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On Banach spaces containing I, (u)
by

A. PERLCZYNSKI (Warszawa)

Introduction. In the present paper we study consequences of the
factys that a Banach space X or its conjugate X* contain a subspace
isomorphic (= linearly homeomorphic) to an L, (x) space. It is shown,
in particular, that if a separable Banach space X contains a subspace
isomorphic to I,, then X is not only non-separable but also “gufficiently
rich”; Namely X* contains a w*-closed subspace isomorphie to (C[0,1])
and therefore it contains a subspace isomorphie to I,(I") with card I = 2%,
On the other hand, if a conjugate Banach space X* contains a “nicely
embedded” (precisely seminorming, cf. Definition 1.1) subspace isomorphic
to Ly(u) for some non-purely atomic measure g, then X contains a sub-
space isomorphic to ;. Combining these two facts with the easy lemma
that if p is o-finite, then I, (u) does not contain any subspace isomorphic
to 1,(I') with I" uncountable, we prove that if u is o-finite and non-purely
atoric, then I, (x) is not isomorphic to any conjugate Banach space.
This result generalizes Gelfand’s theorem [8] that the space L, =
L,[0,17]is not isomorphic to any conjugate Banach space, and gives a par-
tial solution of the following problem raised by Dieudonné [5]: charac-
terize those L,(u)-spaces which are isomorphic to a conjugate Banach
space. For various proofs of Gelfand’s theorem the reader is reffered to
the papers (2], [5], [15]-[17] and [20].

1. Preliminaries. Any unexplained notation will be that of either [3]
or [7]. It A is a set, then card A denotes the cardinality of 4.

Capital letters X, Y,Z denote Banach spaces. The first and the
second conjugate of X are demoted by X* and X** respectively. By
“gubspace” we always mean 2 closed linear subspace. By “operator” —
a bounded linear operator. It u: X — ¥ is an operator, then w*: ¥* - X*
denotes the adjoint operator of u. By »x we denote the canonical embed-
ding of X into X**. An operator u: X — ¥ is called: an (isometrically)
isomorphic embedding if there is v: w(X) ~ X such that for all # in X,
ou(#) = o« (and [luzl = |lzf); an epimorphism if w(X) = Y; an (isometric)
isomorphism it « is an (isometrically) isomorphic embedding and an
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epimorphism. X is said to be (isometrically) isomorphic to Y if there is
an (isometric) isomorphism from X onto Y. If X, is a subspace of X,
then the map # — 4 X, from X onto the quotient space X /Xy is called
the quotient map or the natural map. A subspace Y of X is said to be
complemented it there is a projection (= bounded linear idempotent)
from X onto ¥. A Banach space X is a &;-space if for each Banach space ¥
and for an arbitrary subspace Y, of Y every operator w: ¥, — X has
an extension v: ¥ — X (i.e. uy = vy for ye¥,) with [[v] = [|u.

In the conjugate space X* we consider the norm topology and the X
topology of X* which is called sometimes the w*-topology. This topology
is obtained by taking as a base all sets of the form

N@*, V,e) = {y*eX*: |oro—y*z) <e, veV}

where #*¢X* V is a finite subset of X, and &> 0.
If 4 is a subset of X¥, then cl*(4) denotes the closure of A in the
w*-topology. In the sequal an important role plays the following concept.
Definition 1.1. A subspace Z of X* is said to be seminorming if
there is ¢ > 0 such that

o(el*(Z) ~ 8*) < oI*(Z ~ 8%,

where §* = {&*<X*: [l#*] <1} is the unit ball of X*

If moreover cl*(%) = X*, then Z is called norming (i.c. Z has positive
characterigtic in the sense of Dixmier [6]).

An isomorphic embedding u: ¥ — X* is said to be proper (precisely
proper with respect to the X topology of X*) if u(Y) is a seminorming
subspace of X*.

PROPOSITION 1.2. For every isomorphic embedding w: Y -» X* the
following conditions are equivalent:

(«) u 48 proper,

(B) the ramge of the operator v = u*xx: X - Y* is closed.

Proof. (&) = (B). Let us set

X, = {weX: (uy)(®) =0
X = {g*eX*: 0¥ () = 0

for ye X7},
for weX,}.

Let h: X — X/X, be the quotient map. Then I* regarded as an
operator from (X/X,)* onto Xi is an isometric isomorphism. Define
the isomorphic embedding w,: ¥ — (X/X,)* so that A*w,; = 4. Since
%(Y) is seminorming and since cl*[u(Y)]= Xi-, the subspace u,(Y)
of (X/X,)* is norming (because h* is a continuous map if both spaces
(X/X,)* and Xi carry the X/X, topology of (X /X)* and the X topology

icm

©

Banach spaces 233

of X* respectively). Hence there is ¢ > 0 such thatb

sup (uay)(e)| > elell  for e X/Xy,
etV

whem;W = u(¥) ~ {¢"«(X/X,)*: ||e¥]] < 1). Since u, is an isomorphisni,
there is ¢ >0 such that W < u;{ye¥: |ly|| < a}. Thus

sup |(uy9) (e)| > ca e for eeX/X,.
<1

The last inequality means nothing else but the fact that the ope-
rator v, = ”r"-’f/xx is an isomorphic embedding. Observe that v = v h.
Hence v is the composition of the epimorphism % with the isomorphic
embedding »,. Therefore »(X) = »,(X). Thus the range of v is closed.

(f) = («). By Banach open map theorem ([7], p. 55), there exists
¢> 0 such that for each y* in v(X) there is an «; in X such that
v, = ¥* and elley)| < ly*|. Suppose that u(Y) iz mnot seminorming.
Then there is an yelement o* in el*(u(Y¥)) with o] =1 such that
(2lull) " ox™ ¢ e1* (u(X) ~ §*). Observe that cl*{u(¥) ~ 8% is a w™-com-
pact convex and symmetric set. Hence, by separation theorem ([7],
p. 412), there is an # in X such that |z = a*2 =1 and [(uy)(w)|
< (2 )~ for |jwyl| <1. Hence [z <2 '¢ < ¢. Choose an =, in X
so that

(0) ellasll < foall < e,

(00) VL, = VL.

It follows from (oo) that (uy)(z) = (uy)(z,) for all ¥ in Y. Hence
the condition &*ccl*(u(¥)) implies that *(#) =a2"(a;) =1. Thus
1 < |jo*||||z,]| = |lz. On the other hand, by (o), |z}l < 1, a contradiction.

By C(Q) we denote the space of all continuous real-valued
functions on a compact Hausdorff space @, with {fll = sup|f(q)l.

qeQ

Let u be a measure defined on a o-field X of subsets of a set 7. By
Ly(p) = Ly(T, Z, u) (resp. Ly(u); L(u)) we denote the space of all
u-equivalence classes of u-measurable functions such that

Ifil = [Ifldp < + oo
T

12

(resp. Ifll = ( [ Ifi2du)" < + oo5 Il = veaisup [f(s)| < + o0).
T

If I' is an abstract set, 2 is the field of all subsets of I', and w is
the unique measure on X such that u({y}) =1 for all y in I, then the
space L,(u) is denoted by I,(I) (resp. L.(p) by m(I’)). The space I, (I")


GUEST


234 A. Pelezyhski

(vesp. m(I") consists of all real functions {t(y)}yr such that

O = D ()] < + oo

yel'

(vesp. [[¢()]| = sup[t(y)] < -+ o0).
el

Tt I'is conntable, then we shall write I, instead of I, (I'). If T' = [0, 1]
is the unit interval, £ — the field of all Borel subsets of [0, 1], and p-the
usual Lebesgue measure, then L,(x) is denoted by L, a,nd L (u) by L,

We shall write [L,(u)]* = L () if the operator ¢ — @y, where
ah(f) = [efdy  for  feLi(p)
r
is an isometric isomorphism from L, (u) onto [L,(u)]*. If w is o-finite,
then [Ly(#)T* = Ly (%) ([7], p. 289). More sophisticated is the following
result (ef. [7], p. 290):

ProPoSITION 1.3. For every space ILy(u) there is a space Ly(v) dso-
metrically isomorphic to Ly(u) and such that [Ly(»)]* = L. (»).

Proof. By the Kakutani representation theorem (cf. [10], [3], p. 108),
there is a collection of finite measures {s,},r such that there is an iso-
metric isomorphism from L, (u) onto the I,-product, X=P1(L1(1’,,, Z,, ,uy))
(the elements of the space X are indexed families of functions @ =
= {f,}yer such that f,eL;(u,) and [o] = Z‘ Il < - o0). Moreover, this

isometric isomorphism takes positive fun(,tlom into families wnsmtmg
of positive functions. Since all 4, are finite measures, we have [L, (,u,)l
= L (u,). Therefore, by general result on - -products (cf. [37, p. 31 (11)),
we have X* = P (L (T,, Z,, 4,)) (the elements of the space Poo(Le (1))
are indexed families of fun(,tlonb {Pplyer such that ¢, Ly (u,) and [[{p,}
= sup]|(p,,||) Precisely the operator {p,},er — w{,P y» Where

=2 ffv(/'yd:“w

yel' Ty

(1) w{qzy}({fr}) tfv}yel'e" 9
is the isometric isomorphism from P (L. (g,) onto X*
Let us set (the sets T, are rvegarded to be mubually disjoint)
r=y=1r,
pel'
Z={Adcl:A~Tec, yet,
= 3 p, (A ~T,).

yel'

Clearly, X is a o-tield of subsets of 1" and » is a measure on X. Leb
w: L(T, X, ») - X be defined by

af ={fir) for fely(),
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where f.T denotes the restriction of f to T,. By (1) for 2* = {tpy}w_peX
we have

2) (W*a")(f) = a*(uf) = 2 f o, s, = f gy,

where e L (») is the unique functmn such that Tz, = for yel. Clearly,

ll=*l = llp|l. Since # is an isometric isomorphism from Ly(v) onto X, u*

is an isometric isomorphism from X* onto [L,(»)]*. Hence [ju*z*| = |jz*|
= |lp|l. Clearly, the operator ¢ — {qu|Ty} is an isometric 1somorph1sm from

L (») onto X*. Thus, in view of (2), we conclude that [L,(»)]" = L (»).
That ecompletes the proof.

2.‘Collsh'ucti0ns of subspaces isomorphic to 7; in morming subspaces
of [L;(u)]

Definition 2.1. A double sequence |{4{”}i.5'}%., of non-empty
sets is said to be a dyadic tree if

(i) if %y ko, then Af) ~ A =

(ii) A(") > AGY O A("H‘l).

A family o of sets is called a dyadic jungle if for each 4 in &/ there

is a dyadic tree {{A{")35")%, such that A®) = A and each A{’ belongs
to &7,

ProrosrrioN 2.2. Let Y be a subspace of m(
wing condition:

() there are K =1 and 6 > 0 and a dyadic jungle & of subsets of I"
such that for every m = 1, 2, ... and for arbitrary finite collection By, By, ...,

.y Bam_,y of mutually disjoint sets in of there exist fe Y with ||f]] < K and

Aoy Ayy ooy Agm_y in of such that

{peBe: (—1)f(y) > 6} o 4,
Then Y contains a subspace isomorphic to 1.
Proof. We will construct a sequence {f™}s., in ¥ and a dyadic
tree {{AfV5")e., in o with the following properties
(a) If") < X,
(b) if yedf™ and if n >

) satisfying the follo-

(r=0,1,...,2"—1).

1, then (-—1) fn ) > 6.

Agsume that we have done this. Then f01 arbitrary real #(1),
t(2), ..., 8{n) (n =1,2,...) we have '
n n T
3) 8 3 tml < | 3 1nf0| <K 3180
r=1 r=1 Pa=1
Indeed, by (a), we have

< DI < E D) 1)

| X ens®
=1
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To prove the left-hand side incquality we define for » =0, 1,...,n the
indices p(r) as follows:
p(0) = 0;
op (r if t(r) =0 )
p(r+1) = pr) . = (r=0,1,...,n—1)
ap(r)+1 it #(r) < 0.

Clearly 0 <p(r) <2'. By (i), Afh c Afjy for r=10,1,...,n.
Hence, by (b) and the definition of p (r), if y e Af, then (r) FOp) = 0t
for r =1,2, ..., n. Hence

yeA;,";b =1

| ] > sup
=t )

which completes the proof of inequality (3).
“Let us set

ult() = Yenf  for  i() = {0)}%ich.
T=1

= suyp ’Zt(v‘)f(r)(j/)' = 5Z|'5("‘)|1

It follows from (3) that
SO < (G| < KigC) for  #()ely.

Hence % is an isomorphism from I, onto the closure of the linecar
mauifold spanned by the sequence {f®)2,. Sinee fMe¥ (r=1,2,...),
the range of w is a subspace of ¥ which is isomorphic to I;.

We define the sequence {f™}, and the dyadic tree {{AP}io'ms
by industion. Let f@ = 0 and let A be an arbitrary set in A. Suppose
that for some m > 1 the functions f@, fO, ..., f™ Y in Y and the sets
[{APY5 e, in o have been chosen to satisfy conditions (i), (i), (a),
and (b). Since & is a dyadic jungle, there are sets By, By,..., Bym_;
in o such that By v Bapr = A5 and By ~ Bypyy =@. Let us set
) — fand AM™ = A4, (r =0,1,...,2"—1), where f and {4,}iy’ are
chosen for By, By, ..., Bym_; a8 in (+). Then for n == m conditions (a)
and (b) are obviously satisfied. Let %(r) = 9"Y if r iy oven and k{r)
= 27(r—1) if 7 is odd. Then B, c A%}” forr =0,1,...,2"—1. Henco
A™ = A, c B, = A", Thus if 7y # 7y, then ALY ~ ALY = @. Indeed,
there are two possibilities.

1° k(ry) = k(ry) = k. Then (assuming that », < ry) ry == 2k and
7y = 2k-+1. Hence A{™ ~ A < By, ~ Byey, = 0.

2° K(ry) % %(ry). Then, by the inductive hypothesis, ALY ~ ALY
< By n B, = AfY ~ A = @. Finally we have, AR v A, < By v
© Byyr < AP, Hence the sets {{A{}i5'}ns, satisfy conditions (i)
and (ii). That completes the induction and the proof of the Proposition.
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PROPOSITION 2.3. Let u be a non purely atomic measure. If Y is
a norming subspace of the space [L,(u)]*, then Y conmtains a subspace iso-
morphic to 1.

Proof. By Proposition 1.3, we may assume that [L,(u)]* = L (u).
By Kakutani’s representation theorem ([11], [3], p. 103) the space L (u)
= L(T, X, u) is isometrically and latically isomorphic to a space C(Q)
< m(Q). This isometric isomorphism induces via characteristic functions
a Boolean isomorphism between the Boolean algebra of closed-open sets
of @ and of u — equivalence clagses of sets in X. In the sequal ve shall
identify closed-open sets in @ with sumitable members of X and Ly (u)
with 0(@). Let &« be the family of those 4 eX that 0 < u(d) < + oo
and no subset of o is an atom for x. Then & is a dyadic jungle. By Pro-
position 2.2 to complete the proof it suffices to show that Y together
with & satisfies the condition (+). Since ¥ is norming,

(+) there is K >1 such that for each peL,(u) and for arbitrary
finite set {gy, gs) -+, gu} in Ly (u) there is fin ¥ so that [|f]] < Klle| and

] [fodu— [opu| <270 (r=1,2,..,%).
4 7
Let By, By, ..., Bm_, be a finite collection of mutually disjoint
sets in /. Let y,. denote the characteristic function of B,. Let us set
v g =B ely(p)  (r=0,1,...,2"-1).
Let pely(u) be defined by
(=1 for g¢eB, (r=0,1, L, 21,

q) = NS |
rla) 0 for gq¢ U B
r=0

COlearly, |l¢l] = 1. By (%), there exists in ¥ an f with ||f]l < K so that,
for r =0,1,...,2"—1,

|[a(BIT [ fap—(—1)

By

< 2~

IHence
(=1 (BT [ fdu> 27"
Br

Thus if 4, = {geB,: (—1)f(g) > 27'}, then u(4,) >0 and 4, = B,.
Therefore 4, ¢o. Finally, if ged,, then (—1)f(g) > 27!, Hence Y safti-
sfies (+) with 6 = 2. That completes the proof.

For purely atomic measures we have

PROPOSITION 2.4. Let I' be an uncountable set. Let ¥ be a morming
separable subspace of (I(I))* =m(I'). Then Y contains a subspace ig0-
morphic to 1,
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Proof. Let & = {4 = I': card A >§}. Cleartly « is a dyadic
jungle. We will show that ¥ together with & satisfies (4-).
By separability of ¥, there are ¥, in ¥ such that |y, <1 and the

set U {y.} is dense in the unit ball {ye¥: |y| <1}. Let us pub

oo

A(y1y 72) = 2

N=1

2‘”[?/7;(7:)—?/7;(72” for (y1s ya)eI' X T

Clearly d is a pseudometric. Let y, # y,. Choose v = {p(y)},.r in
m(I) and ¢ = {(¥)}er in 3 (1) such that p(y) = (—1)" = (—1) % (py)
and #(y) = 0 for y £ 9; (¢ = 1,2). Since ¥ i3 dense in m(I") in the I,(I")
topology of m(I"), there is yeY so that

D et = D y()iy) = 2—[y(y)—yp)]1 < 1.

yel' yel'

Hence |ly| ™" [y(ys) =¥ (y1)] > Iyl Since the set U {ya} is dense in

M=
the unit ball of ¥, there is an index # such that ||y [y~ — ya|| < (4 [y~
‘We have

Yalva) — U (v2) > W1 (¥ (v2) — 9 (7)) = 2|~y — | > @)™}

Therefore d(y,,y,) > 0. Hence d is a metric in I. The metric space
(I'y @) is separable, because the map y — {y,(»)27"} is a homeomorphic
embedding of (I, d) into the Hilbert cube {8 = {82 |%| < 27%}. There-
fore each A in . hag a condensation point (i.e. a point with the prop-
erty that every its d — neighbourhood is uncountable).

Let By, By, ..., Byn_, be mutually disjoint sets in . Choose y, in
B, so that y, is a condensatlou point of B,. Define ¢, in I,(I") by
0 for y#
W(y) = T
1 for 9=y,

Next define ¢ in m(I) by

—1y n_
q)(y)=t( yo o s

y=r (r=0,1,..,2
0 for  yé{ye, yuy ey v

' Since. Y is norming, there is K > 1 such that the ball {ye¥: |ly| < K}
is dense in the ball {pem(I): p|| <1} in the I, (I"-topology of m(I").
Hence there is an y in ¥ with |ly| < K such that

| Yotm— Yy

vel' yel'

ni<2t (r=0,;1,..,2™m—1).
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Computing the left-hand side of this inequality we obtain
(=1 —y () <27

Henee (—1)"y(y,) > 27  for r = 0,1, ..., 2" —1.
Since y(+) is a continuous funetion on (I', d) and sinee ¥, is a con-
dengation point of B,, the set 4, belongs to « where

Ap = {yeB,: (—1)'y(y) > 27"}

Clearly, we have 4, < B, and (—1)"y(y) > 27" for ye4,. Hence ¥
satisties (+) with 6 = 27%. That completes the proof.

3. Main results. We begin with the following lemma:

LemmA 3.1. Let X be a Banach space and let I' be an abstract set.
Then X contains o subspace isomorphic to 1,(I") if and only iof there exist
a Banach space Y and a linear operator w: X — Y such that the range of
w contatns a subspace isomorphic to 1,(I).

Proof. Necessity. Put » = the identity operator on X.

Sufficiency. Let ¥, be a subspace of ¥ which is isomorphic to
1,(I") and which is contained in %(X). Since ¥, is isomorphic to I,(I"),
there is K >1 and an indexed set {y,},r of elements of ¥, such that

B ) < U D tml <E D) for  {a(»)}ely(D).
yel' yel’ el

Let X, = {weX:uze¥}. Then X, is a closed linear manifold in X.
Obviously the restriction of % to the subspace X; is an epimor-
phism. Hence (cf. [7], p. 55) there are K, >0 and indexed set {&,},.r
of elements of X, such that uz, = y, and [jo,|| < K, (yeI). For {£(y)}yrely (I)

we have
LY )] M <H2t(y | < Eu ) 1)
yel’ yel'
Hence the operator »:1,(I") - X defined by
o({tn)}) = Y iz,

yel'

(K [Jul)” < Jlull™ H

ig the required isomorphic embedding. That completes the proof.
PROPOSITION 3.2. Let X* contain a semimorming subspace isomorphic

to Ly(p). If either (I) u s not purely atomic, or (XX) X is separable and u

has unoountably many atoms, then X contains a subspace isomorphic to 1,.
Proof. By the assumption, there is a proper isomorphism u: Ly (u) —

— X* TLet v = w*nx: X = [L;(u)]* and let ¥ = »(X). By Proposition

1.2, Y is a subspace of [L;(u)]*. Let 8, 8™, B and B™ denote the unit
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Dballs of X, X™, ¥, and [Ly(u)]* respectively. By Goldstine’s theorem
([7], P. 424), cl*(xx8) = 8**. By continuity of v, there is an a > 0 such
that B o av(8) = au®(xxS). Since » is an isomorphic embedding, u*
is an epimorphism. Hence ([7], p. 487] there is a b >0 guch that
w*(8*) > bB**. Finally, the adjoint operator «* is continuous if both
spaces X and [L,(u)]* carry their w*-topologies. Thus

w* () = u*(cl*(uXS)) c el*u*(%x8).
Combining all these inclusions we get
c*B o acl*v(8) o au*(8™) o abB*™.

But this means nothing else but the fact that ¥ is a norming sub-
space of [Li(u)]".

Next we will show that in both cases (I) and (II) ¥ containg a sub-
gpace isomorphic to I,. Assume that we have done this. Then, since v
maps X onto Y, to complete the proof it is enough to apply Lemma 3.1.

If (I), then the desired conclusion on ¥ is an immediate consequence
of Proposition 2.3.

If (II) but (I) does not hold, then the assumption on w implies that
L,(p) is isometrically isomorphic to 1,(I") with cardl > ¥,. Since X iy
separable, ¥ = v(X) has the same property. The desired conclusion on ¥
follows from Proposition 2.4.

CONJECTURE. Let X* contain a seminorming subspace isomorphic o
Ly () where p is a homogeneous (cf. [13], [4]) finite measure. Then X con-
tains a subspace isomorphic to 1,(I") with cardl = denﬁ(Ll(,u)), where
dens (L, (w)) s the smallest cardinal number n such that there is in Ly(u)
a linearly dense set A with card A = n.

In the ‘“‘opposite direction” we have the following result (by DT
we denote the Cartesian product of I' copies of the diserete two point
space D): '

ProPoOSITION 3.3. If @ Banach space X containg a subspace isomorphic
to 1, (I") with eard " = W, , then X* contains a subspace isomorphic to [0 (D))",
Hence X* contains a subspace isomorphic to 1,(I'y) with cardly = 297,

Proof. The space ¢(D") has a dense set, say 4, with cardd = card.’
(e.g. the set of all finite linear combinations with rational coefficients of
characteristic functions of closed-open subsets of DT). Ience (D7)
is ‘& quotient space of I,(I) (of. [12], p. 29). Let h: L (I") - C(D") be
the quotient map. Let w:1,(I") - X be an isomorphic embedding and
let j: u(ll(l‘)) —0,(I") denote the left inverse of w. For the sake of
brevity we put » = xgpry and #, = #o@ry;. Sinee [O(D)]*™ is a #-space
(ef. [3], p. 100; 106-107), the operator whj: w(l(I))->[C(D")]*" has
a norm-preserving extension to an operator from X into [C(DT)™, say v.

1 ©
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We will show that the operator v*w,.: [C(D")* — X* is the required
isomorphic embedding. To this end it is enough to show that there is
¢ > 0 such that

(4) 0" sea) ()] = cllul] ~ for  pe[C(DT)I*.

Let W = {weu(ly(I"): llg]l <1} Clearly,
JOW) 2 {tely (I): it < flul ="
Using this inclusion and the identity (»*x)(u) = p for each
we[C{DT)T" we obtain
(0" ) ()] = S0P [22x (1)1 (02) > sup [x ()] (02)

<1

= supoe (1) 1[(hg) (2)] = sup [(" 2) ()1 [R] ()]
xeW W

=supulhj(e)] > sup p(ht) = |juf~" sup (A% ) (t)
zeW g~ <1

(U]
= [l B gl = Yoall ™ el

(We use the fact that if h: X — Y is a quotient map, then Bt Y* - X*
is an isometrically isomorphic embedding.) Henece v*x, satisfies (4) with
¢ = |lu|~". This completes the proof of the first part of the Proposition.
The second part of the Proposition is an easy consequence of the
first one, because the subspace of [0 (DT)T* generated by the family of
functionals {Sg}gpr is isometrically isomorphic to 1,(D”). Clearly, card DT
= 9°™I" Tlere 8, denotes the “point mass” at ¢, i.e., d, is the Borel
measure which equals 1 on any Borel subset of D' which contains g,
and equals 0 otherwise. That completes the proof.
For separable Banach spaces we have the more clear picture than
that which is given by Propositions 3.2 and 3.3.
TurorEM 3.4. If X s a separable Banach space, then the following
conditions are equivalent:
(i) X contains a subspace isomorphic to 1y
(i) ¢ = C([0;1]) 45 isomorphic to a quotient space of X;
(iii) X* contains a (w'-closed) subspace isomorphic to G such that
on this subspace the X topology of X* and the C topology of O* coincide;
(iv) X* contains o seminorming subspace isomorphic to o
(v) X* contains a seminorming subspace isomorphic to Ly;
(vi) X* contains a seminorming subspace isomorphic to 1,y with
card ' = 2%;
(vil) X* contains a seminorming subspace isomorphic to
card " > Ng.

Studia Mathematica, t. XXX, z. 2

1.(I") with
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Proot. We will prove the following implieations:

(iv)
VN
{)y=>(ii)y =(iii) = (v) =2 (i)

1)
E (vi) =3 (vii)

(i) = (ii). We need the following result (cf. [197):

(xy If a separable Banach space Z contains o subspace Zy 980morphic
to C, then there is a subspace Zy = Z, such that Zy is isomorphic to C and
complemented in Z.

Tet Y be a subspace of X which is isomorphic to I,. Since every
separable Banach space is a quotient of I, (cf. [1]), there is an epimorphism
u from Y onto C. Let Z be a separable Banach space containing ¢ and
such that the operator %: ¥ — (¢ has an extengion v: X —Z (i.e. vy = uy

for ye¥) with [ul| = |jv|. (The space Z is constructed as follows. Regar-
ding 0 as a subspace of a &,-space, say m, we may construct an extension
vy: X — m of u with ||v,]] = |u|. Define Z as the closure of the range of v,.

Since X is separable, Z has the same property. Since u(X) = C, we have
Z > v, (X)> u(X)=C. We define v: X +Z by vw =02 for weX.)
By («), there is a subspace Z,  C sueh that Z, is isomorphic to ¢ and Z,
is complemented in Z. Hence there is a projection p from Z onto Z,.
Put u, = pv: X —-Z,. Then u, is the required epimorphism. (Indeed
for feZ, there iz #¢¥ such that uw = vz = f. Since feZ,, we have f = pf
= pux = U,;2.) That completes the proof.

(il) = (ii). If w: X'— (' is an epimorphism, then u*:(*— X* is
the required isomorphic embedding.

(iii) = (iv). This is an obvious consequence of the general fact that
every w*-closed subspace of X* is seminorming.

(iii) = (v). This follows from the fact that IL,, regarded as a sub-
space of C* consisting of all measures absolutely continuous with respect
to the usual lebesgue meagure, is a norming subspace of O

(iil) = (vi). This follows from the fact that a subspace of " generated
by all point masses iy norming and is isomorphic to ¥, (") with card.l’ = o,

(vi) = (vii). This implication is trivial.

(iv) = (i), (v)= (i), (vii) = (i). These implications follow imme-
diately from Proposition 3.2.

Remark. In the statement of Theorem 3.4 the space ( may be
replaced by any - space C(Q), where ¢ is an arbitrdry uncountable
compact metric space. This clearly follows from the profound result of
Miljutin [147 (¢f. also [18]) that for every uncountable compact metric
space @ the space C(Q) is igsomorphic to C. '
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The next examples show that in Theorem 3.4 the assumption of
separability of X is in general essential. .

Example 1. Let X = ¢ (') with cardl’>®,. Then X* =T,(I").
But X does not contain any subspace isomorphie to I,.

Example 2. Let X = m. Then € is not isomorphie to any quotient
gpace of m, becauge every separable quotient space of m is reflexive (ra7,
p. 168). Hence X does not satisty (ii) and therefore (iii) (because for every
Banach space X the conditions (ii) and (iil) are equivalent). Clearly,
m contains a subspace isomorphic to 1,.

4. A characterization of o-finite measures 4 for which the spaces L, (1)
are isomorphic to conjugate spaces.

THEOREM 4.1, If u is a o-finite measure, then the space Li(p) 18
isomorphic to a conjugate space to o Banach space if and only if w is purely
atomie. :

Proof. Sufficiency. If p is purely atomie, then L,(u) is isometri-
cally isomorphie to I (I = [6(I)T". Moreover, since x is o-finite, cardI"
< No-

The proof of the necessity part is based on the next two lemmas.
The first of them generalizes Lemma 3.1.

LeMMA 4.2. If the closure of the range of an operator XY
contains a subspace isomorphic to 1,(I') for some uncountable set I', then X
contains a subspace isomorphic to 1,(I') for another uncountable set I'y.

Proof. By the assumption, there are K > 0 and a family {y,},r
of elements of the closure of #(X) such that

K 2 < Hgt(m,g <K Jup) for @eh(D.

For each yel' choose @, in X so that |y, —uzl < (2K)™'. Let
o
I'™ = {yel: |o,| <m},m =1,2,... Since U I'™ =TI and since I'is

. N=1
uncountable, there is an index N such that I'™ ig uncountable. Put
Ty =TI, For {t{y)}yr, ch(l1) we have

N 3 i)l >H2p}tw>wyn > | };umumy\\
vely yely

yTy

> = (| 3 o — glcmmuwy—wu)
vely vel'y

> [(Elul)™ — @K ul) 1 D) 1)

yely

= @K |ul)™ D ).

yely
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Hence the operator »: 1, (Iy) - X defined by

?J({t (V)}ye[‘l) = Zt(ﬁ/)% fOI‘ {t(y)}ysl‘lell(rl)
yel'y
is the required isomorphic embedding. That completes the proof.
Remark. If I' can not be represented as the countable union of
sets of cardinalities less than card I' (for instance if card I' = 2%), then
we may choose I', in Lemma 4.2 so that cardl’ = card [;.

LeMMA 4.3. If u is a o-finite measure, then mo subspace of L,(u)
= L (T, 2, u) is isomorphic to a space ly(I') with cardl'> 8.

Proof. If cardl’ =8, then I,(I") is not isomorphic to a Ililbert
space. Since every subspace of a Hilbert space is isometrically isomorphie
to a Hilbert space, no subspace of the Hilbert space Ly(u) is isomorphic
to I;(I'). Therefore, in view of Lemma 4.2, it is enough to show that if
u is o-finite, then there exists a linear operator u: L, (u) — Ly (u) such
that the range of w iz dense in Iy(u).

Since p is o-finite, there is in X a sequence {T,}5..; of mutually disjoint

0o
sets such that U T, = T and 0 < w(T,) < + oo forn =1,2,... Let g,
=1

denote the characterigtic function of 7,. Let us set

uf = D07 u(Tw) P raf  for feLy(p).

Then, by the Schwartz inequality, we have

o0

lafly < D) 27" [w(T) T g fllx < Ifla-

=1

(Here by ||l; we denote the norm in IL;(u) for ¢ =1,2, and oo).
If feL,(u), then

[

Mo 1

Let ¢ > 0. Choose N = N(f, ¢) so that
N
1= 3wty < 27
N=l
Since u(T,) < + oo, there are functions f, e Ly, (%) such that f,, = yn'fr,

and
Ifa—snfll. < (2N) e

icm
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Let
N
g= 32 w(Tw)T"fn.
=1
Then

n=1

N N
lgle = 32 0(T0) [ Ifal2a)” <( 3 2" (T2 fal) ™ < + oo
Ty N=1
N
Hence geL,. Clearly, ug = } f,. Therefore
=1

N N
g —fll, < | ) wif=flut 3 lnf =l < e

Thus the range of u is dense in L,(u). That completes the proof.

We return to the proof of Theorem 4.1.

Necessity. Suppose that for some o-finite non-purely atomic
measure p the space L,(u) is isomorphic' to & conjugate Banach space.
Then, by Propositions 3.2 (case I), and 3.3, L (u) would contain a sub-
space isomorphic to 1,(I") with cardl” = 2% But this would contradict
Lemma 4.3.
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On differentiability in an important class of locally convex spaces
by

J. KIJOWSKI and W. SZGZYRBA (Warszawa)

The most interesting facts in the theory of differentiation in Banach
spaces are based on the fact that in a Banach space there exist bounded
neighbourhoods of zero. In more general cases these two vproperties (of
being open or bounded) exclude one another. So the generalizations of
this theory which are known to us have followed two different ways:
defining differentiability “with respect to bounded sets” or “with respect
to open sets”. The first way was chosen by Sebastiao e Silva [12]. A very
disagreeable defect of this theory is that differentiability does not imply
continuity. However, this implication is valid for Fréchet spaces but
it requires a non-trivial proof. Besides, the lack of the mean value theorem
in Silva’s theory makes it impossible to estimate the remainder by the
derivative. '

The second way was chosen by several authors, e. g. Marineseu [11],
Bastiani [1], Binz [2], Keller [8], Frolicher and Bucher [6]. As is well
known (cf. an excellent review of Keller [97), in the case of a general
locally convex space I/ there does not exist any locally convex topology
in (B, F) in which the mapping

ExZ (B, F)s(h, L) + L(h)eF

is continunous. No wonder that nobody succeeded in obtaining in the
general case the mean value theorem or an equivalent theorem stating
that the continuously Géiteaux differentiable mapping is also Fréchet
differentiable. Replacing the continuity of a Giteaux derivative by
a much stronger non-topological condition, Marineseu [11], Bastiani [1]
and other authors mentioned above obtain the Fréchet differentiability.

We prove in the present paper that in an important for applications
clags of Fréchet spaces one can develop a theory of differentiation “with
respect to open sets” without assuming this condition. Many theorems
known in the classical theory of differentiation in Banach spaces are
proved here. We give also (in gection 3) a natural criterion for the
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