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geht. Bs gibt jedoch noch viele andere Varianten, bei denen die Methode
der unendlichen Gleichungen (auch kombiniert mit funktionentheoreti-
schen Methoden) sich bewé#hrt.
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1. Introduction. The years from 1928 until 1936, a period of rapid
growth for Banach and Hilbert space theory, were also the time that
the foundations were laid for the functional analytic theory of linear
vector lattices. Thiz was done, independently, by Riesz [10, 11], Kan-
torovitch [4, 5] and Freudenthal [1], and it is interesting to observe
now, more than thirty years later, the different methods of approach.
Riesz was interested primarily in what is now called the order dual space
of a given partially ordered vector space, and he presented an extended
version of his short 1928 Congress note in a 1940 Annals of Mathematics
paper, a translation of a 1937 Hungarian paper. Freudenthal, in 1936,
proved a “spectral theorem® for vector lattices, the significance of which
ig illustrated by the fact that the Radon-Nikodym theorem in integra-
tion theory as well as the spectral theorem for Hermitian operators in
Hilbert space are corollaries, although it was not until early in the fifties
that a direct method was indicated for deriving the spectral theorem for
Hermitian operators from the abstract spectral theorem, Finally, around
1936, Kantorovitch began his extensive investigation of the algebraic
and convergence properties of vector lattices, with applications to linear
operator theory. A few years later, curiously enough between 1940 and
1944, important contributions to the subject were published by Nakano
[6, 7, 8], Ogasawara [9], Yosida [13, 14] in Japan and Kakutani [2, 3]
in the United States. Of the more recent progress we only mention the
work by Kanforoyvitch, Nakano and their schools. In  contrast with
Banach and Hilbert space theory, however, where in recent books the
main body of the theory has been welded into a unified and elegant
whole, there is only a very small number of textbooks on partially or-
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dered vector spaces (and in the existing ones the treatment is mainly
restricted to the research of one school). This explaing why the present
paper is written in a somewhat expository style. There is one chapter
on linear vector lattices in the Bourbaki work on integration, and we
will follow Bourbaki’s example in calling any linear vector lattice a Riesz
space. In the present paper we discuss several special properties which
a Riesz space may possess (stability of order convergence, regularity,
existence of a strong unit) and we prove that certain combinations of
these properties are possible only if the space is of finite dimension. We
believe that our results in this direction are a little more general than
previously known results (¢f. €.g. Theorem VI. 4.2 in [12]); our main
purpose, however, is to present straightforward proofs.

2. Convergence in Riesz spaces. We recall the definitions of an
ordered vector space and of a Riesz space. The real linear space L, with
elements f, g, ... and with null element 0, is called an ordered vector space
if L is partially ordered in such a manner that the partial ordering (de-
noted by <) is compatible with the algebraic structure of I; i.e., f <yg
implies f+4 < g+h for every heL, and f > 0 implies af > 0 for every
real a > 0. The ordered vector space L is called a Riész space if L is a lattice
with respect to the partial ordering, i.e., if for every pair f, geL the
supremum sup (f, g) and the infimum inf(f, g) with respect to the partial
ordering exist in L. It will be assumed throughout the present paper
that L is a Riesz space. The notation f < g means that f<g,f #g,
and the subset L™ = {f: feL, f > 0} is called the positive cone of L. The
positive cone has the property that if f, geL* and a, b are non-negative
real numbers, then of +bgeLt. Furthermore, if f and —f are simulta-
neously members of Z*, then f = 0.

The following abbreviations are widely used and well-known espe-
cially in the case that the elements of L are real functions. Given any
feL, we set

f+=S1lp(_f,0), f— =B'llp(-f,0), lfl=81113(f, —f)

It is not difficult to prove that f*,7~ and [f| are members of L*,
f=F"=f fl=F+f and inf(f*,f) =0. The formula f = f+—f~
shows, in particular, that every element of L is the difference of two ele-
ments from the positive cone. As might be expected, the triangle in-
equality

Ift—lgll <1f+g1 <1f1+ 19l

holds; the proof is derived by showing first thab

(F+or <f +a* amd (g <f+o

icm°®

Stability of order convergence 161

-It is an i1}1p0.1'ta.nt fact that I, regarded as a lattice, is a distributive
%&t’mee. The distributive laws hold even for the infinite case, i.e., if D
is a subset of L such that f, = sup( f:feD) exists, then

f(fy, 9) = sup {inf(f, g) : fe D}

holds for every geL. Similaxly if sup and inf are interchanged.

The elements f, geL are called disjoint if inf(|f], lgl) = 0; notation:
J L g. The name is derived from the case that I consists of Teal functions
on & point set X. Disjointness of f and ¢ means now simply that the sub-
sets of X on which f and g differ from zero are disjoint. Disjointness in
a Riesz space has some properties analogous to properties of orthogon-
ality in a Buclidean space. If f;, ..., f, are disjoint to fy, and a,, ..., a,
are real, then

.

Zaifi 1 1.

Furthermore, if f; L f, and [fo <|fy, then f, L fo. Finally, if D
is a subset of I such that D . f, (i.e., f 17, for every feD), and if f,
= sup(f: feD) exists, then f; L f,. It is an easy corollary that if f,, ..., f,
are all £ 0 and mutually disjoint, then {fi, ..., f.}isa linearly independ-
ent system. Indeed, if not, then one of the elements, say f;, is a linear
combination of the remaining elements; f, = @afot...+tnfn. But f, is
disjoint to fu,...,fn, 50

fit (@afat. oA ufn),

Le., fi L fi- This implies that inf(|f;], |f.]) = 0, 50 |fy] = 0, and hence
f1 = 0. Contradiction.
" Next, note that

SuP(f7 g)+mf(f; 9) :f+g

holds for all f, g. Hence, if f, geL™ and f L g, then sup(f, g) = f-+g.

The sequence {fu; n =1, 2, ...} in Lis called increasing it f, <f, <...
and decreasing if f; > f, > ... This is denoted by £, 1 or f, { respectively.
If fo 4 and f = supf, exists in T, we will write f, 1 1. Similarly, if f, |
and f = inff, exists, we will write f, | f. The sequence {f,;n =1, 2, .
in L iy said o converge in order to feL if there exists a sequence u, Jo
in Z* such that |f~f,] < u, holds for all %. This will be denoted by fo > f-
It is evident (friangle inequality) that an order limit is uniquely deter-
mined, ie., if f, —f and f, —g, then f =g. Furthermore, the following
holds:

(@) I fou tf or fo | f, then f, — 7.
(i) If fu t or fo | and f, —~f, then f, {f or f, } f regrachively.

Studia Mathematica XXXI,2 )
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(iii) I fu —f, g — ¢, and @ and b are real, then af,+bgn - af + by,
SUP (fus gu) ~ sup(f, g) and int(fn, gn) = int(f, g). Tn particular, it f, — f,
then f;:- “?fﬂf; —f~ and [fal = |f|

(iv) ¥ fo—f, then fn —f for every subsequence such that =,
< My < ...

Tt is not true in general that if f,, — f in L and a, — @ in real number
space, then a,f, — af. If, however, the space L is Archimedean, ie., if
it is true for every weL' that the sequence v, = ntun =1,2,...)
satisties v, | 0, then it follows from f, —f and a, — ¢ that a.fn — af.

There is still another mode of convergence for sequences in L. Given
uweLt, the sequence {fu;n =1,2,...} in L is said to comverge u-uni-
formly to feL whenever, given any &> 0, there exists N, such that
If —fal < ew holds for all # > N,. The sequence {f,} is said to converge
relatively uniformly to f if there exists an element ueL* such that f, con-
verges u-uniformly to f. Notation: f, —f (r.u.). In the Soviet literature
this is ealled convergence with respect to a regulator. In an Archimedean
Riesz space L any relatively uniform limit, if existing, is uniquely de-
termined. This can be seen directly, and it also immediately follows
from the fact that in an Archimedean space relatively uniform conver-
gence implies order convergence. Furthermore, relatively uniform con-
vergence in an Archimedean space has the same properties (iii) and (iv)
ag order convergence.

Relatively uniform convergence in an Archimedean Riesz space is
stable, i.e., given any sequence f, — 0 (r.u.), there exists a sequence of
positive real numbers {4,} such that 4, { co and A,f, - 0 (r.u.). Order
convergence is not necessarily stable; in the real sequence space [, for
example, order convergence is not stable (let f, be the element of 7, with
the first n coordinates zero and all other coordinates equal to 1). The
following theorem is known; we present a brief proof.

TEHREOREM 2.1. In an Archimedean Riesz space order convergence is
stable if and only if order convergence and relatively uniform convergence
are equivalent.

Proof. Assuming first that order convergence is stable, we have
to prove that order convergence implies relatively uniform convergence.
To this end, let f, — 0. Since order convergence is stable, there exigsts
a sequence 0 <4, } co such that ,f, —0. It follows that A,|f,] — 0,
and hence the sequence {i,|f,} is bounded, i.e., there exists weL™ such
that A, fal <# for all n. Then [f,] <A’ for all #, and so f,—0
(r.o.).

Conversely, if order convergence and relatively uniform convergence
are equivalent, then order convergence is stable since relatively uniform
convergence is 0.

° ©
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.We finally regall t}.lat every Riesz space I has the dominaied decom.-
position _Ev"opevty, Le., if 0 <u < ov,+v, with 1y 93¢ L7, then there exist
Uy, Upe L™ such that u = Ui+ uy and u; < v; for § = 1,2.

3. Pl.'ojection properties and completeness properties. The subset D
of the Riesz space I is called solid if feD, |gl <|fl, implies that geD
The subset A of I is called an ideal (or order ideal) if 4 is a solid linem:
spbspace of L. The ideal 4 is called a band if 4 is closed under the opera-
tion of taking suprema, ie., if for every subset of 4 Dossessing a sup-
remum in L this supremum is a member of 4. Tt easily follows from the
remarks on digjointmess in the Dreceding section that for any arbitrary
subset D of L the disjoint complement D® of D (i.e., the set of all f such
that f L g for all geD) is a band.

It is evident from the definitions that an arbitrary intersection of
ideals (or bands) is an ideal (or band). Given the arbitrary subset D of L
the intersection of all ideals inclnding D is called the ideal genemtec%
by D. The band gemerated by D is defined similarly. If D consists of one
element f, it is customary to speak aboub the principal ideal (principal
band) generated by f. Evidently, the principal ideal generated by f con-
gists of all geL such that |g] < a,]f] for some positive number a, (depend-
Ing on g, therefore). If is a little more difficult to prove that, for every
subset D of L, the band generated by D consists of all g such that |g]
is the supremum of some subset of the ideal generated by D.

We will prove two simple theorems, particular cases of which are
well-known.

TumoreM 3.1. Let A and B be ideals in the Riesz space I.

(1) The algebraic sum A+-B is an ideal. Given f >0 in A+B, there
exists at least one decomposition f = f,-+f, such that fied, foeB and
f 1y f 2 = 0.

(il) We have A L B if and only if A ~ B = {0}, where {0} is the
ideal consisting only of the null element, i.e., if and only if A+B s a direct
sum A®B. In this case, therefore, the decomposition f = f,-+f, with fieA,
feeB, is unique, and f >0 implies f,,f; > 0.

Proof. (i) In order to show that 4+B is an ideal, it is sufficient
to prove that 4+B is solid, ie., we have to prove that fed--B and
lgl < [f| implies ged +B. Hence, let f = f,-+f, with f, €4, f,eB, and let
lgl <|fl. Then

9" <lgl < <Ifal+1fals

80 by the dominated decomposition property there exists a decomposition
gt =g'-+g¢" such that 0 <g¢' <|fy} and 0 <g” <|fyl. It follows from
Ifile4 and |fy|eB that g'cA and g” eB, and so g* = g’ +¢"' A+ B. Sim-
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ilarly, we have g~ eA-B and s0 g = gt —g eA-B. This is the desired
result.

Assume now that f >0 and f = f'+f"' with fled and f"eB. Then
0 <f<If|+1f"]l, so by the dominated decomposition property there
exists a decomposition f = f; +f» snch that 0 < f, < [f'] and 0 < f, < I
Since |f']e4 and |f|eB, it follows that fred and fyeB.

(i) Assume first that 4 L B. Given feA ~ B, we have now that
f Lf, so f=0. Thig shows that 4 ~ B = {0}. Conversely, assaming
that 4 ~ B = {0}, it has to be proved that inf(|fyl, Ifal) = 0 for all
fied, freB. This is evident because int([fl, If]) is & member of A ~ B,
and so must be the null element.

TEEOREM 3.2. If A and B are ideals in the Riese space L such that
ADB = L, then B = A% and A = B~ In other words, A and B are now
bands, each the disjoint complement of the other one.

Proof. It follows from A@B = L that 4 ~ B ={0}, so B L A,
and hence B = A% In order to prove the inverse inclusion, assume thab
0 < ued® By hypothesis there exists a decomposition v = u;+ u, with
1, A and 4, B, and it follows from the preceding theorem that 1y, uy > 0.
Hence 0 < 4y < teA% which implies that u e A% Bub uyed holds jush
as well, so %, = 0. It follows that = u,<B, and it has thus been proved
that A% = B. The final result is that B = 4%

In view of the last theorem it is now appropriate to call any band A
such that A@A% = L holds a projection band. If A is simultaneously
a principal band and a projection band, then A is called a principal pro-
jection band.

THROREM 3.3. (i) The band A in the Riesz space L is a projection
band if and only if, for any ueL™, the element

wy, = gup(®:ved, 0 <v < u)
ewists, and in this case w, is the component of w in A. Similarly,
ay = sup(w : wed? 0 < w < w)

is then the component of u in A% In other words, if u, and u, are these su-
prema, then u = uy-+-u, with ucd and uyed’.

(i) The principal band A, generated by the element vel™, is a pro-
jection band if and only if, for any ueL™, the element

Uy == sup, {nf(u, nv)}, =2=1,2,...,

ewists, and in this case u, is the component of u in A.

Proof. (i) Let 4 be a projection band, so I = A@ A%, and let ueLt
have the decomposition % = u,+ . Define the subset V of I by

V= (v;ved, 0 <0< uy).

icm
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We have to prove that u, = sup V. For any veV we have u—ov > 0
and %—wv has'the decomposition u—» = (ul—bv)—kfuo, 50 Uy—D = O/byi
Theorem 3.1 (ii), i.e., v < u,. This shows that U, 18 andupper 1bo'und of V.
On the other hand, u, is a member of V, and so 4, = sup V. .

Assume now, conversely, that 4 is a band with the property that
Uy =sup(v:ved, 0 < v < w)

.exists for any given uweZL*. Since %, is then a member of 4 (because A
is a band), it will be sufficient for the proof of A®A* = L to show that
Uy = %—1; iy a member of A% Tf not, we have p = inf(u,, 2z) > 0 for
some zed. Then 0 < p ed, and also p < u,. Hence u;+ped as well
as U+P K Uy+-u = u, 50 %;+p is a member of the set (v:ved, 0
<:v < ). But then w;-p is less than or equal to the supremum %, of
this set, 50 uy+p <y, ie, p <0, which contradicts p > 0.

(iti) Given the principal band A generated by veL® and given ueL™,
we seb

W=(w:wed, 0 <w << u),

W' = (inf(u, no):n =1,2,...).

It is evident that W’ = W, and so any upper bound of W is an upper
bound of W’. In order to prove the converse, note that for any given
we W there exists a subset D of the ideal generated by v such that
w = sup.D. Every element of D is majorized by a positive multiple of v,
and 18 also majorized by w and hence by u. It follows that every element
of D is majorized by an element of W’. This shows that any upper bound
of W’ is an upper bound of D, and so of w, and hence of W. It has been
proved thus that W and W’ have the same upper bounds. In particular,
the supremum of W' exists if and ounly if the supremum of W exists,
and these suprema are then the same. By part (i), 4 is a projection band
if and ouly if %, = sup W exists, i.e., if and only if

%y = sup W' = sup {inf(u, nv)}

exists, and in this case u, is then the component of w in A.

The Riesz space I is said to have the projection property if every
band is & projection band, and L is said to have the principal projection
property if every principal band is a projection band. Furthermore, as
well-known, L i called Dedekind complete (a K-space in the Soviet ter-
minology) if every subset which is bounded from above has a supremum,
and L is called Dedekind o-complete if every finite or countable subset
which is bounded from above has a supremum.

It is obvious that Dedekind completeness implies Dedekind o-com-
pleteness, and it is well-known that Dedekind complefeness implies the
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projection property. It is obvious again that thg projection property
implies the prineipal projection property, and it is easy tp prove that
Dedekind o-completeness also implies the principal projection .pl‘operty.
Tndeed, let L be Dedekind o-complete, and let A be the principal band
generated by veL*. According to the last theorem, we have to prove that
sup {inf(w, n0)}, n=1,2,...,
n
exists for any given weL*. Writing w, = inf(u, nw) for n=1,2,...,
we have 0 < w, } and w, < u for all n, S0 sUPwW, exists on account of the
Dedekind o-completeness of L. Finally, we observe that if L has the prin-
cipal projection property, then I is Archimedean. For the proof we have
to show that if 0 < nv < u holds for n = 1,2, ..., then v = 0. It follows
from 0 < no < w that inf(u, nv) = ne for all n, and it follows from the
principal projeetion property that sup {inf(«, nv)} exists, i.e., wy = sBpm
n

exists. But then

24y = SUP2NY = SUPNY = Uy,
50 %, = 0. This implies that no = 0 for all n, so v =0.

4. Atoms. The element f = 0 in the Riesz space L is called an
atom whenever it follows from 0 < u < |fl, 0 <o <|f| and % L v that
u = 0 or v = 0. If f is an atom, then af is an atom for every real a # 0.
If f is an atom and 0 < lg] < |f], then either g =0 or g ig an atom. If f
is an atom, then either f > 0 or f < 0. Indeed, since 0 <f* < Ifl, 0 <f~
<Ifl and f* L f, we must have either f* =0 or f~ = 0. In an Archi-
medean Riesz space we can §ay more.

TEEOREM 4.1. In an Archimedean Riesz space the following holds:

(i) If f is an atom in L and 0 < u < |f], then u = af for some real a.

(i) If f and g are atoms in L, then either f L g or f = ag for some
real o # 0.

(iif) If A is the principal band generated by the atom f in L, then A
consists of all real muliiples of f, and A is a projection band.

Proof. (i) This part is well-known; we briefly recall the proof. It
may be assumed that f>0 and 0 < u <f (the case w = 0 is trivial).
The set of mumbers (f: fu < f) is non-empty and bounded from above
gince I is Archimedean. Let o = sup(f:pu <f), 80 L < a < oo and
au <f. We will prove that f = au. If not, we have v = f—au > 0 and
50, on account of (v—eu)™ $v for £ 0, there exists a number & such
that 0 < &< a and (v—eu)*t > 0. It follows that

0< (v—eauy* = (f—(ate)u)t <f+ =,

icm
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and so, since a >1, we have that

(1) 0<(f—-(a—i—£)u)+ < 2qf.

,NeXt’ note that 0 < (f—(a-d-c)u)~ since otherwise (ate)u < f,
against the definition of a. Hence

(@) 0 <(f—(ate)uf” = ((ate)u—f)* < (a+e)u <2qf.

But (1) and (2) are contradictory since 2of is an atom. It follows
that f = au, where 1 < a < co ag observed above. Hence u = af.

(i) Assuming that f and g are atoms, we set u = inf(|fl, lg]). If
% = 0, then f L g. If u > 0, then part (i) shows that f = a;wand ¢ = ayu
with a; # 0, ay # 0, and so f = a,a7'g. )

(iii) By part (i) every element in the ideal generated by the atom f
is a real multiple of f. Now assume (as we may) that the atom f is posi-
tive, and that veL* is an element in the band 4 generated by f. Then »
is the supremum of a set of elements each of which is a non-negative
multiple of f. It follows (since L is Archimedean) that v is also a non-
negative multiple of f. Hence, the band 4 consists of all real multiples

of f. For the proof that A is a projection band, it is sufficient to show
that

sup(inf(u, nf): m =1,2,...)

exists for every weL™ (of. Theorem 3.3 (ii)). For » =1,2,..., we have
inf{u, nf) = a,f for an appropriate increasing sequence {a,} of mnon-
negative numbers. Since a,f < # holds for all », it is impossible that
a, 1 co. Hence a, } gy < oo, and 5o

inf(u, nf) = af $ af,

‘where it has been used again that L is Archimedean. This shows that the
desired supremum exists, and so 4 is a projection band.

TEBOREM 4.2. If L is Archimedean and {e,, ..., e,} 15 a set of mutually
disjoint atoms in L with the property that there exists mo non-zero element
wn L disjoint to ey, ..., e, then L is n-dimensional and {es, ..., e,} s a
basis of L in the algebraic semse. The algebraic decomposition of any feL
as a sum of real multiples of the basis elements is ewactly the decomposition
of f as a sum of components of f in the bands generated by the basis elements.

Proof. Since {¢4,..., 6,} is a linearly independent system, the di-
mension of I is at least ». The bands By, ..., B, generated by e, ..., e,
are projection bands by the preceding theorem; given ueL™, let ay¢y, ...,
aye, be the corresponding components of . Then 0 < ae; <u for
¢=1,...,n, and 50

0 < eyt ot oney = sup(asey, ..., ) <%,
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where we have used that the sum and the supremum of a finite number
of disjoint non-negative elements are identical. Thus

w = u— (a1} . o) =0,

and 50 0 < w < u—age; for 4 =1,...,n Bubt u—ae iy the component
of w in the band BY; it follows that weBf, ie, w Le for i=1,...,n.
Hence w = 0 by hypothesis, so % = a;6;4...+azéy. The desired results
follow immediately.

TeROREM 4.3. If the Archimedean Riesz space L has the property
that any system of mutually disjoint non-zero elements is findte, then L s
of finite dimension, say of dimension n, and there exisis basis {61, ..., €.}
of mutually disjoint atoms.

Proof. Assuming that L does not consist exclusively of the null
element, it will be proved first that I contains an atom. Indeed, I con-
tains an element % > 0, and if « is an atom we are ready. If not, there
exist w4y, uyel such that 0 < u, <u, 0 <4y < and 4y L Us. If one
of 1y, u, is an atom, we are ready; if not, we proceed and obtain non-zero
and mutually disjoint elements gy, %1z, %ayy %ae. The procedure breaks
off after a finite number of steps since by hypothesis there exists no
infinite disjoint system of non-zero elements. Hence, L contains an atom
6,; let B, be the corresponding principal projection band. If B = {0},
the proof is complete. Tf B == {0}, it is proved similarly that B contains
an atom e,. This procedure again breaks off after a finite mumber of
steps, and the desired result follows then from the preceding theorem.

Every Archimedean space L of finite dimension n is of the kind
deseribed in the last theorem, and hence there existis a basis {e, ..., e}
of mutually disjoint atoms. The partial ordering in L is such that
f=aet ... +aut, >0 holds if and only if all coefficients a; are = 0.
We obtain, therefore, as a corollary fthe known result that I iz iso-
morphic to n-dimensional number space R® with coordinatewise or-
dering. .

5. Spaces with a strong unit and with stable order convergence. The
element ¢ > 0 in the Riesz space L is called a strong unit if the ideal gen-
erated by ¢ is alveady the whole space L. Evidently, ¢ > 0 is a strong
unit if and only if for any given feL there exists a positive number
such that |f|] < ase. In a space with a strong unit e relatively uniform
convergence of a sequence f, to f is equivalent to e-uniformly convergence
of f, to f.

We will prove now that in an Archimedean Riesz space with a strong
unit stabiliby of the order convergence is a severe restriction upon the
space. Precisely, the following theorem holds:
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THEOREM 51 Let the Archimedean Riesz space L have a strong unit,
and let L be either Dedekind a-complete or have the projection property.
Then order convergence in L is stable if and only if L is of finite dimension.

Proof. If L is Archimedean and of finite dimension, then (according
to the remarks in the final paragraph of the preceding seetion) I is iso-
morphie to K" for some n, and hence it is evident that L has a strong
unit and order convergence is stable.

Conversely, assume that the Archimedean space I has a strong unit e,
and is either Dedekind o-complete or has the projection property. Assume
also that order convergence in L is stable and that in L there exists an
infinite system of mutually disjoint non-zero elements. Let {fo;n =
=1,2,...} be a countable subsystem, and denote by B, the band gen-
erated by f,. The space L has the principal projection property (we
recall that Dedekind o-completeness implies the principal projection
property, and so of course does the projection property);forn =1,2, ...,
let p, be the component of ¢ in B,, and let s, = p,+...-p,. Evidently
the sequence {s,} is increasing, and p = sups, exists. If L is Dedekind
o-complete, this is evident; if I has the projection property, and if B
is the band gemerated by the system {p,, ps, ...}, then the component
p of e in B satisfies p = sups,, ie, p—s, | 0. Indeed, assume that
0 <v < p—s, holds for all n. Then, since p—s, has the component 0
in the bands By, ..., B, the same holds for ». It follows that » L B,
for all #, and so v L B. On the other hand, we have veB since 0 < v < p.
Hence v = 0, i.e.,, p—s, | 0. In any case, therefore, s, converges in order
to p. Observing now that order convergence and relatively uniform con-
vergence are equivalent on account of the stability of order convergence,
we obtain that s,—p (r.u.), which implies (as observed above) that s,
converges e-uniformly to p. Hence, given & such that 0 < e <1, there
exists a natural number N such that p—sy < ce. Taking components
in B, for any # > N, we obtain p,, < &p,, which is impossible on account
of p, # 0. We have derived, therefore, a contradiction. Hence, every
system of mutually disjoint non-zero elements in L is finite. It follows
then from the preceding theorem that L is of finite dimension.

In order to illustrate the fact that it is really the existence of
a strong unit which forces an Archimedean Riesz space with stable order
convergence to be of finite dimension, we present the following example.
Let I be the Riesz space of all real sequences f = (f(1),f(2),...) with
only finitely many non-zero coordinates, and with pointwise ordering.
This space is Dedekind complete and order convergence is stable. There
iy no strong unit in Z, in agreement with the fact that L is not of finite
dimension. Note that every principal band in I, considered as a Riesz
space on its own, has a strong unit and, in agreement with the last theorem,
every principal band is indeed of finite dimension.
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The theorem in the present section, under the extra hypothesis
that L is Dedekind complete, is known (cf. for example Theorem VI.
4.2 in [12]). The proof is then based on the representation of L as the
Riesz space of all real continuous functions on a certain compact topo-
logical space. The simple proof presented here avoids this representation
theorem.

6. Regular Riesz spaces. The Riesz space L is called regular if the

following conditions are satisfied:
(i) L is Archimedean.

(ii) Order convergence in I is stable.

(iii) For any sequence {u,} in L* there exists a sequence {1,} of
positive real numbers such that the sequence {A,%,} is bounded.

All Archimedean spaces of finite dimension are regular. The space
presented as an example in the preceding section satisties (i) and (ii),
but not (iii). The (real) sequence space 1, satisfies (i) and (iii), but not
(ii). The spaces I,(1 <p < co) are regular, and the same holds more
generally for spaces L,(1l < p < o0) of p-th power summable functions
with respect to a countable additive measure.

The notion of a regular Riesz space is due to Kantorovitch [4]. In
the original definition the space was assumed to be also Dedekind com-
plete; in the present discussion we will not need this extra assumption.
We first recall a simple lemma.

Leyma 6.1. (i) If L 45 regular and if {fa} is an arbitrary sequence
in L, then there exists a sequence {An} of positive real mumbers such that

Jafn — 0.

(i) If L is regular and the double sequence {fuc} o0 L has the property
that fuy 1 fn for every n, then there emists an edement 4 > 0 such that for
every - the sequence {fu;k =1,2,...} converges w-uniformly to f,.

Pro~of. (i) Let {u,} be a sequence of positive real numbers such that
{un|ful} 15 bounded, 50 0 <y |ful <o for some veLt and all n. Let

Ao ="y, for every m. Then 0 < Znlful < n7'0 holds for every n, and
80 Anfyn — 0.

(ii) Since order convergence and relatively uniform convergence are
equivalent, there exists for every » an element tpe LT such that {fu;
k=1,2,..} converges w,-uniformly to fn. Choose 4, >0 such that
the sequence {A,u,} is bounded, say A,u, < u for all m. Tt follows thatb
iorf every n the sequence {fu;%=1,2,..) converges w-uniformly

0 fu-

The Riesz space L is said to have the diagonal property it it follows
from fu; —1f, and f, — f that there exists a “diagonal sequence” {f,, i)}
n=1,2,...} with k(1) <%(2) <... such that fyxm > f. o
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TurorEM 6.2. The Archimedean Riesz space L is regular if and
only if L has the diagonal property.
Proof. Assume first that I is regular. Let f —>¢fo and f, —>f.
By the preceding lemma there exists uweL* such that every sequence
{far; & =1, 2, ...} converges u-uniformly to f,, and so there is for every n
a natural number %(n) such that

]fn,k(n) '_“fnl < "ty

We may assume here that k(1) < k(2) < ... It follows easily from
Jogy—fn >0 and f,—f— 0 that Fugmy —F.

For the converse, assume that L is Archimedean and possesses the
diagonal property. In order to prove that order convergence in L is
stable, assume that fy — 0, i.e., |fil < wy |0 for an appropriate sequence
{wp} in LT. Let fu = mnwy for m,k=1,2,..., Then fu—0 for
n=1,2,..., and so by the diagonal property there exists a diagonal
sequence furm —>0 with k(1) <k(2) <... In other words, we have
MWxm —> 0. Now, for any natural number % satisfying %(n) <k < k(n-+1),
let 4, = n. Tt is not difficult to see that A 4 co and Axwy — 0, 50 Axfr — O.
It remains to prove that for any sequence {u,} in L™ there exists a sequence
{1y = &y, > 0} such that {1, u,}isbounded. Set fur = ¥ u,forn, k=1,2,...
Then fur — 10 for n = 1,2, ..., and 80 form >0 for appropriate k(n).
In other words, setting i, = {k(n)}~*, we have A,u,—0, which implies
that {A,u,} is bounded.

Just as in Theorem 5.1 we will assume now that L is either Dedekind
o-complete or I has the projection property. In Theorem 5.1 it was proved
that if, in addition, L has a strong unit, then stability of the order con-
vergence implies that L is of finite dimension. We will weaken now the
condition that I has a strong unit, and assume only that every principal
band in L has a strong unit; we will prove that regularity of L implies
now that L is of finite dimension.

TuEOREM 6.3. Let the Riesz space L be either Dedekind o-complete
or have the projection property, and let every principal band in L have
@ strong unit. Then L is regular if and only if L is of finite dimension.

Proof. We need only prove that regularity implies finite dimension-
ality. Observe first that, in view of Theorem 5.1, every prineipal band
in I ig of finite dimension. Furthermore, by Theorem 4.3, it will be suffi-
cient to prove that any system of mutually disjoint non-zero elements
ig finite. Assume, therefore, that there exists a countably infinite system
{fa;n=1,2,...} of mutually disjoint non-zero elements. By the regu-
larity of I there exists a corresponding sequence {4, : 1, > 0} such that
{A|ful} is bounded; say Anlful < welt for all n. It ff)llows. that all ele-
ments f, are included in the principal band of finite dimension generated
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by w. On the other hand, {f,;n =1,2,...} is a linearly independent
system by one of the remarks in section 2. Contradiction. Hence, L must
be of finite dimension.
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1. Einleitung. Wir betrachten einen kompakten Hausdorffraum X,
der quasi-stonesch ist, d.h. der Banachverband C(X) ist bedingt o-ord-
nungsvollstdndig, und einen positiven Operator T in C(X), der kon-
stante Funktionen invariant l4sst (einen Markov-operator). Bekanntlich
erscheinen solche Voraussetzungen oft in der Theorie der messbaren
ADbbildungen und in der Theorie der Markov-prozesse, wenn man den
Korper aller messbaren Mengen (modulo Nullmengen) mit dem Korper
aller offen-abgeschlossenen Teilmengen eines kompakten Hausdorffraumes
identifiziert.

Extremalpunkte der Menge aller T™-invarianten Wahrscheinlich-
keitsmasse sind sogenannte ergodische Magse. Ein ergodisches Mass mit
minimalem Triger ist von Interesse in Zusammenhang mit der letzten
Arbeit von Schaefer [4]. Zunichst stellen wir die Frage: Wieviele ergo-
dische Masse konnen mit einem gegebenen minimal-ergodisehen Mass
gemeinsamen Triger haben? Hierfiir stellt Theorem 1 die “1L oder oo”
Regel auf.

In bezug auf die o-Ordnungsvollstindigkeit von C(X) zeichnen sich
ordnungsstetige Masse und Operatoren aus, die wir c-additiv nennen.
Wir stellen dann die Frage: Wann sind alle invariante Masse eines
o-additiven Operators o-additiv? Theorem 2 antwortet darauf mit dem
l\lht;telergodensatz und der endlichen Dimension der Menge aller invarian-
ten Funktionen.

TUmgekehrt behandeln wir auch die Frage: Wann kann kein o- -addi-
tives Mass invariant sein? Eine Antwort darauf ergibt sich aus der Cha-
rakterisierung (Theorem 3) des von allen o-additiven, invarianten Magsen
annullierfen Bandes. Aus Theorem 3 folgt auch die von Ito [2] bewiesene

* Forschungsstipendiat der Alexander von Humboldt-Stiftung.


GUEST




