## **icm**©

## A remark on the weak-star topology of $l^{\infty}$

b:

## DONALD SARASON (Berkeley, Calif.)

The purpose of this note\* is to present examples of a certain phenomenon associated with weak-star topologies. Although the phenomenon has been understood abstractly since the time of Banach, the literature contains few concrete examples.

Let M be a linear manifold in the dual of a separable Banach space. Let  $M^0=M$ , and for each countable ordinal number a, let  $M^a$  be the set of all limits of weak-star convergent sequences in  $\bigcup_{\beta< a} M^{\beta}$ . Then the set  $M^-=\bigcup_a M^a$  is the weak-star closure of M, and there is a least coun-

table ordinal  $\nu$ , called the order of M, such that  $M^- = M^{\nu}$  ([2], p. 213).

Mazurkiewicz was the first to exhibit a linear manifold of order greater than 1; his manifold is in  $l^1$  (=  $e_0^*$ ) and it has order 2 [6]. Later Banach constructed linear manifolds in  $l^1$  of all finite orders ([2], p. 209), and recently McGehee has shown that  $l^1$  contains linear manifolds of all orders [7]. The present author has shown that the spaces  $H^{\infty}$  and  $l^{\infty}$  contain linear manifolds of all orders [8].

The examples to be presented here are of linear manifolds of all orders in the space  $l^{\infty}$ ; they are much simpler than any of the examples mentioned above. A modification of the construction produces analogous examples in the space  $L^{\infty}$  [0,1].

The construction is based on a theorem about polynomial approximation. To prove this theorem we need the following special case of a theorem of Banach ([2], p. 213):

THEOREM. Let B be a separable Banach space and M a linear manifold in  $B^*$ . Let  $M^-$  be the weak-star closure of M. Assume that for each f in B,

$$(1) \quad \sup \{ |\langle \Phi, f \rangle| \colon \Phi \in M, \|\Phi\| \leqslant 1 \} = \sup \{ |\langle \Phi, f \rangle| \colon \Phi \in M^-, \|\Phi\| \leqslant 1 \}.$$

Then each  $\Phi$  in  $M^-$  is the weak-star limit of a sequence of elements in M whose norms are uniformly bounded by  $\|\Phi\|$ .

<sup>\*</sup> Research supported in part by National Science Foundation Grant GP-5585.

Short proofs of this result can be found in [3], p. 1062, and [1] Appendix I.

We now state and prove the approximation theorem. Let C be the unit circle and D the open unit disk in the complex plane.

THEOREM. Let  $\mu$  be a finite, positive, singular Borel measure on C. Let  $\varphi$  be any function in  $L^{\infty}(\mu)$  and  $\psi$  any bounded analytic function in D. Then there is a sequence  $\{p_n\}$  of polynomials, uniformly bounded on C by  $\max(\|\varphi\|_{\infty}, \|\psi\|_{\infty})$ , such that  $p_n \to \varphi$  in the weak-star topology of  $L^{\infty}(\mu)$  and  $p_n \to \psi$  pointwise in D.

Proof. Let m be Lebesgue measure on C and let  $\lambda = m + \mu$ . We regard  $L^1(\lambda)$  as the direct sum  $L^1(m) \oplus L^1(\mu)$  and  $L^{\infty}(\lambda)$  as the direct sum  $L^{\infty}(m) \oplus L^{\infty}(\mu)$ . Let M be the set of all polynomials, regarded as a linear manifold in  $L^{\infty}(\lambda)$ . If h is a function in  $L^1(\lambda)$  that annihilates M, then it follows by the F. and M. Riesz theorem that the measure  $hd\lambda$  is absolutely continuous with respect to m, in other words, h is in  $L^1(m)$ . Hence h annihilates  $H^{\infty}(m) \oplus L^{\infty}(\mu)$ , and, as the latter subspace is weak-star closed, we can conclude that  $M^- = H^{\infty}(m) \oplus L^{\infty}(\mu)$ .

Because of the preceding equality and Banach's theorem, we can complete the proof by showing that (1) holds for each f in  $L^1(\lambda)$ . Let f be given, and let L and R denote the quantities on the left and right sides of (1). By the Hahn-Banach and Riesz representation theorems, there is a measure  $\nu$  on C such that  $\|\nu\| = L$  and

(2) 
$$\int p dv = \int f p d\lambda, \quad p \in M.$$

The F. and M. Riesz theorem implies that the measure  $dv-fd\lambda$  is absolutely continuous with respect to m, and therefore v is absolutely continuous with respect to  $\lambda$ . Thus we can conclude from (2) and the weak-star density of M in  $M^-$  that

$$\int \Phi d\nu = \int f \Phi d\lambda, \quad \Phi \in M^-.$$

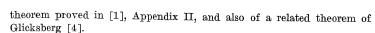
It follows that  $R \leq ||v|| = L$ , and hence R = L. The proof is complete. We shall need the following special case of the approximation theorem:

COROLLARY. Let  $\psi$  be a bounded analytic function in D,  $\{z_k\}$  a sequence of distinct points on C, and  $\{w_k\}$  a bounded sequence of complex numbers. Then there is a sequence  $\{p_n\}$  of polynomials, uniformly bounded on C by

$$\max(\|\psi\|_{\infty}, \sup_{n} |w_n|),$$

such that  $p_n \to \psi$  pointwise in D and  $p_n(z_k) \to w_k$  for each k.

The above proof of the approximation theorem is an adaptation of the proof in [1], Appendix II. The corollary is a special case of the



We can now give the promised examples.

Theorem. There exist in  $l^{\infty}$  weak-star dense linear manifolds of all possible orders.

Proof. We consider in detail the case of order 2; the construction here was used by Wermer [9] for a similar purpose. The general case is based on the same ideas and will only be sketched.

Let  $C_1$  and  $C_2$  be circles in the complex plane centered at the origin, with  $C_1$  having the larger radius. Let S be a countable subset of  $C_1 \cup C_2$  that is dense in  $C_1$  and has at least one limit point on  $C_2$ . The space  $l^{\infty}$  can then be identified with  $l^{\infty}(S)$ , the space of bounded complex-valued functions on S. We can regard  $l^{\infty}(S)$  as the direct sum  $l^{\infty}(S \cap C_1) \oplus \mathcal{O}(S \cap C_2)$ .

Let M be the set of functions on S that are restrictions of polynomials. Suppose  $\Phi$  is a function in the manifold  $M^1$ . Then there is a sequence  $\{p_n\}$  of polynomials such that  $p_n|S\to\Phi$  in the weak-star topology of  $l^\infty(S)$ . This means that the sequence  $\{p_n\}$  is uniformly bounded on S and converges to  $\Phi$  at each point of S. Since S contains a dense subset of  $C_1$ , the polynomials  $p_n$  must be uniformly bounded on  $D_1$ , the interior of  $C_1$ . Hence  $\Phi|(S\cap C_2)$  is the restriction of a function in  $H^\infty(D_1)$  (the space of bounded analytic functions on  $D_1$ ), and we have the inclusion

$$M^1 \subset l^{\infty}(S \cap C_1) \oplus H^{\infty}(D_1) | (S \cap C_2).$$

From the above corollary it is immediate that the inclusion is actually an equality. It is easy to see that, because S contains a limit point on  $C_2$ , the manifold  $M^1$  does not contain the restriction to S of the function  $\overline{z}$ ; thus  $M^1 \neq l^{\infty}(S)$ .

A second application of the corollary shows that every function in  $l^{\infty}(S)$  is the pointwise limit of a bounded sequence in  $M^1$ , so that  $M^2 = l^{\infty}(S)$ , as desired.

To prove the theorem in general, let  $\nu$  be a countable ordinal number. Then we can find a one-to-one order reversing map  $a \to r_a$  from the set of ordinals  $\leq \nu$  into the positive real axis. For each a let  $C_a$  be the circle with center at the origin and radius  $r_a$ , and let  $D_a$  be the interior of  $C_a$ . Let S be a countable subset of  $\bigcup C_a$  such that  $S \cap C_a$  is dense in  $C_a$  for every  $a < \nu$ , and such that S has at least one limit point on  $C_{\nu}$ . (If  $\nu$  is a limit ordinal the last condition can be deleted.) As before, we can identify  $l^{\infty}$  with  $l^{\infty}(S)$ . Let M be the set of functions on S that are restrictions of polynomials. By the reasoning used above for the special case  $\nu=2$ , one can show by induction that

$$\begin{split} \mathbf{M}^a &= l^\infty(S - D_a) \oplus H^\infty(D_a) | (S \bigcap D_a), \quad \ a < \nu, \\ \mathbf{M}^\nu &= l^\infty(S). \end{split}$$

It is easy to check that  $M^a \neq l^{\infty}(S)$  for a < r, and therefore M has order r, as desired.

A similar construction gives the following result:

THEOREM. There exist in  $L^{\infty}[0\,,1]$  weak-star dense linear manifolds of all possible orders.

Proof. Let  $\nu$  be a countable ordinal number, and let circles  $C_a$  and disks  $D_a$  be defined as in the preceding proof. Let  $\mu$  be a purely nonatomic Borel probability measure on  $S = \bigcup C_a$  such that for each a, the restriction of  $\mu$  to  $C_a$  is singular with respect to Lebesgue measure on  $C_a$  and has support equal to all of  $C_a$ . The measure space  $(S, \mu)$  is then isomorphic to the unit interval with Lebesgue measure ([5], p. 173), so that  $L^{\infty}[0, 1]$  can be identified with  $L^{\infty}(\mu)$ . For each a let  $\mu_a$  be the restriction of  $\mu$  to  $S-D_a$ ; we thus have direct sum decompositions  $L^{\infty}(\mu) = L^{\infty}(\mu_a) \oplus \oplus L^{\infty}(\mu-\mu_a)$ .

Let M be the set of all polynomials, regarded as a linear manifold in  $L^{\infty}(\mu)$ . Suppose  $\Phi$  is a function in  $M^1$ . Then  $\Phi$  lies in the weak-star closure, and therefore in the weak  $L^2(\mu)$  — closure, of some ball in M. Hence  $\Phi$  is in the strong  $L^2(\mu)$  — closure of the same ball in M, so that there is a sequence  $\{p_n\}$  of polynomials, uniformly bounded on S, which converges to  $\Phi$  almost everywhere modulo  $\mu$ . The polynomials  $p_n$  are then uniformly bounded in  $D_1$ , and thus  $\Phi|(S \cap D_1)$  is the restriction of a function in  $H^{\infty}(D_1)$ . We therefore have

$$M^1 \subset L^{\infty}(\mu_1) \oplus H^{\infty}(D_1) | (S \cap D_1),$$

and an application of the approximation theorem shows that the inclusion is actually an equality. Using the same reasoning, one can show by induction that

$$egin{aligned} \mathit{M}^a &= L^\infty(\mu_a) \oplus H^\infty(D_a) | (S \cap D_a), & \quad \alpha < \imath, \ & \\ \mathit{M}^
u &= L^\infty(\mu). & \end{aligned}$$

It is easily seen that  $M^a \neq L^{\infty}(\mu)$  for a < v, and thus M has order v, as desired.

## References

- [1] P. R. Ahern and D. Sarason, On some hypo-Dirichlet algebras of analytic functions, Amer. J. Math. 89 (1967), p. 932-941.
  - [2] S. Banach, Théorie des opérations linéaire, New York 1955.
- [3] J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), p. 1057-1071.
- [4] I. Glicksberg, Bounded pointwise approximation for dirichlet algebras, unpublished.



[5] P. R. Halmos, Measure theory, Princeton 1950.

[6] S. Mazurkiewicz, Sur la dérivée faible d'un ensemble de fonctionnelles linéaires, Studia Math. 2 (1930), p. 68-71.

[7] O. C. McGehee A proof of a statement of Banach about the weak\* topology, Michigan Math. J., to appear.

[8] D. Sarason, On the order of a simply connected domain, ibidem, to appear.

[9] J. Wermer, On invariant subspaces of normal operators, Proc. Amer. Math. Soc. 3 (1952), p. 270-277.

UNIVERSITY OF CALIFORNIA, BERKELEY

Reçu par la Rédaction le 1. 10. 1967