iom°
STUDIA MATHEMATICA, T. XXX. (1968).

The non-existence of a separable reflexive Banach space
universal for all separable reflexive Banach spaces
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Introduction. Let o be a class of Banach spaces. A Banach space X
is said to be universal (resp. isometrically universal) for o7 if each member
of « is isomorphie, i.e. linearly homeomorphic (resp. isometrically iso-
morphic), to a closed linear subspace of X. The Banach-Mazur theorem
(ef. [1], p. 187, th. 10) asserts that the space C of all continuous scalax-
valued functions on the unit interval is isometrically universal for all
separable Banach spaces. Other examples of separable Banach spaces
which ave universal for the class of all separable Banach spaces have
been exhibited in [8], [9], [15], [16] and [17]. The space constructed in
in [8] and [9] has the interesting additional property that all its finite-
dimensional subspaces are “universally located”. In [14] and [4] it is
proved that the Fréchet space (= locally convex complete linear metric
space) of all continuous functions on the real line is universal for all sep-
arable Fréchet spaces. In [10] it is shown that the space of all infinitely
differentiable functions on the real line is universal for all nuclear Fréchet
spaces.

The purpose of the present paper is to prove certain negative results.
We show that if X is a Banach space universal for all separable reflexive
Banach spaces, then X*, the dual to X, is non-separable. Consequently,
there is no separable reflexive Banach space universal for all separable
reflexive Banach spaces. This has solved negatively the problem posed
by Banach and Mazur ([18], Problem 49; cf. also [11]). Our results streng-
then, in the separable case, Theorem 3.1 (i)-(iii) of [13], where the non-
existence of separable reflexive spaces isometrically universal for all
separable reflexive spaces is proved. Let us mention finally that the
non-existence of a finite-dimensional space universal for all two-dimen-
sional Minkowski spaces was established in [2] (ef. also [11] and [7]).

The main results of the present paper are contained in Section 3.
Sections 1 and 2 are devoted to the study of the concept of the index
of a Banach space. The idea of this concept goes back to some construc-
tions of Zalewasser [19] and Gillespie and Hurwitz [6].
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Notation. Throughout this paper the capital letters X, ¥, ... denote
Banach spaces. By X* we denote the dual space to X. By “subspace”
we mean “closed linear subspace”. If u: X -» Y is a linear operator,
then u*: ¥* - X* denotes the linear operator adjoint to w (¢f. [3],p. 478).
A Banach space Y is said to be isomorphic to a Banach space X if there
exists an isomorphism (= linear homeomorphism) «: Y — X that is
a one-to-one bicontinuous linear operator from ¥ onto X. By the w-fo-
pology of X we mean the X*-topology of X (cf. [3], p. 19, and [5], p. 149).
By the w*-topology of X* we mean the X-topology of X* (ct. [3], p. 17,
and [5], p. 462). The symbol mnﬂ; L, (Tesy. f%w—-; fo) denotes that the
sequence (,) of elements of X is w-convergent to a,, i.e. (,) is convergent
to x, in the w-topology or equivalently ‘

Hmf (@) = f(a)

for every fin .X* (resp. the sequence (f,) of elements of X is w*-convergent
to fy, L.e. (fu) is convergent to f, in the w*-topology of X* or equivalently

Lmf, (@) = fy (@)

for every zeX).

The Greek letters a,f,... will be reserved for denoting ordinal
numbers. By o, we shall denote the first uncountable ordinal number.
If a and o are ordinals such that

a=a -1,
then o' is called the predecessor of a.

1. Now we give

1.1. Definition. Let & and I' denote bounded sets in a Danach
space X and in its dual X* respectively. Let us assume that I"is w*-com-
pact. pet &> 0. To each countable ordinal a we assign by transfinite
induction a set P,(e; @, ) in X as follows:

(A11) Py(e; G, 1) =1
(1.1.2) If o is the predecessor of a, then P,(e; G, I") = {feX": there

exis:ﬁv Speland frnePy (s; G, ) for m =1, 2, ... such that f,, v—‘:f;

@y, — 0, liﬁlsup [Fm(@m)| = &},
(1.1.3) 1If a has no predecessor, then

Po(e;6,I) = Eﬂ Pe(e; &, T).
<a
Let us set

(1.1.4) 1(e; @, I) = sup{a < o, |Py(e; @, I') B},
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We leave it to the reader to prove the next two propositions.
1.2. PROPOSITION. If &> 6, 0, Gy c Gy = X, I « Ty <« X* (G, G
are bounded and I'y, I'y w*-compact), then for every a

Po(e; G4, Iy) < Poleg; Gy I),
n(ey; Ghy T1) < n(es; Gy I).

(1.2.1)
(1.2.2)

1.3. PROPOSITION. If £, G, I" are as in definition 1.1 and if u: X — ¥
is am 4somorphism, then

(1.31) Pu(s; &, I) = u*(P,(e; ud, (W)'T))  for 0<a<o,

n(e; @, ) = 17(5; u(@), ('u,*)”ll’).
In particular, if @ > 0 and b > 0, then

(1.3.3) n(e; a@, bT') = y(slab, G, ) ().

1.4. PropoSITION. If 2,@, I are as in definition 1.1, and if X* is
separable, then

n=n(6G N <w and Pye;6,I+0.

Proposition 1.4 is an immediate consequence of the next two
lemmas.

1.5. Lesra. Under the assumptions of Proposition 1.4 the set P.(e) =
P,(e;G,I") has the following properties:

(1.51) P,(&) is w*-compact;
(1.5.2) P,.1(s) is nowhere dense in P,(e);
(1.5.3) Poyi(e) = Pole).

Proof. We shall prove by transtinite induction thabt P.(s) is
w*-compact and that P,.,(s) is a closed nowhere dense subset of P,(e)
(0 < a < ;). That will clearly imply conditions (1.5.1)-(1.5.3).

The inductive hypothesis is obviously true for a = 0, and it is clear
that if it is true for all § < a and if « has no predecessor, then P.(e) is

w*-compact.
Now suppose that, for an arbitrary ordinal number a with 0 <a

< wy, the set P,(c) is w*-compact. Let f™ Py y(e); m =1,2,..., and

let /™ X . Then by (1.1.2) there exist sequences (#,,) in G and (fum)

in P,(¢) such that fym = f™, @m0 and
Hmsup |[fom(@nm)| =& for m= 1,2,...
n

() a6 = {w: % = an’, 3" €@}, b = {f:f = bf", f eI},
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Since the w-convergence in G and the w*-convergence in P,(e) are
metrisable (cf. [5], p- 426), one can choose a sequence of the pair of in-

wH w
tegers (mg, my), k =1,2,..., such that fu ., — f, @npm, — 0 and

'fnk y, T”A 7”])| 8—76 for k= 1, 27 een

Let fi = fapm, and let @y =y m, (b =1,2,...).
2~ 0 and

Then fj L £

|flc(mk)l }E—-k_l for 70“-—:1,2,...

Therefore, by (1.1.2), feP,.1(¢). Hence P,,,(¢) is closed. Therefore
P,,.(e) = P,(¢) because, by (1.1.2), P,(¢) is dense in P, ,(¢) in the
w*-topology. Finally, we shall show that P,,, (&) is nowhere dense in P,(«).
Otherwise there would exist in P,(¢) a closed neighbourhood # which is
contained in P, (e). Let (f™)%_; be a sequence of elements of I which
is dense in F. Such a sequence exists because F is w*-separable. By (1.1.2)

there are sequences (fym)nm: i P, (&) and (@ m)e: in @ such that f,,, A o,
& Ju,
@y — 0 and
1Ensuplfn,m(mn,m)| =& (m=1,2,...).

Let us choose a sequence (i,)m..; 80 that the sequence (w,) obtained
by the standard process from the double sequenco (@ipmy, m)y &y M =1,
2, ..., is weakly convergent to zero (this is possible bec&ugz the w- topn~
logy on the bounded set @ is metnsable) Then (#,) ‘may be regarded
as & sequence of continuous functions on the compact metric space J’,( €)
tending pointwise to zero. Let ‘

Q(e) = {f ePq(e):

there exists in P,(e) a sequence (gn)

such that gml f and Hmsup |gm (@n)] > €}
W

_ Then @ (¢) may be regarded as a set of points at which the oscilla-
tu?n of the sequence (2,) of continuons functions is > & Since (a,) Point-
wise tends to zero, @(e) is closed and nowhere dense in P,(e) | of. (197
and [6]). Since f m)eQ(a) for m =1, 2,... and since the sequence (f™)
is dense in F, the set F ig’ contamed in Q( ). 'But this contradicts the
fact that Q(e) i nowhere dense in P . (g). This completes the proof,

1.6. LeMma. Under the assumptions of Proposition 1.4 there ewists
an ordinal number o < w, such that’

Pe; 4, 1)@ and P, (e,G, 1) =0.

The proof follows from Lemma 1.5 and the C i
£ 1¢ Cantor-Baire theor
(ef. [12], p. 146 and 150). - : e thearens
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2, Let K = {zeX: o] <1} and let E* = {feX": [Ifll <1} be unib balls
in X and X* respectively.

2.1. Definition. Let us define, for &> 0,

n(e; X) =n(e; K, K¥),  0(X) = supn(z; X)
>
The ordinals 5(e; X) and #(X) are called the s-indéx of X and the
index of X respectively. The next proposmlon is an immediate conse-
quence of Propositions 1.2 and 1.4.

2.2, PROPOSITION. If X* is separable, then

(X) = Sﬂpn(‘n"l;X) < o.
n

The next proposition shows that 5(X) is a linear topological in-
variant.

2.3. PROPOSITION. If 4 4§ an isomorphism from a Bamach space ¥
onto @ subspace of a separable Banach space X, then n(X) = 7(Y). More-
over, if u is am isometric isomorphism, d.e. |u(y)l = lyll for every yeX,
then 3(e; X) = n(e; X) for e>0.

Let X, = u(Y) and let K, K*, K,, Ef, S, 8 denote unit balls of
X, X* X, XI, Y, Y* respectively.

2.4, LEMMA. If feP,(c; Ky, KY), then there exists an f' in P.(e; K, K%
such that f' is an extension of f.

Proof. For a« = 0 the assertion of the Lemma is an immediate
consequence of the Hahn-Banach extension principle. Let 0 < a < w,
and let us assume that the assertion of the lemma holds for 0 < 8 < a
I a=a+1 and if feP, (e Kl,Kl) then there are fpmeP,(e; K., KY)

and #,eK, such that fm—>f, m,,,—> 0 and

Lim sup |f'm Im)| = €
n

(we may suppose that liminf|f,,(2x)| = &). By the inductive hypothesis
thue exists an fn, ePa(e; K, K*) such that fmis an extension of f,, (m =1,

..). The separability of X implies that the bounded sequence (Fr)oos
contmm a w*-convergent subsequence, say fm,‘ 1. Let fmk—’* f'. Then
clearly f* is an extension of f and f'eP,(e; K, K¥). If « has no predecessor,
then the inductive step for « is an 1mmed1ate consequence of (1.1.2) and
the inductive hypothesis.

Proof of Proposition 2.3. It follows immediately from Lemma
4.2 that n(e; X) = n(e; X,) for & > 0. Since u is an jsomorphism from ¥
onto X,, there are a,b >0 such that

u(al) < K, < u(bS).
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Hence
w (aK¥) = 8% = w*(bEY)
(if » is an isometric isomorphism, then « = b = 1). Thus by Proposi-
tions 1.2 and 1.3, we get

n(e; ) = n(e; 8, 8%) = (e; u(S), (u*)(8%)

< 9(e; 0 ' Ky, bKY) —7/(~b«c X, [{*)-—n(b 83 X)
Hence
3 ¥y < bu])n(me Al)—n(l) =y (X),

&0

7(Y) = sup (e
>0

and this completes the proof.

3. By (XxY), (respectively (X X¥),) we denote the Cuartesian
product of Banach spaces X and Y with the norm [|(x , g == [l -+l
(resp. (2, ¥)lloo = max(|lz]l, y])). Observe that [(X X ¥),]* = (A™ X ¥*),.
If {X}r is a family of Banach spaces, then the symbol I,{X}.r denotes
the Banach space of all functions 2(-) from 7 into the product []X
such that T

()l = (X @] < + oo

tel

Let us observe that if each X, is reflexive, then l,{X;}.q is veflexive
f’md if each X, is separable and the index set T is countable, then L {X}er
is separable.

By 1, we shall denote the Hilbert sequence space.

3.1. LemmA. If X* is separable, then

( (X xTy)y) =nle; X)4+1  for

Proof Let K, K*, K, Kl, 8, 8% denote the unit balls of X, X*
1y, I3, (X x1,); and [(X ><Z 1" respectively. Let (e,)2.; be an ortlmnomml
system in I, and let ey, for n =1, 2 2, ..., be the linear functional deter-
mined by e, (e) = e, ¢,> for eely, Where ( > denotes the inner product

in l,. We shall show by transfinite induction that for each e (n=1,2,...)
and each a < o, e

0<e<l.

(BL1)  If feP,(e; K, K*), then (f, ef)ePu(c; 8, 8*).
(3.1.1) is olzvmusly true for o =10, Dbecanse P,(e, K, K*) =
*
Pye, 8, 8%) = 8%, eneK*, and [(X x1,),]* = (X* X 1y)eon Aswmmg (3. 11)

for an ordinal o < o, we shall show that it is true for a-+1. let

’.
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fePuale, K, K*). Then for m—l 2, there exist fneP,(e, K,E")
and 2,¢K such that fm—>f, mm—> 0 and

Hmsap | fum (2m)| = €.
mn

Let us put, for m = 1,2, ..., ¢n = (fm, €x) a0d Yy = (&m, 0). Then
from the respective properties of the sequences (fy) and ()

w* &
@m > (fy €n),
= fu(y) for m =1,2,

ym‘z‘oy Ynmel,

and, since @un(Ym)
Lim sup |gn{ym)| = .
m

By the inductive hypothesis, gneP,(e, S,8%),m =1,2,... Thus
(f, €8) ePoir(e, S, 8%). Finally, if « < o, has no predecessor and if we
assume (3.1) for every § < a, then (3.1.1) follows frivially from (1.1.3),
and this completes the proof of (3.1.1) for every a < w;. To complete
the proof of the lemma, choose an f in P, (&; K, E*), where ¢, = 7(e; X).
Observe that according to Proposition 1.4 the set P, (e; K, K*) is non-
empty. By (3.1.1)

= (f, GZ)eP,,O(s;S,S*) for n=1,2,...

Clearly, v, > (f, ), because e;‘;v: 0. Let y, = (0,¢,) for n=1,2,...

Then Y, e8, Yn 3o (becanse e, e 0) and
walyn) = €ien) =1 for n=1,2,..

ePuyia(e; 8, §*). Hence for 0 <e<1

= g+l = y(e; X)+1.

Therefore (f, 0)
77(35 (X Xlz)1)

This completes the proof.
3.2. PROPOSITION. For every countable ordinal a there exists & separable
reflexive Banach space X, such that

(3.2.1) (X)) =«

Proof. Let us set X, = Iy, X, = (X, X1y); for 0 < a < oy, X, =
1,{Xp}tpca for o< o; having no predecessors. Clearly, the spaces X,
defined above are reflexive and separable. We shall show that they
satisfy (3.2.1) by proving by transfinite induction that for 0 <o < w;

(3.2.2) n(e; X =a  for 0 <e<l.

Obviously, (3.2.2) holds for a = 0. If ¢ has no predecessor and if
(3.2.2) holds for 0 < f < ¢, then using the fact that the space X, =
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= 1,{X s}, containg a subspace isometrically isomorphic to X, (0 < B
< o) and applying Proposition 2.3 we get
n(e; Xo) = sup n(e; Xy) 2 sup B = a.

Finally, if (3.2.2) holds for an ordinal o < ;, then in view of Lem-
ma 3.1 and the definition of X,,; we derive (3.2.2) for a--L.

The next result is an obvious consequence of Propositions 2.2, 2.3
and 3.2.

3.3. TurorEM. If X 4s a Banach space which @s wniversal for all
separable reflewive Banach spaces, then X* is non-separable.

3.4, CoroLLARY. Let & be one of the following classes:

(i) of all separable reflexive Banach spaces;

(ii) of all Banach spaces with separable duals.

Then there is no member of & which is universal for .

Finally, let us observe that Corollary 3.4 (i) implies (by the standard
duality arguments) the following

3.5. COROLLARY. There is no separable reflewive space X with the
property that for every separable reflewive space Y there is a bounded linear
operator from X onto Y.
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