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The (L, F)-spaces and (L,F)-spaces are generalizations of the (LF)-
gpaces defined in [2]. The (L, F)-spaces defined in this paper are a little
more special than the (L, F)-spaces defined in [11]. This difference is
inessential and for easier references we prefer to keep the same mame.

In this paper a theory of duality is presented for (IL,F)-spaces and
(L, F)-spaces, which is 8o conceived that it containg an essential part
of Grothendieck duality theory for (F)-spaces and (DF)-spaces (cf. [3]
and also [6]), and includes (LF)-spaces of Dieudonné and Schwarz [2].
‘We prove that the functor of taking the adjoint equipped with the strong-
est topology [9] carries the (I, F)-class into the (L,F)-class and vice
versa, the class (L, F) into the class (I, F) (cf. Propositions 3.1 and 3.2).
The space £ of all distributions [8] is an (L, F)-space, but it is not an
(L, P)-space. This is worth mentioning since the space 2 has so far stayed
outside any reasonable classification.

The problem started its history with Grothendieck’s guestion about

-2 class of spaces which is closed under a number of operations and within

which an analogue of the closed graph theorem is still valid (cf. [4], p.
18-19). A certain aspect of this was clarified in [10], and afterwards
widely diseussed by Raikov [7]. In connection with the closed graph
theorem, Stowikowski started to investigate in [12] the so called (L, F)-,
and (L, F)-inductive families. However, no definition of the correspon-
ding (L,F)- and (L, F)-spaces as used in this paper was given. The defi-
nition of (L,F)-space comes later in [10] and subsequently in [11] in a
slightly different form which would be less convenient for our purpose. The

* Part of this work was done while the author was visiting The Mathematical
Institute of Aarhus University.
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spaces (L, F') have not been defined by name before. They appear, though,
in [9] simply as adjoints to (L, F)-spaces.

Let X be a linear space. We denote by {X, @} the linear topological
space X equipped with the topology . We write

if there exists a one-one linear mapping 4 : X — ¥ which is z, 0-continuous.

1. (I, F)-decompositions and (L, F)-spaces. Let Uy, be vector spaces
and let || ||1’an be pseudonorms defined on them (k,n =1,2,...)

A double sequence ({Upnu, |- [],m 1) is said to be an (L, F)- decompo
sition, if

(1.1) ALl {Ugpn, I-17n}; aré complete psendonormed spaces such that

{Ulcm HHITc]%} <{Uk;1m ‘“I{ﬂln}y
{Ulcn: H ”kn} {Ulan—;-ly ” Hkn+1}
for k,m=1,2,...

We put
U, = ﬂ Uk,n; U = U U,
Fe=1 =1

(1.2) For every =, if ue U, and Hun,zn = 0 for all &, then » = 0.

(1.3) For every natural & and n, U~ Uy, is a dense subspace of
{Uk,m “ : Hircj,'n}

We say that {Uga, livHEn} is an (L, F)-decomposition of U, and we
denote by =, the topology of U, which is induced by the sequence of
pseudonorms ([l-ll;ﬁ{n 1k =1,2,...). It follows from (1.1) and (1.2) thab
{U,, m,} is for each n an (F)-space. In the following, we assume that ¢
denotes the inductive topology of U which is induced by the decompo-
sition { Uy, m,}. This topology 1 of U is said to be induced by the (L,I)-
decomposition {Usn, |- |Fa} of T.

A linear topological space {X,t} is said to be an (L,F)-space, if
there exists an (L, F)-decomposition of X such that the topology induced
on X by this decomposition is a Hausdorff topology and coincides with z.

It is to be noted that if eondition (1.3) is not satisfied by a decompo-
sition. ({Ugpm, |- [I,c 743 of U, then we can always produce a new decompo—
sition ({Uia, || [fn}) setting Uz, = the closure of U ~ Uy, in { Uk, [I* [1%; b
which satisfies this condition.

Denote by Nt the directed set of all sequences of natural numbers
partially ordered coordinatewise. Let {Upjn, H']];’c{n} be an (L, F)-decom-
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position of a linear space U. To every T = (k,)eM we assign a sequence
of pseudonormed spaces ({Ugn, ||'IlEn}) in the following way. We put

Uz = Lin(|J Uy).

Then, we define there psendonorms {- [, setting

ol = mf{z el s w = Zul, Uie Up, g}

i=1

Lemwa 1.1. The pseudonormed spaces {Upn, || lia} are complete.
Proof. For a given feM and neX¥N, consider the cartesian product

er,n = Ukl'lx e X Ukn,n

with topology given by the pseudonorm

fufn = 2 lualii 2,
=

where % = (U, ..., #,) €Uy, Clearly {Upn,|-}.} is complete. We put
L= {(tty, ..., Un)eUpp w4 ...ty = 0}.

Of course L is a linear subspace of Up, and the quotient space
{Ugm, |* |t} /L is complete. In order to prove the Lemma, it is now enough
to notice that the correspondence

UpnlL2 w[L & U+ oo Upe Ugy

gives a linear mapping of Uy, /L onto U, which is an isometry with
respect to the pseudonorm [ul,. This way the Lemma has been proved.
Write

Uy = U Ut,n
Tl
and let TU; be the set of all linear functionals on Uy which are continuous
in every {Upn, ||l n}, n=1,2,... Let us define the subspace L by
= {uel;:u'u = 0 for every u'eUs},
and let us define the pseudonorms |- |,,,, setting
lalif, = int {Jut 2l : 2L ~ Ty}

PROPOSITION 1.1. The pseudonormed spaces {Upy, ||*lla} are compleie.
Proof. It follows directly from Lemmsa 1.1.
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Denote by ¢ the inductive topology of U; induced by the decom-
position. {Ugaq, l]-[l,{’”}. It does not have to be a Hausdorff topology.

Lemma 1.2. For every eR, U is dense in {Uy, u}.

Proof. It follows directly from the definition of the (L, I')-decompo-
sitions, condition 1.3, that U ~ Uy, is dense in {U, |-} for every i,
and hence U must be dense in the inductive limit which is {Uy, 4}. The
Lemma has been proved.

ProrosiTION 1.2. The projective Uimit of {Uy, 4} coincides with the
space {U, i}, where o is the topology induced on U by the considered (L, IF)-
decomposition.

Proof. We know from lemma 1.2 that U is dense in the projective
limit of {Ty, 4}. If we prove that the projective limit topology of {TUyj, u}
is equivalent to the topology of U induced by the given (L, #')-decompo-
sition, then the proposition is established. But this is an immediate con-
sequence of the following lemma:

Lemma 1.3. A pseudonorm defined on U is continuous in the topology ¢
induced on U by its (L, F)-decomposition if and only if there exists TeMN
such that this pseudonorm 1is continuous im u-topology.

Proof. If a pseudonorm ||| defined on U is contihuous in every
{Uy, my}, then to every n there corresponds &, such that ||-|| is continuous
with respect to []-[]kUn,n for every n. Hence, it is continuous with respect
to every ||- ]|E;L, where f = (k,) and it iy therefore continuous in ¢-topology.
Conversely, for every f«3 the identical injection of {U,} into {Uj, ¢}
is continuous, because each pseudonorm which is continuous with respect
to every ||-|1kUw,, is continuous in {U,:}. This way the lemma has been
proved, and the proof of Proposition 1.2 has been completed.

Consider a sequence {X,, |-|l,} of pseudonormed spaces such that X,

o0

are subspaces of a linear space Z. Let X = ( J X, and denote by X’ the
=1

space of all linear functionals over X which are continuous when restricted
to every {X,, ||'[l.}. We define

lleel] = 1nf{§“wn”n L= an’ TneXy, & 2. &y = O}a
N=1 n=1

where the greatest lower bound is extended over all such decompositions
of & into sums of #, that almost all #,, vanish and the infinite summation
makes sense. Further, we define

o'l = sup{lo" @] : weXn, Jalln <1},
lo'll" = sup {|o’ @] : we X, lo]] <1},

I llewp = sUP{fl&/[ln s =1, 2,...}.

icm°®
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LemumA 1.4 (cf. [15], lemma 5.1, p. 218). The following identity holds:
12 llsup = lle’]}"-

Proof. We have |o's| < |2/l lzll, which implies |2'] < [|#'oup 2]ln
and conseque'ntly |#' %) < |[&'|leup |7l Which in turn gives [l = (|2’ |lsup-
Oonvel:sely, since ||z]| < |lzll., we have [lo’| > &'l and therefore [’
> ||#'|leup and the lemma follows.

We shall now recall the definition of the strongest topology of the
adjoint to a locally convex spaee (cf. [9]). Consider a locally convex
space {X, 7} and let X’ denofe the space of all linear v-continuous fune-

tionals on {X, z}. To every continuous pseudonorm p(-) on X, we assign
a Banach space {X’, || |l;} setting

'l = sup{|z'=]: o(z) <1}
and
X, = {@'eX": ']}

The family of all z-continuous pseudonorms p is directed strengthwise
by inclusion. To every a'«X’ there corresponds at least one o such that
#'¢X,. The induetive limit of the family {X, ||- e} provides X’ with a to-
pology which is called the strongest topology of X' (ef. [9]). The neigbour-
hoods of zero in X’ in the strongest topology are all those sets in X'
which absorb the polars of open sets of X. It is obvious that the strongest
dual is ultrabornologic (cf. [1], p. 34) and it is therefore bornologic and
barrelled.

Let us consider an (L, F):space {U, ¢} and let {Up,, |]-[],ffn} be its
(I, F)-decomposition. Let us denote by U’ the adjoint to {T, 1}, i.e. the
space of all continuous linear functionals on {U,:}. For a given %' U’
we write

1 i = sup{es| : we T ~ Up, e < 1}
and for a sequence f = (knj N we write
Up={uw'eU : |u'll,, n < co for n=1,2,...},
and we denote by =y the topology of U; induced by pseudonorms |||l ,
n=1,2,..

ProrosiTioN 1.2. We have the identity

U=Uu;
1Bt
and the inductive limit of {Uy, m;} provides U’ with the strongest topology
of the adjoint.
Proof. Every w' U’ is continuous in at least one { Uy, =} and there-
fore it is continuous in every {U ~ Uy, ||-lix,«}» Which means that
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||k, are all finite. Conversely, if for a given u' the relation |||}, < oo
holds for every m, then «' is continuous in {Uy, mx}. This proves that
U =T

=
Each (F)-space {Ug,n;} is the inductive limit of Banach spaces

{Tips I llep}, where I,pe®t and
'y = sup{mi 1wl n = 1,2,...,
Uty = {u'c Uy : [, < 00}

Henece, in place of the inductive limit of {U;,n;} we can consider
equivalently the inductive limit of {Uy,, [-lk,}. Applying lemma 1.4,
we have

lw'lley = sup{jo’ wl 2 JJuly, <1},
where

o o
lelley = inf{ an”unﬂkn, n:u= Z U,y U € U’W 2.8, Uy = 0},
M= N=1
and the greatest lower bound is extended on all decompositions of u
into sums of u, which almost all vanish, so that the oceurring sum is in
fact finite and makes sense.

To conclude the proof it is enough to notice that for every f the pgeu-
donorms |- ||y, from a basis in {Uy, 7z} and therefore the whole family
of pseudonorms )

(Il : £y p )

is a basis in (U, ¢) and by the same token the inductive limit of {U;J), s ||;,;.}
induces the strongest topology of the adjoint space.
ProrosirioN 1.3. Hvery (LF)-space is an (L, F)-space.
Proof. Suppose that U is an (LF)-space (cf. [2]). Then there is a se-
quence { Uy, 7,} such that U, = U,,,, U= J U, and such that the topology
n

7, coincides with the topology induced on U, by the topology 7.,. Sup-
pose that =, i3 given by a pointwise non-decreasing sequence of pseudo-
norms || “flxn, ¥ =1,... To every two natural numbers % and n there
correspond ¢ and M such that

”m“k,n < M”*’”“q,n.m for #eU,.

Hence one can produce double sequences %y, , and M,,, > 0 such thab
1. Mm,n”””kmmm < Mm,n+1||97”km,n+1,n+1 for #eU,, n=1, 2,...;

2. for every n, the sequence of pseudonorms (I My s M =1, 2, ceny
induces the topology 7, on U,.

(Ly F)-spaces and (L, F)-spaces

g
1o
o

We put

[11®] [ = int { ZMm,n”‘Tﬂ»”kmm,n P = Z-’Dm L€ Un}}
1L;1 N=1
where almost all , are zero, so that the infinite sums are always finite.
‘We can always make |{|z||],, pointwise non-decreasing. Then, for every »
the topology 7, is induced by pseudonorms {l]2]]} Testricted to T,
There exist complete pseudonormed spaces {U™,||l-|lim} such that
a LT 11w} = 0™ - lweds
b. U is dense in every {U™, |||zl/[3};
c. |l|]|l= coincides with ||||[|m on U for m = 1,2,
We can now define:

Ugn = the closure in {T, {||-]lz} of T,;
{11l = the restriction of |||-]|x to Up,.
It is easy to see that {Upy, |||*||lxa} is an (L, F)-decomposition of U

such that the topology : inducing it on U coincides with the original
topology z. This way the proposition has heen proved.

2. (I_JZF)-decompositions and (L,F)-spaces. A double sequence
(Vs "Ik} is said to be an (L,F)-decomposition, if
(2.1) Al {Vpu, i [ibn} are complete psendonormed spaces such that

{Vk,n: ””IZ,M} = {Vk+1,m fI- ”12;1,1;}
and
{Vlc,m ”'”Zn} < {Vk,n+1: H‘”lznﬂ}'
We put

[~} oo
Va=UTtay, V=0V
k=1 n=1
(2.2) For a given veVy,, it [vly, =0 for p >%, then |lo|f, = 0.
Fora givenveV, if to every n there corresponds some & such that fjo));,, = 0,
then » = 0.
(2.3) For every natural k¥ and n, V ~ Vi, is a dense subspace of
Vw1 le:n}
If these conditions are satistied, we say that {Via, || llea} is an (L, F)-
decomposition of V.
‘We note that in the case when condition (2.3) is not satisfied by a
decomposition {Vyn, II-|¥} of ¥, we can always produce a new decom-
position {Via, || lb.} setting

Vion = the closure in {Viu, |- lfn} of ¥~ Viy

and this new decomposition satisfies condition (2.3).
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In each V, we introduce the inductive topology i, induced by the
decomposition {Vin, I-IEa), »=1,2,... In the following, let -{V, n}
denote the projective limit of {V,, «,}. We call & the topology of V induced
by dts (Lo F)-decomposition.

" A linear topological space X ig said to be an (L,F)-space, if there
exists an (L,F)-decomposition of X such that the topology # in-
duced on X by this decomposition is a Hausdorff topology and coincides

with 7.
Let {Vina, ||'[lin} be an (L, F)-decomposition of a linear space V.

To every = (k,)e: we assign a sequence of pseudonormed spaces
{Viny [|-]]£7 ny in the following way. We put

2
Vf,n =N Vki,’l
=1

and
[[olly s = max {[o]lf: 4 =1, ...,n}.

This way we obtain an (F)-sequence {Vy,, ||-‘]|{’ ay (cf. [13]), where
every space {Vi, ||'|fn} is complete. Setting

Vk - m T7f,'n,

=1
and
@; = the topology induced on Vy by all pseudonorms |-|/» (n = 1,2,...),

we obtain a Fréchet space {Vy, m}. It is obvious that

V=UTV:
T

Using the terminology of [14], the family of (F)-spaces {Vy, m}
ig an induective family, and this particular kind of inductive family is
called a o®family (cf. [14], p. 3).

The following proposition holds:

ProposirIoN 2.1. The inductive limit of {Vy, m coincides with the
space {V, w}, where = is the topology induced on V by the (L,F)-decom-
position {Vk,m I ”IZ’!»}

Proof. For f = (k,) e we have

{Va, ) < {Vk",'m “Hllc:,‘n} <AV, 7

Passing to the induective limit on the right-hand side we obtain

{Vay u} <{V, 7},

(L F)-spaces and (L, F)-spaces 225

where ¢~ denotes the inductive limit of the topologies =, Passing to the
projective limit on the left-hand side we obtain

{Vya} < {7,

where z denotes the topology of ¥ which is induced by the (L, F)-decom-
position of it.

The converse relation is a little more difficult to prove. We shall
first need the following

Lemma 2.1, If a pseudonorm |j-| is continuous in {V, Y, then o every
Tel there corresponds a natural number n such that -1l is econtinuous in
{V m Vf,n; ””rrn}

Proof. First, we note that

{V ) rlz,n: H : jill;:n}

is & o*family (cf. [14]). Then, for every ¥, {V ~ Vi, |- If,} is an (F)-
sequence such that [|- || restricted to the first of these spaces, for n = 1,
V ~ Vy, satisfies the continuity condition stated in proposition 6, v
of [13], p. 289, 282. Using that proposition, it follows from ¢ that there
exists n such that [[-|] is continuous in {V ~ Viny I Hf ny, Which concludes
the proof of the lemma.

Going back to the proof of Proposition 2.1, we still have to prove
that for every pseudonorm |-} which is continuous in V, there exists
sueh n, that

ol < NyliollXn,

for some constant N; and all Vi, k=1,2,... It follows from
Lemma 2.1 that for every f there exist a natural number n; and a constant
M}, >0 such that

ol < Meflif,,
for all veVyn, ~ ¥V and & =1,2,...

By the definition of (L,¥)-space ||-|| is continuous and the proof of
the proposition has been completed.

Consider an (L,¥)-space {V,z} with an (Ly F')-decomposition
{Vin, }}~{§,Z,.,}. Denote by V' the adjoint to {V, =}. For v'« V' we define
a sequence of pseudonorms .

[0t = sup{|o'v] : eV A Vip, [0la <1},
and next we define the subspaces
Vo= {0/ eV : o lhn< 00, B =1,2,...},

We denote by =, the topology of ¥, induced by pseudonorms J- (19

k=1,2 ...

Studia Mathematica XXXI,3 13
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ProposITioN 2.2. We have the identily
o ’

Vi=UT"a

=1

and the inductive limit of {Vi, m.} provides V' with the sirongest topology
of the adjoint. ‘ . .

g Proof. For v’ ¢V’ there exists n such that ¢’ is continuous in {Vay tn}
and then it Delongs to V. Conversely, if 0 eV, for some nz}ttuml , tllller;
o' is continuous in {Va, &}, and therefore in {V, x}, too. This proves tha

V' = lj V.. To prove the rest, we note that every {Vn, ) is the indue-

tive ]i?;ilt of the spaces (V. g, [l np} which are defined in the iollowmg
way. First we define the psendonorms [0’ ny. For pe N we se

Hvlnf,n,p = sup{p,;‘[]q;'“,'cm 1k=1,2,..}
and then we seb
V-I”:b = {q;' € V;L : Hv,”-,,’ﬂ,p < oo} v
Therefore, the inductive limit of {V,, 7a} can be substituted by the

induective limit of ) )
{V.,n,)p: “ “.,n,p}a

where (1, p)e{l, 2,...} X N. We are now able to use lemma 1.4. We have

H'”’“.’,n,yp = sup{jv'v]: [oll. np < 1},
where

< S
= inf v m:w:)vk Ve Viny @ 2 vkzo},
121}, 1. {}gl’kh ll 2,7

the greatest lower bound being extended over all decompositions of v

into a sum,
oo
0= Y,
k=1

where almost all terms v vanish. These pseudonorms [|vf, », form a basis
for the topology of {V,s}. The proposition has beeTl proveq. )
A slight modification of example II, [lji], P 4., yields an interesting
(L, T)-space of continuous functions which is adjoint to no (L, F)-space.
) Congider a normal topological space B and a double sequence Ryq
of open subsets of R such that

Ryyin © Brn = Brpyas kyn=1,2,...,

R,=(\Bin, E=U Ry
Fe=1

(In F)-spaces and (L, F)-spaces 227

For every scalar-valued function f defined on R we introduce a pseun-
donorm

filkn = sup{|f(r)] : reRya},
and we use these pseudonorms to define subspaces Cr,(R) as
Cinl(B) = {feC(R) : | flin < oo},

where O(R) denotes the space of all continuous functions on R. We set
Cu(R) =AU1 OrnlB), C~(R) = (N C,(R).
o fn=1

Since E is normal, to every feCra(R) there corresponds a bounded
feC(R) such that

1f~Tlkn =0.

Hence, the double sequence

{Ck,'n (R) 3 ” ° ”k,m}

is an (L, F)-decomposition of C~(R). The topology induced by this decom-
position on (~(R) is separated, because every functional F;(f) = f(¢)
is continuous in this topology and these functionals separate points.

We note that if B is separable and o-compact, then we can produce
(Byy) in such a way that every R, is compact and RFy,, k=1,2,...,
form a eomplete system of neighbourhoods on R,. Then, having in mind
that every continuous function must be bounded in a neighbourhood
of every point and using compactness of R,, we conclude that every

continuous function is bounded in some Ry, for every n, and therefore
C~(R) = O(R).

3. Adjoint decompositions and spaces. Consider a double sequence
{Xtny " llsn} which is an (L, F)-decomposition (an (L F')-decomposition)
of a linear space X. First, we define the adjoint double sequence.

Let X* be the algebraic adjoint of X. We define complete pseudo-
normed spaces {Xin, ||-[ka}, Where X;, = X* For every o' «X* we set

[l = sup{ja’al : 2eX ~ Xip, [0lin < 1}
The ||&'|l%, are pseudonorms and they are used to determine the
subspaces X, < X*:
X = (&' e X*: o' jn < o0}
ProrosITION 3.1. Subject to corrections for conditions (1.3) or (2.3),
the adjoint to an (L, F)-decomposition is an (L F)-decomposition and the
adjoint to an (L, F)-decomposition is an (L,F)-decomposition.
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o

Proof. Tt is easy to see that passing to the adjoint decompositions,
conditions (1.1) and (2.1) turn one into the other. Suppose now that

a sequence {Uga |- k) is an (L, F)-decomposition of a 1i_11ear space U
Then, condition (1.3) guarantees that U is dense in every 11].11(3&1‘ tol?olog1-
cal space {Ugu, |l lin}. Therefore, if a functional which is continuous

in the space {Ugn, |- llxa) vanishes on Un Uyp for all p >k, t.hen it
vanishes on U ~ Uy, This proves the first part of 2.2. If flor 2 gwen w
we have ||t [l = 0 for some % and all n, it means that % vanishes on
every U, = Fﬂ Uy, and so o' is identically equal to zero.
Re=1 .

Suppose now thatb {Via I llen) 18 an (LEF)Adecomplosm.on of .V.
Then |[v'l|i,» vanishes for every % only for such functionals ' which vanish
on the whole space

V m V»,,, = (]E:Jl Vk,n) m V,

which proves Proposition 1.2. The proposition has therefore been

roved. .
plm?j‘,onsider an. (L, F)-space (an (L, F)-space) {X, 7} with a eorrespond%ng
decomposi’cion {-X’pqu, H'”k,n}- Let {X;r,1z, Hl]l’ml} denote the COI‘I‘BSPOH.dTDg
adjoint decomposition which has already been corrected for condition
(2.3) ((1.3)). , ,

PrOPOSITION 3.2. The adjoint sequence {Xin, ||-llka} decomposes Ithe
space X', the adjoint space to {X, 7}, and the topology it induces on X is
the strongest topology of the adjoint. .

Proof. Suppose that X is an (L, F)-space. It follows_ from ~Prop.os‘1-
tion 1.2 that the strongeét topology of X' is given by the lnductwe. hm%t
{X4, |- ls} which by virtue of Proposition 2.llis the topology which is
induced in X' by the decomposition {Xin, |I*[lkn}-

Suppose now that {X, 7} is an (L, F)-space. It follows from Prol?o-
sition 2.2 that the strongest topology for X' is just the topology Whmp
is given in X' by the inductive limit of {Xn, I lln}. By virtue of the defi-
nition of the (I,F)-topology, this inductive limit topology is exactly
the (L F)-topology induced by the adjoint decomposition. The propo-
sition has been proved.

4. The closed graph theorem for (IL,F)- and (IyF)-spaces. Every
(L, F)-space and (L, F)-space is an inductive limit of (F)-space‘s.' It follows
directly from the definition of (I;F)-space and from Proposition 2.1 for
(L, F)-spaces. Hence, they are also inductive limits of Banach spaces
and we have the following

PROPOSITION 4.1, Both (L, F)- and (L,F)-spaces are ultrabornologic
(cf. [1], p. 34).
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We shall recall some definitions of [11] and [12]. Let {X, } be a linear
topological space.

;A sequence (u,), #,eX, is said to be inductively convergent in X (cf,
[11], p. 100), if there exists an (F)-space {¥, o} > {X, 7} such that a,e¥
and {z,} is convergent in {¥, o).

A sequence (#,) is said to be co-convergent to zero (cf. [10], p. 21,
and [5], p. 385), if there exists a sequence (#,) of scalars such that lim [z,
= oo and the set {{,@.} is bounded in {X,r}, which means that it is
absorbed by every neighbourhood of zero in {X, .

A sequence () is co-convergent to , if {,— ) i3 co-convergent to zero.

A sequence (2,) is said to be co-fundamental, if there exists a se-
quence 7, of scalars with lim It,,} = co such that the set {f,(x,—zy):
n<m} is bounded in {X,}.

A linear topological space {X, 7} is said to be co-com plete, if every
co-fundamental sequence in {X, v} has a limit point in {X, 7}

We can as well characterize the co-complete spaces in the following
way. A space {X,t} is co-complete, if every bounded absorbing closed
convex set in {X,r} spans in X a Banach space which is continuously
injected in {X, 7}.

It is easy to see that the following proposition holds:

ProPposrrion 4.2. A space {X, 7} is co-complete if and only if to every
bounded subset B of {X, 7} there corresponds an (F)-space {¥, p} > {X, o}
such that B is contained and bounded in {¥, o}.

Tt follows from this proposition that for co-complete spaces the indue-
tive convergence and co-convergence are the same. However, (L,F)-
spaces or (L,F)-spaces need not be co-complete.

Let {Y, o} be an ultrabornologic space and let {X, 7} be either an
(L, F)-space or (L,F)-space. A linear mapping

T:{Y, o} = {X,}

is said to be inductively closed (co-closed), if for every two sequences (/)
and (), yne ¥, w,eX, which are inductively convergent (co-convergent)
to y and #, respectively, in {¥, o} and {X, 7}

it @, = Ty, for every n, then # = Ty.

ProrostrioN 4.3. Every linear sequentially co-closed transformation
from an wltrabornologic space {¥, o} into an (L;F)-space {X,t}, i =1, 2,
8 continuous.

Proof. We note first that {X, o} is the inductive limit of either an
inductive sequence of (F)-spaces in the case of (I;F)-space or of the
inductive family used in proof of Proposition 2.1. In both cases the indue-
tive families admit an overhelming set of components (cf. [14], . 4).
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We denote by % the inductive family of all Banach spaces that are sub-
spaces of ¥ with continuous identical injection in {¥, ¢}. The inductive
tamily @ decomposes {Y, o}. Applying theorem 4 of [14] we find that
to every {Z, {)e# there corresponds an {8, ¢}¢X such that TZ < 8. But
{¥, o} is ultrabornologic, and so it is the inductive limit of {U, {}eh.
The transformation 7 is therefore a continuous transformation from
{¥, ¢} into {X,7}. The proposition has been proved.

COROLLARY 4.1. Consider o locally convex space {X, 7} which is either
(L, F)-space or (L,F)-space. Then the topology v of X 1s the coarsest ullra-
bornolog - topology of X among those topologies of X which preserve limits
of inductively convergent sequences in {X, 7}

This means that if ¢ is an ultrabornologic topology of X such that
for every sequence (#,), #,¢X, which is induetively convergent to u in
{X,7} and v in {X, g} it is always u = v, then the topology ¢ is finer
than 7.

The question which is the finest ultrabornologic topology of a given
linear locally convex space is & trivial one. The finest locally convex
ultrabornologic topology of a given locally convex space {X,7} is the
inductive limit topology of all finite-dimensional linear subspaces of X.
Clearly, a sequence of elements w,¢X is inductively convergent to  in
this topology if and only if it is contained in a finite-dimensional sub-
space of X and convergent to « in this subspace. Such sequence must there-
fore be convergent to the same limit in any reasonable topology of X.
This shows that Corollary 4.1 cannot be strengthened.
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