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Sobolev inequalities and extension theorems
for functions with certain I?-derivatives
by
ROBERT 8. STRICHARTZ (Cambridge, Mass.)

1. Introduction. We wish to generalize some theorems about the
Sobolev spaces

IR(Q) = {fIP(Q) : DfeI?(Q) for all |of <k},

£ anopen set in R™ and the derivatives exigting in the distribution sense,
toikpaces of functions having only certain specified derivatives in L?(Q).
"To state the theorems we need some conditions on 2 which we now define.

Definition 1. £ is said to satisfy the weak cone condition if there
exists a finite open covering Uy, ..., Uy of 2 and finite cones Viy-er VN
such that

(1.1) yj-\-UyE.Q, j:‘:l,...,‘N.

Q iy said to satisfy the strong cone condition if there exists a finite
open covering U, ..., Uy of 0Q with positive Lcbesgue number (ie.,
there exists & > 0 such that the e-ball about each point in 90 is en-
tirely contained in some U;) and finite cones y,..., yy such that
(1.2) (U A Q) 0

We can now state the three theorems we will generalize. We assume
throughout 1 << p < oo,

Trmorem 1 (Calderén [2]). Let Q satisfy the strong come condition.
Then for each k there ewists o bounded linear emtension operator &:
L3 (Q) - LR(R").

By extension operator we mean &,f = f on Q.

TuroreM 2 (Sobolev). Let Q2 satisfy the weak cone condition. Then
we have the continwous inclusions
1 k—j

1 1
P < LY i —z == 0
() Lp(Q) c LiH(Q)  of 7 (=D » >0,
(b) RO o) i j<i-t
2 € bll) Y n p
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where (b) means that each function in I2(Q) can be modified on o set of
measure zero so that it is j-times continuously differentiable and it, together
with its derivatives of order <j are bounded and tend to zero as & tends to
infinity in .

PHEOREM 3 (Smith). Let 2 be bounded and satisfy the weak cone
condition. If fe2'(2) and (8)0uy)"f e IP(Q) for j =1, ..., n, then feli(£)

and .
e < 0 3 () 7, +1)-

=1

Proofs may be found in [1], [2] and [9]. Although there exist ver-
sions of the above theorems for I' and I%®, our methods are only valid
in the range 1 <p < oo.

Tn Section 2 we define our spaces and prove generalizations of The-
orems 1, 2 and 3. The proofs are based on a generalization of the Sobolev
representation formula (Lemma 1) and use estimates for singular integrals
with mixed homogeneity givenin [4]. In Section 3 we present some counter-
examples to show that the conditions on £ cannot be ecompletely relaxed.
In Section 4 we apply the results to Zf(£2) to obtain an extension theorem
with loss of smoothness if £ has a rough boundary. In Section 5 we give
applications to partial differential equations, including an extension
theorem for solutions of certain systems of homogeneous constant coeffi-
cient linear equations.

2. Let us fix once and for all a basis (#,...,,) in R", so that if

(Y15 -++, Yu) 18 any other basis we have

v = > Lya;
j=1
for some real, mon-singular (n X n)-matrix L. If 8 = (B, ..., fn) is an
n-tuple of non-negative integers, we will denote by D{ the differential
operator (8/dy,)"...(0/0y,) .

Definition 2. Let a denote a sequence a(l),..., a(m) of n-tuples
of non-negative mtegers a(k) = {a,(k), ..., an(k)}, and let L denote a se-
quence L(1),...,L(m) of real, non- smgular (n x n)-matrices. We denote
by L% .(9) the space of all functions feI”(£2) such that

Dif = DY ... DEmf 17 ()
for all § such that '

ﬂy (k) _

2.1
(2.1) P

E=1,...,m
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(by convention 0/0 = 0),
sense.
We equip L%,

the derivatives existing in the distribution

(£2) with a norm, denoted by | |z, defined by

ooz = D 1Dl

the sum extending over all 8 satisfying (1). If each L(%) is the identity
matrix, we will just write I%(Q).

ProPOSITION 1. L2 (Q) 48 complete. Any bounded linear operator
1: LP(R") — IP(R") which commutes with translations is also bounded:
Lin(BY) ~ Lgn(RY).

Proof. The proof ig an exercise in distribution theory, which we
leave to the reader. )

Let a = (ay,..., a,) now be an n-tuple of positive integers. For simpli-
city of notation we set a; = 1/o; and @ = (ay, ..., a,). A non-empty,
open set I' = B* will be called an a-come if zel' implies

r = (tMmy, ..., t"x,) el for all t>0.
A finite a-come is the intersection of an a-cone with a ball about

the origin. A function ¢ defined on an a-cone I' is called a-homogeneous
of degree s if

(2.2) g(t*z) = t'g(w).
Let 2 denote the unit sphere. Following [4] we define o(z) to be
the unique constant e for which ¢ ®weX. It is easy to see that o(x) is
a-homogeneous of degree +1. We introduce “polar coordinates” with
respect to ¢ and 2 as follows: we identify F,— {0} with (0, c0) X 2 by
the map # — (o, »), where o = o(x) and » = ¢ “z. This map is a diffeo-
morphism and its jacobian J is a-homogeneous of degree |a|—1, where
n
la] = 3 a;. We have the integral formula

[9@ds= [ [ gle,7)d(e,r)dody.
By, Z o

We can now derive our basic representation lemma. We fix a finite
a-cone y = I' ~ B, where I' lies strictly in some half-space, and B is
2 ball about the origin.

LeMMA 1. There emist functions v, ¢, ..
define &,: IP(R™)™' — LP(R") by

év‘)’(f’fl? "'7f'IL)

we have E,(f,fiy ...y fu)

., O L (R") such that, if we

(2.3) =fro+ D frra
=1

=f on Q' provided f; =
= {gel:2+4+y c O},

(0]0x))1f on 2, where


GUEST


4 R.S8. Strichartz

Furthermore, 9, @uy --., Pn e Supporied on y, p is C% and vanishes
in a neighborhood of the ovigin, @1, ..., ¢ are 0% on R*={0} and locally
a-homogeneous of degree 1— |a| (i.e., agree with am a-homogenecous function
in a neighborhood of the origin).

Proof. Let y be an a-cone such that »'* =y 4.4y = ».

Let p be locally a-homogeneous of degree 1—|al, C® on R"—{0},
vanishing outside y, non-negative and not identically zero. Then Jo
is locally a-homogeneous of degree zero. We normalize ¢ so that

limd (g, »)p(o, v)dy = 1.
5 o0
Let
1 9 (')w,
Yy = 7—6—0— (J(]G) and 07 = -;,j-é—lp.
Then we have
5 = [ [ ole,nTte, )t (e, e+

0 )
4 f | 55 e, o= (e, M)de

by integration by parts. Substituting

a >y da; )
a—gf(w—(ea”)) = Z‘é%‘(@yv)_f—(m

=1 65(7]

"(97”))7

and remembering that do = Jdg d», we have

(2.4) = ptf+ Z 61*—
F=1
Thus also
n Of
2.5 DPf = prDPf+ 3 0pDP .
(2.5) f=v#D f+% D

Now we substitute (2.5) in the right-hand side of (2.4) according
to the following scheme: if DPf appears with §; < a; for all j =1,...,%,
and it is not in a convolution containing y,, then substitute the right-
hand side of (2.5). This process eventually terminates to give

(2.6) F=v( Y G D7)+ 3 CpupeDPF,
A< ]
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the ¢'s being binomial constants, and

pp = 0D« 0P w0fn) " GP) = G xp,

(f, times).
Let

=( 3 (—170,(D"p)y,)

rj<ey

9%-—2(

By<ay
Pre=c;

and let
1)ﬂ“pk O/g Dﬁ—ﬂk ’l)l)lg .

Then by integration by parts we have, at least formally

f=wxf+ i’w (0;;)%]0 .
k=1

Now y’ was contained in some half-space, so if g and s are supported
in %', ¢* in R"—{0}, and locally a-homogeneous of degrees s—|a| and
t—|a| respectively, s,%> 0, then g*h is supported in »'4y’, is €% in
R"— {0}, and is lpcally a-homogeneous of degree s-+i— |a|.

\Tow let us compute the ahomegenelty of the above functions.

(2.7)

For 6, it is a;— |a], hence for yj it is (2 Bra;)— lal, and for DF~Py, it is

proay—'a|, since 0/0x; reduces the ahomogenei’ﬁy by @;. In particular,
if pr = uy, it is 1 —|a|. Thus ¢, satisfies the conditions of Lemma 1. Note
that the integrability of a good locally a-homogeneous function is equi-
valent to the degree being > — |a|. Now y, is O and vanishes in a neigh-
borhood of the origin, hence y has the same properties. Thus it remaing
to establish &,(f, fi,...,fa) =f on Q' it f; = (8/02,)f on Q.

Note that all the functions v, ¢,,..., ¢, appearing in (2.7), and all
the functions appearing in the derivation of (2.7) (excluding, of course, f
and its derivatives) arve inftegrable and supported in ~. Thus the inte-
gration by parts is justified, and for values of <2’ we need only have f
defined on 2 for (2.7) to hold. But there (2.7) is just &,(f,f1,...,fu) = F

Remark. We can also prove, by the same method, a variant of
the lemma in which the term f*u does not appear, but at the cost of
having ¢; supported in an entire a-cone I". In this case ¢; is no longer
integrable, and we must put further conditions on f to have f;*¢; con-
vergent.

Now suppose «; = 0 for some j. By relabeling coordinates we can
suppose a = (g, «vvy apry 0,...,0), where o; 50 for j=1,...,%'. Let
, o). We say that y < R" is an a-cone if there exists an
a'-cone y' = R such that

y =y xX{0} = {&:(z,...

u' =y, ..

y Bpr) ey’ and Ly = ... = %, = 0}.
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COROLLARY. In this case Lemma 1 is agoin valid, exceptthat v, ¢y, ..., w
are now measures supported in y' of the form ¢ =y’ X, ¢y = ;0 (Y
and y'y @y - .., o Satisfy the conditions of Lemma 1 with respect to o, y'.

Proof. In fact, this is precisely Whght we get if we apply Lemma 1
for o', ' to each section of f parallel to R* and put it together via Fubini’s
theorem.

Definition 3. Q is said to satisfy the weak a-cone condition if there
exists a finite open cover U, ..., Uy of £ and finite a-cones yy, ..., vy
such that

(2.8) v+l @, j=1,...,N.

Q is said to satisfy the sirong a-come condition if there existy a finite
open cover Uy, ..., Uy of 02 with positive Lebesgue number and finite
¢-CONeS Y1, ..., ¥y Such that

(2.9) yi+(U; ~ o)< e, j=l,...,N.

We define similarly the a-L-cone conditions by requiring the y; to
be a-cones with respect to the coordinates (yi, ..., ¥n) == L(®y, ..., &)
TeeoREM 1'. Let a(l),...,a(m), L(L),...,L(m) be as in Defini-
tion 2. Suppose Q satisfies the strong a(k)-L(k)-cone condition for
k=1,...,m. Then there exists a bounded linear estension operator
Eor: Lop(Q) ~ Ln(RY).
Proof. The proof is by induction on m. The case m = 0 ig trivial,
for then, without assumptions on £,
fle) if
&of () 0 it
is a bounded linear extension operator LF(Q) — L”(R").
Suppose the theorem is true for m-—1. Then 2 satisfies the strong
a(k)-L(k)-cone conditions for ¥ =1,...,m—1, hence there exists a
bounded linear extension operator

m'e.Q,
= ¢.02

F: I’f(l),...,a(M-1),L(1),....L(m—1)(-Q) - Lg(l),‘..,u(m--1),L(l),...,L(1VL~-1)(1ﬁ71,)-
Let (¥, ooy Yn) = L(m)(my, ..., 0,). Then

b aj(7) '
(—é‘;/.;) fGLf(l),-.-.u(m—l).L(l),.,‘,L(m-— y(R) it fell (4.

Hence
8 \(m™
z (51/*70) f st(l),,_,,a(m_ 1), Z(1)yer, Lo(m—1) (E").

() 8 is the Dirac measure at the origin of R"™ ",
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Now Q satisfies the strong a(m)-L(m)-cone condition. Let Uy, ..., Uy
be the open cover of 92 guaranteed by Definition 3, with Lebesgue
number & Let

U, = {weR": d(w, 00) >§}

Then Uy, ..., Uy forms an open cover of R" with Lebesgue number
&/3. It is a routine matter now to construct a 0 -partition of unity hy, ..., hx
with h; supported in Uy, such that all derivatives of h; are bounded.
Now define &,z as follows:

N
—~ Fi] ay(mm) 9 a,{m)
(210)  Gunf = ho Eof + % T & (sz,y(ay—l) 7, 9( By) f),

where y; is the cone associated with Uy and 4 is given by Lemma 1
or the corollary. Now
Fi] ap(m)
(——) f on @,

a ag(m)
C
Oyr Oy

hence by Lemma 1

S & 9 \ul™ e 9\l z o
e T I AR P i B R A2

But, by (2.9), Q' =2
that &, 1: Lf,(.Q) - Lf;,L
we have

Ug. Thus &,rf =f on 2. It remains to show
(R™ and is bounded. This will follow once

Epit ( ?:(1),,,,,a(m,__1),L(1),_,,,L(m_'1)(Rn))n“ — LZL (R™) bounded.

But &, is a convolution operator hence by Proposifion 1 it is enough
to show thati &, is bounded from LP(E™'*' t0 Limzem(E"), or Digm &y
is bounded from I?(R™)™ to IP(R") if fifay+...+Bnfan < 1. Now

’fg’;fla(f;fla --~,fn) = W*f+ Z‘Pi*f:/-
7=

Lot ws assome a0 for j=1,...,n Then yelgy(R") so
£ > Dl (p*f) is bounded from IP(R") to I (R"). It sfoy ... +-fufan <1,
then DfgmypyeI* (R"); hence

fi—~> D%(m) (pi*f)) = fi *D%(171)9’1

is bounded from LP (K™ to LP (R™). However, in case f;/a;+. ..+ fo/on =1,
.Dﬁ(m)q;,- is locally a(m)-homogeneous of degree — [a(m)|, hence not in-
tegrable. Fere we have to use the theory of singular integrals with mixed
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homogeneity developed in [4]. There it is shown that if ¢ is C°(R"—{0})
and «(m)-homogeneous of degree — |a(m)| and also

fglv

then the prineipal value convolution with ¢ defines a bounded linear
operator on I”(R". It is also shown in the Appendix of [4] that (2.11)
is equivalent to

(2.11) ,v)dy =0,

-] 5]

S Lot

for some fixed y, = 0. Thus if ¢y is a derivative I)f:(m) h, then it satisfies
condition (2.11). Furthermore, it is easy to modify the proof in the ho-
mogeneous case (see e.g. [1], theorem 11.4) to show that

Dlmy(hxf) = of +PV (g ).

Taking # = ¢; in a neighborhood of the origin, & a(m)-homogencows
we get that fy — Di(pr*f) is bounded from LP(R") to LP(R™).

Thus the theorem is proved if a; 0, j =1, ..., n. In general, we
must apply the corollary to Lemma 1 and reason as above with each
section of f restricted to each subspace parallel to R".

TuEorREM 2'. Let a(l),...,a(m), L(1),...,L(m) be as above, and
assume oz(k) #0 (j=1,...,n; k=1,...,m). Suppose that £ satisfies
the weak o(k)-L(k)-cone condition for k =1,...,m. Then we have the
Sollowing continuous inclusions:

(a) IEp(Q) = I*(Q), provided p

(2.12) G Yn) Yy Ay =0

q<oo and

(by IL1(R) = 0,(Q) after modification on & set of measure cero, pro-
vided
m
S <
et la(l)] p

Proof. Again the proof is by induction on m. The induction wmgu-
ment goes as before, so we will only give the proof in the case m = 1,
L =1 Since 2 satisfies the weak a-cone condition, we have an open
covering Uy, ..., Uy of Q given in Definition 2. It clearly suffices to
show that L7 (Q) |y € I*(U) for U one of the Us. Let y be the associated
a-cone. Then by Lemmsa 1 we have

f=wxf+ Yonf;on U,

=1

4
where f; = (—0%—) FeI (£2)
7
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Now peCon, hence yxfe0. Also ¢; iz locally a-homogeneous of
degree 1—|a|. Thus ¢yeL’-Mel=  the Torentz space of functions
satisfying

m{weR"™: |f(z)] = 8} < O8IV,

Now the modern version of the Hardy-Littlewood and Sobolev
Fractional Integration Theorem asserts that convolution is a bounded
bilinear map from L? XL to L where 1/¢ = 1/p-+1/r—1, provided
1<p, q,r << oco. Applying this to f*g; gives (a). To prove (b) we note
that the conditions on e and p imply @;¢L” where 1/p’-+1/p = 1. Thus
(b) follows from the classical Holder theorem.

CoroLLARY. We also have Dif = DY ... DX feI4(Q) of

§’37 — Bk a(k) <1 (p < ¢< o)
1 1— (k) a(h)
gz “"Z OO

or L
1 _ \1—B0)-a(k
DEFeCo(Q) if p(R)alk) <1  and — < Z"*_‘“
p & Jalk)
The corollary is proved by the same reagoning. Note, however, that
the decomposition Df = DI ... D7) is not canonical, and that
different decompositions may give different restrictions on p and q.
We can also obtain inclusion theorems for non-negative multi-in-
dices, although the formulae become more complicated. For simplicity
we restrict to the case L(l) = ... = L(m) = I.
TuroreMm 2. Let «(1),... be multi-indices of mnon-negative
integers such that

y a(m)

Dak)>0 for j=1,..,m

=1

Suppose that Q satisfies the weak a(k)-cone condition for k=1, ..., m.
Let f(1), ..., f(m) be such that
: 18(k)

0 < By(k) < o), ;J i <

(recall 0/0 = 0), >0, the summation eztending over

all k such that

and Z’aj(k) — ﬁ,‘ (7\7)

y B (1)

2 (k)


GUEST


10 R. 8. Strichartz
Then f<IP(Q) implies DPf = DY .. LD LUQY Af poslg < oo and
1 v 1— a(k)
o2 e ) Bl

1 4 ! aj(k)>Pj(¥) uz(%;()a%(lc)
or Cp(2) if the last term is < 0.

Proof. First we note that the values of & for which B(k)a(k) =1
make no contribution to.the theorem, 80 we may assume without logs
of generality that they do not exist. Next we note that by intersecting
the elements of the different open covers associated with the «(k)-cone
conditions we obtain a common open cover Uy, ..., Uy satisfying

Uy 3 (1) () < 2,

where y;(k) is an a(k)-cone. Let U be an element of this cover, and
y(1),..., y(m) the associated cones. It is clearly sufficient to prove that
DPfly e L(T) or Oy(U).

For simplicity we assume m == 2; the general case is analogous,
but notationally more cumbersome. We relabel the coordinates so that
a;(1) = 0 if and only if j >w and «(2) = 0 if and only if j =< v By
hypotheses » < w. By Lemma 1 we have, in U,

- 9 \9®
£ =vyei+ Y mws(5e)” 1
=1 ’

R R o 9 \u@
= wip@ir+ Yvrenme )" 1 Somine () 1+
=1 ’

I=v+1
w n
9 \9{ 9 \%®
1 2) e | — —_— 3
+ yé\; hglw( ) 5 @re(2) ¢ ( Owj-) (Omk) i

As before, the difficult step is to show that convolution by
DP(py(1) #2(2)) is & bounded linear operator from L” to L% Tf we let
g =Dy (1) and h = D*®g(2), we have ¢ =g’ (2, ..., &) x & and
h = 8, X W (thysay ..., %), Where g is locally (a,(1), ..., ay(1))-homogeneous
of degree

w
1= 3wy (1) 4 a5 (1) 4 (1)
Jml
and 1 is locally (a,.1(2), ..., a4(2)) homogeneous of degree
1— 3 (@) +a(2)6(2),
Jea® 41
and both have compact support.
The proof will be complete once we have established
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LeMMA 2. Let geIP™(R"), heL®®(R"") have compact support, and
suppose v < w. Then the function ¢ given by

o0 (=]
(@1, ..., @) = f fg(wl,‘..,w,,,m,,“—ywl,...,ww—yw)x
- —00
X B (Yor1y ooy Ywy Busgry ooes Bn) @Yppa. .. T

if v<<w, Py, ..., %) =g@,. .., B) W {Bopgy--ny Do) of v =w, defines,
by convolution, a bounded operator from L' (R™) to L*(R"), where

1 1 {1 1}
— = —--max |—; — —1,
r pq

§

provided 1 < p,q,r,s < oo.

Proof. By the Marcinkiewicz Interpolation Theorem for Lorentz
spaces [7] it suffices to prove the result under the assumption geI”(R"),
heI*(R™"). Say p < g¢. Then, since % has compact support, we have
algo heL”(R™"). This implies @eIL”(R") by Fubini’s Theorem (note
Iy *I%., = I%,). Now the result is just the standard convolution
inequality.

Remark. In case 2 = R it is possible to identify the spaces I 7 (R"™)
with spaces defined by Fourier transforms. For these spaces it is possible
to obtain inclusion relations (see [11]). However, to obtain best possible
results it is necessary to enlarge the class of spaces considered. This
explains why the corollary to Theorem 2’ is so awkward to formulate.

Any such result about I (R") can be transferred to domains satis-
fying weak cone conditions by means of the following relative extension
theorem which is a corollary of the proof of Theorem 1':

TuroreM 1. Let U = Q = B" be open sets such that U4y (1)
+o.ty(m) = 2, where y(k) is some a(k)-L(k)-cone. Then there exists
o bounded linear operator &: L%y (Q)— 1Ly (R"™) such that &f =f on U.

THREOREM 3'. Suppose Q is bounded and satisfies the weak a(k) - L(%)-
cone condition for k=1,...,m. If fe@' (Q) and Dif = Dﬁ 5’;%
L” (L) for all D% such that By =(0,...,0, {k),0,...,0) fm« some j
depending on %, then feIf(Q) and

Wflpsz < O(Iflo+ > 1D,

the summation ewtending over all such D%.

Proof. Again the proof is by induction on m. We give the details
only for the case m =1, L =1I.

Assume firgt o = 0 for j = 1,..., n. Again we apply Lemma 1 to f
in one of the sets U of the open cover given in Definition 2. The terms
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of the form g+ (8/dz;)“f are shown to be in LY(U) just as in the proof
of Theorem 1’, since we have assumed (0/0w)“f eL”(2). Now, however,
wif is the difficult term since we only know fe2'(Q). But y is O, with
support in ! and vanishing in a neighborhood of the origin. This implies
prfeC®(T), and, since £ is bounded, C*(U) € L;(U).

If some o; =0, we have agsumed feL”(Q) because (0,...,0, q,
0,...,0) = (0,0). The proof now proceeds just as in Theorem 1'.

3. We begin with some gimple remarks about the cone condi-
tions.

1. Q satisfies the strong ¢-cone condition if and only if its comple-
ment does. This is not true for the weak a-cone condition.

2. If p; = O, then the « and B-cone conditions are the same.

3. Let Q have the form {w: @, = g(%, ..., %,_1)}. Suppose a, = o
for j =1,...,n—1. If g satisfies a uniform Lipschitz condition of order
/o, in the w-direction, i.e.

-1

lg(@)—g ()] <O 3 |my—y,l4°,

F=1

then Q satisfies the strong u-cone condition.
Now let us consider an example. In R, we define

Q= {(@,9):y > |al}.

Let g be a 0% n-function = 1 in the unit ball. Let f,(2, y) = y~*p(z, y).
We compute thab f;e L my (L) if and only if ¢ < (14¢)/ip —m, and f,e L7HQ)
if and only if s < (1-1)/tg. It follows that Theorem 2’ can only hold if
t 22 I/m. Now Theorem 1’ holding for £ would imply Theorem 2/ for Q
because Theorem 2 holds for R". Thus Theorem 1’ also fails unless ¢ 3> I/m.
But this is exactly the weak (I, m)-cone condition.

Unfortunately, if 7> m none of the Q;, t> 0, satisfy the strong
(¥, m)-cone condition since this requires that the boundary be horizontal
for an interval every time the height achieves a relative maximum or
minimum.

This example can be modified to show that the conditions on £
in Theorem 2’ are very close to being necessary. However, it is not clear
whether there is some condition between the weak and gtrong a-cone
conditions which is sufficient for Theorem 1’. For example, one may
agk, in the classical case, whether Theorem 1 holds for the complement
of £; which always satisfies the weak cone condition.

Finally, we present an example to show that Theorem 3 does not
hold for arbitrary bounded open sets. It seems unlikely, however, that
the weak cone condition is really necessary.

e ©
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Tirst congider the unbounded Q in R? given by Q = {(#,9): & >0
and 0 <y < a(2)}, where a(x) is a finite, positive, continuous, decreasing
function satisfying

f a(z)de < oo Dbut f 2" a(z)dy = + oco.
0 0

Define f(w,y) =« on 2. Then every derivative of f is bounded,
hence in LP(2), but f is not in L?(Q). Now 2 can be mapped onto a bounded
domain ' by a O®-diffeomorphism ¢ such that all the derivatives of
@' are bounded. In fact, we just wind £ in a spiral, which remains inside

a disk gince
oo

f a(®)dy < co.
0

Then fog™ is not in IP(L'); but every derivative is.

4. Definition 4. Let 0 <t < 1. An open set 2 = R" is said to
have a Lipt boundary if there exists a finite open cover Uy, ..., Uy of
090 with positive Lebesgue number, and matrices L, ..., Ly such that
each pair U, L satisfies:

If (yy, ..., ) = L2y, ..., ®,), there exists gy, ..., yn_1) satisfying
a uniform Lipschitz condition of order ¢ such that

QAU = Y>>0, s Yn_1)} ~n U.

TuROREM 4. Let ¢ = k/m <1, and suppose 2 has Lipt boundary.
Then there exists a bounded linear extension operator &: L5 (Q)— LE(R").
Proof. In case t =1 this is just Theorem 1. Let k < m. Let
Uy, ..., Uy, Iy,..., Ly be as in Definition 4. Now trivially, L%(®2)
c L%}E 1Ly (2) for each j =1,..., N. But by Theorem 1” we have

a relative extension operator
Fy: L, ey n)(2) = L. oamy, 2y (B

F;f = f on Uy in view of Remark 3 of Section 3 (it may be necessary to
take U a little smaller than originally given). But L}’kwk,m),,;(,-)(R”)
= LR(R™. Thus F;: L (Q) — LE(R™). We obtain an extension operator
from the relative extension operators via a partition of unity as in
Theorem 1.

Remark. We get as a corollary weaker versions of the Sobolev
inequalities for domains with Lip ¢t boundary. The details are straight-
forward and are left to the reader. Similar results have been obtained
by Hurd [8], although his boundary conditions are of a different nature.
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The following example of such a result may be of interest:
COROLLARY. Suppose £ has a Lipt boundary for some ¢ > 0. Then

5(2) = N Lk (Q) = 67(9D).
Fe=1

Of course, the inclusion I2,(9) = C*(2) holds for all 2 since it is
essentially a local resuls.

5. Here we give some applications to partial differential equations.

TrmorEM 5. Let £ be bounded and sotisfy the strong cone condition.
If feIZ(Q) and P(D) is any constant coefficient Uinear partial differential
operator, then the equation P(D)u = f can be solved with w e L} (%) i in fact,
the solution can be given by o bounded linear transformation on Li(Q).

Proof. Let &, be the extension operator of Theorem 1, and let K
be o fundamental solution of P(D) given in [5]. % has the property that

: IR — (R,
B commutes with tranglations and P(D)Bf = f. It follows that
B : Li(R") = Ligoo(E").

The solution to P(D)u = f is given by u = F &,f|y. It is easily seen
to have the desired properties since iy bounded.

TuzorEM 6. Let Q2 be bounded and satisfy the strong cone condition
and the strong a(k)-L(k)-cone condition for k =1,...,m. Let Dy, ..., Dyr
be differential monomials of the form DE)y ... Diihy with B(k)a(k) <1
and including all such monomials with, for each %, (k) = (0,..., 0, 0(k),
0,..., 0) for some j depending on k. Let 2 be the ( finitely-generated) module
over the polynomials of M-tuples Py, ..., Py of differential polynomials
satisfying

-Plpl'\_-' .—l“.PJu.Dﬂ[ = 0.
Let
INQ, #) = {ueLL(Q2™: Pu = 0}.

Then there ewists @ bounded linear eatension operator Eg: Liy(Q,P)
— IZ(R"Y &), provided H(Q,R) = 0.

Proof. The fundamental theorem for over determined systems ({31,
[6], [10]) states that for convex Q the equations u; = Djv (j =1,..., M)
will have a solution » 2’ (Q) it and only if #u = 0. By Theorem 3’

veLiny, . a1, L, oonl>  where  a(m--1) = (k, ..., k).

Now » is not unique, but the space of solutions to the homogeneous
equations Djw =0 (j =1, ..., M) is finite-dimensional. It is this fact

icm
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which both allows us to replace the hypothesis 2 convex by the coho-
mology condition H'(2, R) = 0, and also enables us to construct a bounded
linear map « — v by normalizing with conditions (v, 8z) = 0 for certain
OreCm(2). The desired extension map is w —ov — D; &v, where & is
the extension operator of Theorem 1’ for Lf(l),...a,(m +1),2),....Lm).1 (2).

If we take m =1, a=(1,...,1), Dy,..., D, = 0/0x,...,0/02,,
the system #u = 0 is equivalent to curlu = 0 (i.e., Ouy/0z; = du;/dxy).

In general, pick a set of generators of £, so that Zu =0 is
equivalent to

M
ZP,(‘«L)uj-——O for 1=1,...,¥.

7=1

Then if we take k—n/p greater than the highest degree of the P;(i),
we have the above equations holding in the ordinary sense for eI (Z).
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