &, we denote a set of functionals from
E such that [[&]] <1 and sup|&(w)| > cliz] for some ¢ > 0, where the
supremum is taken over all £ in 5,. The sets £, are called fundamental.
X is called weakly sequentially compact with respect to =, if for every
sequence &,, where £,¢Z,, there exists a subsequence &a; () converging
for any xeX. It is a simple matter to prove that a separable space X
is weakly sequentially compact with respect to 5, = {&: ||&]] < 1}. There
exist also non-separable spaces weakly sequentially compact with respect
to some Z,. As an example of such kind of spaces one can take the space
A, of real-valued functions f(-), bounded on <a, b, having for any te(a, b)
the right- and left-hand limit and the limits f(a+), f(b—). Here the
norm for fed, is defined as sul}) |f(#)], and for 5, one can take the set

<ab>

of all functionals of the form
v41/n

@) =+n [ Fiya,

where a <u,v+1/n <b,n=1,2,... By ¥ we will denote an abstract
set of points (elements), the symbol e,4 or e,) will stand for a sequence
of sets e, in F such that ¢ c e, = ... or e; o ¢, > ... respectively.

oo

o0
e, be Or e de means ey, ¢ = () &,, OT e,1, e = | e, respectively.
1 1

Besides the notation given before we shall use throughout the paper
the letter E to denote the class of zero-one sequences = = {g}, that is
to say with terms ¢; = 1, 0. If eis a set of points from ¥, then ¢;a means «
if & = 1, and the empty set if ¢; = 0. For a sequence of sets a; the symbol
a(e) or a'(s) denote the set {J &aq, or (U ea;, respectively. &,%, ...

1 i=n

always denotes a ring or an algebra of subsets from E. The class & is
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