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Summability of vector sequences
by

JOSEPH B. DEEDS (Baton Rouge, La.)

1.1. Introduction. In his paper [6] G. G. Lorentz defined the notion
of almost convergence for scalar sequences, and proved the fheorem cha-
racterizing them in terms of their averages. It is the purpose of this paper
to extend Lorentz’s results to sequences of vectors in a Hilbert space and
to obtain component-wise criteria for sequences to be periodic and almost
periodic. It turns out that the results for scalar sequences cannot be
extended to all types of vector sequenees, and it is convenient to classify
the “good” and “bad” sequences in an enlarged Hilbert space. A further
justification for employing this structure (although it is not heavily
relied on in the paper), is that there are several methods of extending
a generalized limit from scalar to vector sequences. In the enlarged space,
the formal distinctions are identified with a single projection operator.
Details of the brief description of Hz in 1.3 may be found in [4].

1.2 Definitions and notation. The symbol H will denote a fixed
separable Hilbert space over the complex numbers. Let m denote the
space of bounded complex sequences. A positive linear functional Lem”*
is called a generalized limit provided it preserves ordinary limits. That
is, if lim(a,) = @, L((as)) = @ also. If L((ans1)) = L((a) for all (an)em,
T is said o0 be translation inveriant (T. 1) The existence of T. I. genera-
lized limits was proved by Banach [1].

Tn order to avoid nested parentheses, we will drop them whenever
possible. Thus, if (2,) and (y,) are two sequences of vectors in H, then
(%, ¥)) is their “inner product” sequence. The value of L on this
sequence (provided it is bounded) is L(((wn,yn))), which we write as
L(@n, ya)-

1.3. The space Hy,. Let Z(H) be the set of all norm bounded sequences
of vectors in H. If operations are defined point-wise, Z(H) becomes
a vector space. A semi-definite bi-linear form may be defined on Z(H)
as follows: For o = (&), ¥ = (Ya) let [z, y] = L(xm, Yn). If we let

K = {(zn)e Z(H): L(llzal") = 0},
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then Z(H)/K is a pre-Hilbert space. Denote by Hy the completion of
Z(H)|K. We will usually view the elements of X(H)/K as though they
were sequences, rather than equivalence classes, and we persist in thig
viewpoint when X(H)/K is regarded as a subset of Hy. This construction
is due to Berberian [2].

Clearly, the map which sends each heH into (), the constant sequence
whose every term is %, is an isometric embedding of H in Hy. The se-
quences having range contained in a strongly compact set in H form
& linear manifold, U, in Hy. The closure, <U), of U in Hy is a subspace,
and we can write Hy = (UYQU".

The algebra m is isomorphic to the algebra C(8N), where SN is the
Stone-Cech compactification of the integers. If the isomorphism is denoted
by B, we can view each sequence (a,) a8 being associated with an exfen-
sion a” «C (BN} so that ¢f(n) = a, for all neN < BN. Likewise, each cle-
ment Lem* is associated with a measure on BN, say a, so that

L(a,) = fa/i ()da(t) for each (a,)em.
N

It follows from the fact that L is a generalized limit that « is supported
on BN —N. It is possible to define a similar extension for vector sequences
x = (w,)eZ(H), and it is seen [4] that the extension (z,) — 2* induces
a partial isometry on Hz. Under it, <U) is isometric to an L,-space of
vector functions on AN and UL goes into zero.

1.4. Extensions of L. (a) Let L be a given generalized limit. For
each element (x,)eX(H), the equation F(y) = L(y,x,) defines a con-
tinuous linear functional on H. Thus there is a unique heH so that F(y)
= (y, h). Define L,(z,) = h.

The operation of L, on X(H) is evidently linear. If (z,) - keH in
the weak topology,

Ly, @) = (y, k) = (?/, La(”n))

ffzor every ye<H. Thus L,(w,) = k. In this sense, L, is still a generalized
limit. Also, for yeH,» = (2,)eZ(H)

() Zatea))] = 1Ly, 2a)| < 1Al l2al)| < Iyl ol -

Thus L, may be extended (by linearity and continuity) to Hiy.

) (b) I}ourba;ki [3] develops a theory of integration for vector func-
tions f wm}} respect to a sealar measure a. This theory is especially simple
when applied to Hilbert space valued functions continuous on and sup-
ported in a compact set. Then

dea,h) = [(f(#), h)da(t) for all heH.
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Applying the Stone-Cech extension to z = (@), we define

Iy(wa) = [ 2"da,
BN

where a is the measure on SN associated with the generalized limit L
in the sense of the previous section. Again, if (#,) —h weakly, then
(&, k) = (h, k) for each keH. On the other hand, af is at least weakly
continuous on BN, and therefore the scalar sequence (2, %) has the
extension (#°(t), k). It is not difficult to see that a scalar sequence which
converges to zero must have an extension on AN which vanishes on
BN —XN. Thus (mﬁ (), k) = (k, k) for all {¢fN—N. Since a must be suppor-
ted on BN —N,2® = h almost everywhere and so Ly(®,) = h. As before,
we may extend I, to Hjp,.

(¢) Let us consider only U-sequences for a moment. If we write
@y, = Z;(@n, ¢:)€; (Where (e;) is a basis sequence), then the series’ must
converge uniformly in n. It is reasonable to expect that an extension L,
should satisfy

L (@) = Z; [L{an, €:)]e;.

Thus, for finite rank sequences

k
Lp = Z(mny ;) e;
i=0
in U, we define
k
Lc(ﬁn) = 2 [I’($n) )] e;.
=0

(L is evaluated on the variable #, not 4.) This map from a subset of U
into H is bounded because

k k
(Zot@n), 9) = | 3 (L (@, 0))es, 9] < T| (2, ) (66, 9)
i=0 i=0

< L(llall - 1) < yll- oz, -

Since the finite rank sequences are demse in {U), the extension by
linearity and continuity can be accomplished. Since Hy = <U>@U,
we define I, to be zero on U™

1.4.1. THEOREM. On Hg, Ly = Ly = L, = L° and I? is the projec-
tion of Hy onto H (viewed as the constant sequences).

Proof. Since

(La(@a), 9) = Lian, y) = [ (" ®),y)dal) = (ﬁ { 2 (t)da(t), y)
BN N

= (Lb(mn),y) for all yeH,
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L, and I, coincide on Z(H) and therefore on Hyr. Because «® vanighes
when #e U+, both L, and. L, are zero on UL, as is L, by definition. It is
clear that L, = L, on the finite rank sequences, and this is enough for
the equality of I, and I, throughout <U). Thus L, = Iy = L, on Hp
and we denote their common value by I°.

Sinee I° is identically zero on U’ and is evidently the identity on
H < Hy, it suffices to show that I° iy selfadjoint on <U). For this pur-
pose, it is enough to consider the action of L, on the finite rank sequences

13 7
A

Tp = Z(mm €)ei, Ym = 2 (Ymy €2) €;.
i=0 1=0

(We will temporarily use a superscript on L to indicate which variable L
operates on). For 2 = (4,), ¥ = (¥a):

_ k i
[Le(®), Yla, = Lm(Lc(x); '!/m) =I" (ZL”(:&,,, )€, (Yms €5) 8i)
=0 =0

:

) i
= (ZI’n(wm 6:) 6, ZLm (Ym s &) e'i)a
i=0 1=0
which, by symmetry, is equal to [#, Ly (4)]g,. Thus L, = L° must be
self-adjoint on (U). This shows that L° is the projection on H.

2.1. Almost convergence. Throughout the remainder of the paper, L
will denote a T.I. generalized limit. The following definition and its
consequences are due to Lorentz [6]. Let (a,)em. If for every I we have
L(a,) = b, where b iy a number independent of L, we say that (a,) is
almost convergent to b, and write (a,) > b.

TrrorEM. Let
Sﬁ(a) — a‘ﬂ+1+‘ . + a”n+p .
p
Then (an) > b if and only if 1111’116(5(0») = b uniformly in n.

‘We observe that L produces a T. I. extension L' in Hy. Specifically,
for each (#,) e Z(H), let T (@,) = (#y,y). Then 7 is & norm preserving map
and extends to a unitary transformation of H; onto itself. We have for
% = (wy)eHy, yeH

[L(T2), Y1uy, = L(@n11,9) = L(@n, y) = [L°(a), ¥lm, -

That is to say L’(Tz) = L°(x). Thus we could speak of almost conver-
gence of vector sequences in terms of L’ commuting with the operator T.
Since we will deal with sequences, rather than elements of Hy, , we will
say that (z,) is almost convergent to h<H provided L° (2n) = h for every L.
It is evident that for any I, the sequences which eonverge weakly will
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be almost convergent. Looking at Hy, for a moment, any sequence which
lies in H* regardless of L will be almost convergent to zero. This i3 the
source of the counter-examples that follow. In U, however, we have
a well behaved set of sequences; as the following illustrates.

2.1.1. TuBorREM. Let & = (2,) be a U-sequence. Define Sy (x) as above.
Then the following statements are equivalent:

1) (@n) > h;

2) (@, €) > (h,6) for every e in a basis set;

3) |I8%(x) — hllg — 0, as p — oo, uniformly in n.

Proof. That 1) implies 2) is clear from the definition of L (zy).

2) implies 3). Write

k k
(%) Sh@)—h = D'(8h(@), o)e;— D) (b, e+
=1 j=1
+ D (S2@), e)g— D) (e
J=k+1 f=k+1

Let ¢ > 0 be given. We can surely choose & so that the norm of the
fourth term on the right is less than e Also, the uniform convergence
of the series @, = Zi(%,, ¢;) ¢; allows us to choose k so that the third term
has norm less than ¢ also. We fix k large enough to satisfy both these
requirements and apply the hypothesis to the difference of the first two
terms on (). We may (by Lorentz’s theorem) choose p so that this diffe-
rence is less than ¢/k, independent of m. For this choice of p:

|85 (z)— Rl < 3¢, independent of n.

3) implies 1). Clearly 3) implies 2) because (v, e)| <yl for every
yeH. Thus, because (x,)eU,

L°(2y) = ZiL (@, &) e; = Zi(h, &) e; = T
for every L.

Among almost convergent scalar sequences are the convergent ones,
the periodic ones, and the almost periodic ones. We examine the latter
notions in some detail for vector sequences. For the moment, however,
we consider the topological properties of almost convergence.

It follows from fairly general principles that the generalized limit
of a veetor sequence will lie in the closed convex hull of the terms of the
sequence. By the preceding theorem, if (1,) has period p, (#,) is almost
convergent to its mean value. That is, if @,y = x, for all n, then

Fi s PR Y

() > )
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From this, it is evident that none of the usual notions of proximity
apply. If T s a bounded linear map on H, the relation L(Tay,y) =
= L(tty, T*y) shows that T will preserve almost convergence. The follo-
wing theorem shows that a sort of converse is true.

9.1.2. THEOREM. Let T be a map from H into H, continuous in the
norm topology, and suppose T(0) = 0. Then o necessary and sufficient
condition that T preserve almost convergence is that T be additive and real
homogeneous.

Proof. Sufficiency. Write M (v) = iT' () +T (iw), N (») = ¢T'(w)—
—T(iz). Then M and ¥ are additive; M (az) = oM (z) and N (o) = oN (z)
for all complex a. Clearly, M, being an ordinary operator, will preserve
almost convergence. On the other hand, associated with the conjugate
homogeneous transformation N there iy a well defined conjugate homo-
geneous transformation N~ which satisfies (Nz, y) = (N~y, ) for every
z,yeH. Thus for any L and yeH

L(Nwwy) = L[(@n, N7y)] = L(wa, N7y)
= (h, N~y) = (¥h, ),
whence Nw, > Nh, so N preserves almost convergence also. Sinee T (z)
= (1/24)[M (%) +N(x)], T will preserve almost convergence.
Necessity. The sequence
0 for
h for -

n #kp,
n==rFkp,h#01in H

Ly =

i3 a U-sequence of period p. We have (w,) > h/p, and so T'(z,) > T (h/p).
However,

0 for
T(h) for

80 T'(ws) > T'(h)/p. We have thus shown that T(k/p) = T(h)/p when p
is a positive integer. The sequence @, y, &, ¥, ... where , yeH is almost
convergent to (1/2)[z+y]. Bub then T'(x), T'(y), ... is almost convergent
to T((1/2)(w+y)) by the preservation assumption. We always have
Tw), T(y), (@), ... > (1)2)[T(@)+T(y)], and so (1/2)[T(2)+T(y)] =
= T((1/2)(w+9)) = (1/2)T(2+y), whence T is additive. Now the addi-
tivity and continuity combine to give real homogeneity.

A%
T(wn)={ Z lz’
:67

22 Averages of non-U sequences. We have observed that the
generalized limit of every weakly convergent to zero sequence is zero.
Z.E’art 3 of Theorem 2.1.1 fails in the case of such sequences. For instance,
if [-] denotes the greatest integer function, the sequence «, = i
converges weakly to zero and the averages converges in norm to zero

e ©
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also — but not in a translation invariant fashion. An even stronger
example is provided by the following sequence whose norm averages do
not converge to zero. We define a sequence of integers n; as follows. Let
n; =1, ny chosen so that

2

> 4.

Ny 1+ Np€s
N+ Ny

|

i
In general, let §; = } ;. Then if we have determined 7, ..., Ri_y,
f=1
we choose n; so that

2

[ e T
—_ 1 >4

Siqt+ns
This can be done because the norm term is at least as large as
_ o (mp

(8i_1+m5)?

and the fraction approaches 1 as 5, increases without bound. It is thus
eventually greater than 1/2, and the sequence (n;) is defined. Now let

Ni g

8 1+m

&Ly = €y,
Dy, = €441 when S; < n < Dip1-
Then
@+ 4 ag, | ny e 4. .o ‘
| - >4
1 'Sk | S}“ i

and so the averages cannot converge to zero in norm.

3.1. Periodic sequences. Any periodic vector sequence is in U because
its range is finite-dimensional. It will have periodic basis component
BEQUENCES: (y.opy €;) = (Bn, &) for ¢ =1,2, ... Thus the generalized limits
of such are computable from the averages of their components by the
formula

o .
() If (@) = D (L, e)]es.
=0

Conversely, if we are given that (zy,e;) is periodic with* period p;
for i =1,2,..., we might expect that the generalized limit is com-
putable according to (). We now consider conditions under which this
is possible. :

3.1.1. THROREM. A wveclor sequence (z,) is periodic if and only if
(0, ¥) is periodic for every yeH. :
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Proof. We need to establish only the sufficiency. Let
By, = {heH: (Tnix—Tn, ) = 0 for all n}.
Then Ej is & closed set and every heH belongs to some Ey. Thus
H = kQEk and by the Baire Category Theorem, at least one ) contains

a non-void open set, i.e. a sphere S of radius > 0. When heS < Hy,
(2por—n, B) = 0. Let g be interior to § so that 0 is interior to S—g¢.
If %' is chosen s0 that (#n,u— %, g) = 0 for all n, then k%' = K has
the property that (#n,z— 2, f—g) = 0 for every feS. Thus (@p x— ¥, 2)
= ( for all zin a neighborhood of zero. It now follows that (@,x— %y, ¢) = 0
for all zeH, and so K is a period for the sequence (w).

The hypothesis of this theorem cannot be weakened to assert that
(,) is periodic whenever (w,, ¢) is periodic for each e in a basis set. In
the following computation, L always operates on the variable n.

Let (), be the characteristic function of multiples of ¢, that is =1
if 4 divides n, and zero otherwise. Then =10} has period 4 (as a function
of n). We may define

1 .
Lp = 2«;7%9«; = Zi(@n, €}

The straightforward verification that this is a U-sequence depends
on the fact that }7* converges. For z = (z,), we have

1
2)=2£

37
4/3

lellez, = Z(lzall®) = ZL(|(2n, €)]*) = ZiL (]%02

s0 the sequence is mon-trivial. It is not periodic, however. If we view it
in the spatiayl context of U = Hy, even more is true. Let T be the shift
operator defined in 2.1. Then there is no p so that T2 = @ in Hz, (regard-

less of which L i chosen). Thus, we assert L({lz,,,—,]?) 5 0 for every p.
‘We have

Tty — ) = 5 5 L{10h,,~0Ef%) = 0

if and only if every term vanishes.
1 it djn+p and itn,
[Chip—Ch2 ={1 if 4|n and itntp,
0  otherwise.

_ If p is given, we choose 4 so that +p. Then for n = ki, ¢|n, but
2 4n+p. Thus, for n = ki, the value of the sequence is 1, so

L(|Onyp— 0)?) > L(0}) = 1/i > 0.

e ©
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It is reasonable to expect, however, that this sequence inherits some
sort of periodicity, and it does turn out to be an almost periodic sequence.
We establish this in the mext sectiom.

3.2. Almost periodicity. The generalized limits of almost periodic
sealar sequences [6] may be obtained from their mean value:

1 N
tim Z P
t=1

Our object in extending this notion to vector sequences is to cha-
racterize the latter in terms of their components and to show (by virtue
of the fact that such sequences are in U) that the component-wise com-
putation of their generalized limits is valid.

Definition. A subset S of the positive infegers is said to be rela-
tively dense in N if there is a number m so that in each interval [k, k+m]
there is at least one member of S.

Definition. Let (a,) be a sequence in a metric space whose metric
is denoted by d(-, ). The integer p is called an e-translation number of
(ay) provided

SUP & (G ypy n) < €.
n

We denote the set of e-translation numbers of (a,) by Ele, an)]

Definition. A sequence (a,) in & metric space will be called almost
periodic (AP) provided for each & > 0 the set E[e, an] i§ relatively dense
in N.

This definition is different from the one usually given for functions
on semi-groups in that it excludes sequences which converge to zero.
In more general circumstances, if almost periodicity is defined in terms
of compactness of translates, the set of AP semi-group functions is the
direct sum of functions almost periodic on a group and funetions which
vanish at infinity. This is, in particular, true for the semi-group of posi-
tive reals and the positive integers [5]. For our purposes, the sequences
which eonverge to zero pose no question as to summability — they are
merely superfluous. It should be noted also that our definitions are quite
similar to H. Bohr’s classic formulation of an AP real function. Some
of his proofs will apply with minor modifieations. Thus it is almost imme-
diate that an almost periodic sequence is bounded. On the other hand
the discrete topology of the integers eliminates the possibility of employing
uniform continuity to produce an “interval” of translation numbers
about zero. For this reason, it is not immediately apparent that two
almost periodic sequences will have any e-translation numbers in com-

Studia Mathematica, t. XXX, z. 3 24
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mon—hence their sum is not clearly AP. The converse of the following
lemma is the definition of almost periodicity frequently employed.
We will denote by X(H), the space X(H) with supremum norm:

el = sup|[@aller -
n

If M is a positive integer (or zero) y is the M-th translate of the sequence
@y, 80 yly = Tpypnr-

3.2.1. LeMMA. If & = (z,) s AP, then the translates {u®}3r_y form
a totally bounded set in X(H)y.

Proof. For s> 0 given, let m(s) be the least length of an interval
in which some member of E[e, #,] must lie. Then the sequences =, ,»,
s,y ... my® are an e-mesh for the seb {2} 51+

3.2.2. LeMMA. If (@) is AP, then (m,)eU.

Proof. We need to show that (z,) is contained in a totally bounded
set in H. But if j and % are greater than one,

e — @iller < 8up lge—1)Bn—g—y@ule = -1y —(¢-1)%lw-
7

Now the assertion follows from the previous lemma.
We can now complete the example of 3.1 by showing the non-periodiec
sequence defined therein is almost periodic. Write

k
Wonsn—@allt = D) @nsps ) — (@, €[>+

i=0

oo
+ D) (@asps 06— (@, )|
t=f41
Sinee (#,) and (2,.,) are both TU-sequences, the gecond term can
be made smaller than e for large enough %, independent of # or p. Having
thus determined %, we consider (@, ¢;) for ¢ < %. These sequences have
period ¢ and so the first & summands above will vanish if p is any number
divisible by all ¢ < k. It follows that j-%!, where j =1, 2,... is a rela-
tively dense set of s-translation numbers for (a,).
“In order to prove the following theorem, we neéd three additional
statements, the verification of which we leave to the reader:
“1)‘If‘(:'vn) is AP, then so is (gw,) for each K, and for each &> 0,
:E[Ey.wn] < Ele, gl . ‘ ' .
2) It » = (@) is AP, then {gle = |lxtll-

3) If » is AP, then z—xx is also.

3.2.3. THEOREM. Let (x,) and (y,) be AP. Then for &> 0, there is
a relatively dense set of translation numbers which is contained in Ele, o,] A
~ Ele, ys]. Thus (zn)+ (ys) s AP also.

e ©
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Proof, Because the sets {u®}57—, and {uy}57~; are both totally boun-
ded in X(H),,, for ¢ > 0 there is a set {n;, ..., n;} and a set {my, ..., m.}
so that for each integer M™ we have an n; and an ms With |apy—nm, Yoo
< ¢f4.
Define
A = {'M ”D/Iﬁ—m,w”oo < 6/4}7
B, = {M: ”My"may”oo < 6/4}

Let 0y, ..., Cp denote the non-void intersections 4; ~ Bg,a8¢ =1, ...
...,k; 8=1,...,7. (There are some non-void interesections; e.g. M*
above belongs to 4; ~ B,. Further, by the fact that both sets of translates
are totally bounded, every M belongs to some such intersection). Now
choose a particular ¢;eC,. Let d be any integer and say ded; ~ B, = Cj.
Then

Ilcqw—~d~’ﬂﬂm < “cqw"‘n#'“oo‘!'”ﬂ,;—dmﬂoo:
llegy —a¥llee < log¥ —m¥lloo + ey — ¥l -

Sinee ¢,, deCy,, the second terms on the right are less than &/4 by
definition. By statements 2) and 3) above we see that if d > ¢,

Hm_d—cqw"m = ”cqa"‘dw”w < g2,
and

1Y —a—ogYlleo = lleg¥ —a¥llc < /2.

Thus the set d—e,, where ¢, is appropriately chosen, is a set of
e-translation numbers for both (#,) and (y.). As d ranges over the integers,
this set is seen to be relatively dense. The conclusion of the theorem is
now immediate. .

Note that the sequences ({l@al), ([%.ll?), ((#n,R)), h fixed, are AP
whenever () is.

Now we can characterize AP-vector sequences in terms of their
basis components.

3.2.4. THEOREM. A U-sequence is AP if and only if its components
with respect to a fized basis are AP-scalar sequences

Proof. The necessitiy is obvious. For the sufficiency, we extend 3.2.3
by induetion ; so we can find for any finite set of almost periodic sequences
(vector or scalar) a common relatively dense set of e-translation numbers.
Thus, let ¢ > 0 be given and suppose for & = (v,) ¢U that (@, €;) is AP
for each 4. Expanding |[@n,,»— %] as usual, we make the tail of the series
small (independent of n or p) by choosing the index of summation suffi-
ciently large. The norm of the difference is therefore approximated by

k
2 |(wn+p’ ;) — (@n, ;)%

=0
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Then there is a relatively dense set of integers S so that p S implies
each summand in the finite sum is less than e/2k. Thus |[@.p— 2|2
< k(g/2k)+¢/2 = ¢ and (z,) is AP. ‘

Among U-sequences, then, the almost periodic ones are the ones
whose basis components are AP-gealar sequences, and L (@) = Zi[L(x,,
¢:)]€;, where L(w,, ¢;) is the mean value of the sequence.

An immediate corollary to the above theorem is that a U-sequence
ig AP if and only if (2,, y) is AP for each y<H. Unfortunately, a complete
analog of Theorem 3.1.1 cannot be proved. That is, we cannot drop the
hypothesis that the sequence be in U already. Let @, = e, whenever

=9"—1 (mod 2"*Y),n =0,1,2,... This sequence has component
sequences a; = (&, €;), each with period 2"+ The vector sequence i
not AP however, simply because it is not in U. It is also easy to see,
that for each fixed v, (vz, y) will be AP also. Hence, neither Theorem 3.2.4
nor its corollary will be true if we drop the assumption that the sequence
has range contained in a compact set.
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Uniformly convex and reflexive modulared variation spaces
by

HANS-HEINRICH HERDA (Salem, Massachusetts)

§ 1. Introduction. In chapter 11, entitled “Modular Spaces”, of his

.treatise [8], Professor Hidegoré Nakano presents a theory of modulars

on arbitrary (not necessarily semi-ordered) linear spaces. Namely, given
any linear space X, a functional m(z) defined on X with values 0 <m(w)
< + oo is called a Nakano modular if

m(0) = 0,

. (VeeX) m(—a) = m(a),

. (VzeX)(HA > 0) m(iz) < + oo,

.m(éx) =0 for all §>0=>2=0,

. (V2,4 eX)(Va, f20) atpf =1=m(ax+py) < am(z)+ pm(y),
. (VzeX) m(z) =021§1<plm(§m).
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The space X associated with the functional m(x) is called a Nakano
modulared space. ‘ C

It is easy to see that, for example, the ™ power variations (as basic
papers, see [4] or [2]) are special cases of Nakano modulars on generalized
variation spaces. In this paper we are concerned with a new class of spaces
which include the p*® power variation spaces. Let = be a rea.lhfunct'ion
in [a,b] such that z(a) = 0, let p(t,s) be a real function of two real
variables such that ¢, se[a,b], t>¢, and 1< p(t,8) < + oo; let =
a4 =1 <t <..<tl, =b be a partition of [a, b]. Define

n
By = {m: Vo (@) = sup 3| (t)— oty P4 < + °°}’

i=1

and denote by B;’,(,,,,) the linear space generated by Bpgs. Here, Vo)
iy the Nakano modular on the space Bpus. If p(t,8) =p = constant
(1 <p < + o), we have the case of p® variation. The spaces B;(t,,)
generalize the idea of p™ variation in the same way as Nakano’s Lpg-
-spaces generalize the classical L,-spaces (see [3], p- 234-240). In fact,
the methods, employed in the present paper, although they are perbaps
not widely known, are essentially due to Nakano.
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