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A remark on the weak-star topology of I
by

DONALD SARASON (Berkeley, Calif,)

The purpose of this note* is to present examples of a certain phe-
nomenon associated with weak-star topologies. Although the phenomenon
has been understood abstractly since the time of Banach, the literature
contains few concrete examples.

Let M Dbe a linear manifold in the dual of a separable Banach space.
Let M° = M, and for each countable ordinal number a, let M® be the
set of all limits of weak-star convergent sequences in (J M”. Then the

B<a
set M~ = | JM" is the weak-star closure of M, and there is a least coun-
table ordinal », called the order of M, such that M~ = M” ([2], p. 213).

Mazurkiewicz was the first to exhibit a linear manifold of order
greater than 1; his manifold is in I' (= ¢j) and it has order 2 [6]. Later
Banach constructed linear manifolds in 7' of all finite orders ([2], p. 209),
and recently MeGehee has shown that I' contains linear manifolds of
all orders [7]. The present author has shown that the spaces H® and I
contain linear manifolds of all orders [8].

The examples to be presented here are of linear manifolds of all
orders in the space I*°; they are much simpler than any of the examples
mentioned above. A modification of the construction produces analogous
examples in the space L™ [0,1].

The eonstruction is based on a theorem about polynomial approxi-
mation. To prove this theorem we need the following special case of
a theorem of Banach ([2], p. 213):

THEOREM. Let B be a separable Banach space and M a linear manifold
in B*. Let M~ be the weak-star closure of M. Assume that for each f in B,

(1) sup{KD,f>]: e, || <1} = sup{KP, )|: Pl |9} <1}.

Then each @ in M~ is the weak-star limit of a sequence of elements
in M whose norms are uniformly bounded by ||P|.

* Research supported in part by National Science Foundation Grant GP-5585.
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Short proofs of this result can be found in [3], p. 1062, and [1]
Appendix I.

We now state and prove the approximation theorem. Let C be the
unit circle and D the open unit disk in the complex plane.

THEOREM. Let p be o finite, positive, singular Borel measure on C.
Let ¢ be any function in L®(u) and v any bounded analytic function in D.
Then there s a sequence {p,} of polynomials, uniformly bounded on C by
Max (|@lles Wlle)s such that p, — @ in the weak-star topology of L% (u) and
Pn —> 7y potntwise in D.

Proof. Let m be Lebesgue measure on ¢ and let A = m--u We
regard L'(1) as the direct sum L'(m)@L*(u) and L*(A) as the direct
sum L%(m)@®L™(u). Let M be the set of all polynomials, regarded as
a linear manifold in I®(4). If  is a function in L'(4) that annihilates M,
then it follows by the F. and M. Riesz theorem that the measuve hdi
is absolutely continuous with respect to m, in other words, h is in L*(m).
Hence h annihilates H*(m)@PL™(x), and, as the latter subspace iy weak-
-star closed, we can conclude that M~ = H*®(m)PL®(u).

Because of the preceding equality and Banach’s theorem, we can
complete the proof by showing that (1) holds for each f in L'(1). Let f
be given, and let L and R denote the guantities on the left and right
sides of (1). By the Hahn-Banach and Riesz representation theorems,
there is a measure » on € such that |»]] = L and

(2) fpdv = ffpdl, peM.

The F. and M. Riesz theorem implies that the measure dy— fda is
absolutely continuous with respect to m, and therefore » is absolutely
continuous with respeet to 4. Thus we ean conclude from (2) and the
weak-star density of M in M~ that

[ od = [foan,

It follows that E < |v|| =L, and hence R = L. The proof is complete.
We shall need the following special case of the approximation theorvem:
CoroLLARY. Let ¢ be a bounded analytic function in D, {z.} a sequence
of distinct points on O, and {wy} a bounded sequence of complex numbers.
Then there is a sequence {py} of pobynomdals, uniformly bounded on ¢ by

Dell.

max ([l sup [wal),

such that p, — v pointwise in D and Pn(2) — wy for each .

The above proof of the approximation theorem is an adaptation
of the proof in [1], Appendix II. The corollary is a special case of the
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theorem proved in [1], Appendix II, and also of a related theorem of
Glicksberg [4].

We can now give the promised examples.

THEOREM. There ewist in 1° weak-star dense linear manifolds of all
possible orders.

Proof. We consider in detail the case of order 2; the construction
here was used by Wermer [9] for a similar purpose. The general case
is based on the same ideas and will only be sketeched.

Let 0y and O, be circles in the complex plane centered at the origin,
with €, having the larger radius. Let § be a countable subset of ¢ w C,
that is dense in C; and has at least one limit point on C,. The space I
can then be identified with 1°(8), the space of bounded complex-valued
functions on 8. We can regard I°(8) as the direct sum I°(8 ~ C)®
@18 ~ Cy).

Let M be the set of functions on § that are restrictions of polyno-
mials. Suppose @ is a function in the manifold M*. Then there is a sequence
{pn} of polynomials such that p,|8 — & in the weak-star topology of
°(8). This means that the sequence {p,} is uniformly bounded on S
and converges to @ at each point of S§. Since § contains a dense subset
of 0y, the polynomials p, must be uniformly bounded on D, the interior
of 0,. Hence @|(8 ~ C,) is the restriction of a function in H*(D,) (the
space of bounded analytic functions on D,), and we have the inclusion

M < 1°(8 A 0) @ H(D)|(S ~ Cy).

From the above corollary it is immediate that the inclusion is actually
an equality. It is easy to see that, because S contains a limit point on
C,, the manifold M* does not contain the restriction to § of the function
z; thus M* £ 1°(8).

A second application of the corollary shows that every function
in 1°(8) is the pointwise limit of a bounded sequence in M', so that
M* = 1°(8), as desired.

To prove the theorem in general, let » be a countable ordinal number.
Then we can find a one-to-one order reversing map o — 7, from the set
of ordinals < v into the positive real axis. For each o let O, be the circle
with center at the origin and radius r,, and let D, be the interior of C,.
Let & be a countable subset of [ JC, sueh that § ~ C, is dense in O, for
every a < v, and such that S has at least one limit point on C,. (If » is
a limit ordinal the last condition can be deleted.) As before, we can identify
I with 1°(8). Let M be the set of functions on § that are restrictions
of polynomials. By the reasoning used above for the special case y = 2,
one can show by induction that

M =1°(8—D,)@H* (D) (8N D), a<vw,
M =1"(8).
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It is easy to check that M*® #1°(8) for « < v, and therefore M has
order », as desired.

A gimilar construction gives the following result:

THEOREM. There ewist in L®[0, 1] weak-star dense linear manifolds
of all possible orders.

Proof. Let v be a countable ordinal number, and let circles €, and
disks D, be defined as in the preceding proof. Let 4 be a purely nonatomic
Borel probability measure on § == (_JC, such that for each a, the restrie-
tion of p to O, is singular with respect to Lebesgue measure on €, and
has support equal to all of C,. The measure space (S, x) is then isomorphic
to the unit interval with Lebesgue measuare ([5], p. 173), so that L>[0, 1]
can be identified with L*(u). For each « let u, be the restriction of u
to §—D,; we thus have direct sum decompositions L®(z) = L™ (u,) ®
@I’m(lu_.ua)'

Let M be the set of all polynomials, regarded as a linear manifold
in I*(u). Suppose @ is a function in M'. Then @ lies in the weak-star
closure, and therefore in the weak IL*(u) — closure, of some ball in I
Hence @ is in, the strong I*(x) — closure of the same ball in M, so that
there is a sequence {p,} of polynomials, uniformly bounded on S, which
converges o @ almost everywhere modulo x. The polynomials p, ave
then uniformly bounded in D,, and thus @|(8 ~ D,) is the restriction
of a function in H*(D,). We therefore have

e L2 () @H* (D) | (8 Dy),
and an application of the approximation theorem shows that the inclu-
gion is actually an equality. Using the same reasoning, one can show by
induetion that

M* = L®(ua) @H®(D)|(8 ~ D), a<w,
M =I®().

It is easily seen that M* = L™ (u) for « < », and thus M has order v,
as desired.
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