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Some remarks on Dragilev’s theorem
by

C. BESBAGA (Warszawa)

M. M. Dragilev has shown that in many nuclear Fréchet spaces (1)
all the bases are quasisimilar (see Definition 1). The most reeent theorem
on this subject [3] is a strengthening of former results of Dragilev [2]
and Mitiagin [5], nevertheless its proof, based on the technique of approx-
imative invariants, is much simpler than the former proofs. This theorem
can be splitted into two parts:

(A) If X is a nueclear Fréehet space with a regular (see Definition 3)
basis (w,), and if (y,) is another basis in X, then there is a permutation
of indices (»,) such that (y»,) is a regular basis in X.

(B) Under some additional conditions on X, any two regular bases
(#,) and (y,) in X are semisimilar, i.e. there are positive numbers ¢, such
that the servies 3'¢,, is convergent if and only if Stucays is convergent.

n n

The main result of the present paper, Theorem 2.2, is a streng-
thening of (A) above; in our setting the basis (x,) of X need not to be
regular, and (y,) is a basis in a complemented subspace ¥ of X, not neces-
sarily in the whole of X. The assertion gives a relationship between (y,)
and (@,).

This result can be used to give isomorphical characterization of
complemented subspaces in some spaces. For instance, if ¥ is a Fréchet
space which is isomorphic to a complemented subspace of the space of all
entire functions of one complex variable, then Y is isomorphic to
a subspace spanned on a subsequence (¢) of the step system (=M.

In section 2 we prove Theorem 2.2 (mentioned above), and derive
some corollaries; one of them is the Dragilev’s theorem. The proof is
a combination of Dragilev’s argument with a lemma of [1], here — 1.7.

(1) Following Bourbaki, by a Fréchet space we mean a loeally convex complete
linear metric space; these spaces have been introduced by S. Mazur and W. Oxlicz
and called by them Bg-spaces. In fact, the Dragilev’s theorems are also valid for
some non-metrizable linear topological spaces, but, for simplicity, we shall restrict
our abtention to the case of Fréchet spaces.
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Tor completeness we present this proof here, although a hig part of it
is literally the same as in [3].

In section 3 we discuss a relationship between Theorem 2.1 and
the problem of isomorphic characterization of complemented sub-
Spaces.

In Preliminaries we introduce the terminology and state the propo-
sitions which are used in proofs of the results of sections 2 and 3. These
propositions are either well-known or are reformulations of known results
in terms of matrix representation of nuclear spaces.

1. Preliminaries. In the sequel X will denote an infinite-dimensional
Fréchet space over the field of real or complex scalars. By a seminorm
on X we mean a continuous non-negative functional || on X such that
|+v| < ||+ |y| and Jty| = |3||2| for all vectors @, y in X and all scalars 1.
A system of seminorms (|+|p), » = 1,2, ..., on X is said to be admissible,
it hmwn = g in the topology of X 1f a.nd only if lun[wn—m|p =0 for

p = 1 2, ... and, moreover, |of, < [#], < [@; < ...

Further we shall use the following well-known facts:

1.0. If (}-|p) 4s an admissible system of seminorms on X, and |-| is
any seminorm on X, then there exist an index q and a constant 0 >0 such
that |z < Clolg for all zeX.

11 If |+ |p, for p =1, 2, ..., are seminorms on X and, for all & in X,
llf} = sup || << oo, then $| |] 18 a4 Seminorm.

We recall that a sequence (z,) of vectors in X is said to be a basic
sequence, if there is a closed subspace ¥ of X such that any y in ¥ can
be uniquelly expressed in a form

D

Y= 2%

=

I
-

(@) 18 2 complemented basic sequence (briefly: CBS), if the subspace Y
is complemented in X (z,) iy a basis in X, if ¥ = X. It is well known
that the coefficients , = f.(#) of the expansion with respect to the basis
are continuous linear functionals: they will be called the coefficient
Sfunctionals of the basis (z,).

Let (2,) be & basis in X. A seminorm |-]| on X is said to be (w,)-normal,
if ifi(@) @]l < |io)l for every @«X and every j.

‘We recall also the following proposition:

12 For any admissible system (|-1,) of seminorms on X, there is an
admissible system (||-|lp) of (mn) -normal Seminorms.

Proof. Let fjof, = sup 2 1fi() @il

icm°®
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1.3. If (yu) is a CBS in X, then there is a system (g,) of continuous
linear functionals (g,) biorthogonal to (y,) such that for any seminorm |-|
on X,

(1) SUp |ga (@) Y] < 00 for oll z in X.
n

Proof. Let ¥ = span(y,), the closed subspace of X spanned on
(yn), and let P: X — ¥ be a continuous linear projection onto Y. Let
h,e¥* Dbe coefficient functionals of (y,). Then g, = h, P have the
required property.

It can also be shown that, in the case where X is nuclear, any basic sequence
admitting biorthogonal functionals (gn) satisfying condition (1), is a CBS.

Detfinition 1. Basic sequences (,) and (y.) are similar, if the
convergence of the series Yt,z, implies that of Dty and vice versa.

n n

(#,) and (y,) are semisimilar, if there exist scalars a, making (z,) and
(@nyy) similar. (z,) and (y.) are quasisimilar, if there are permutations
(7n) and (s,) of positive integers such that (z, ) and (ys,) are basic se-
quences and are semisimilar,

It is well-known that

1.4. Let X and Y be Fréchet spaces. If there exist bases (x,) and (Yz)
in X and in Y, respectively, such that (z,) and ( Jn) are szmzlar then the

spaces X and Y are isomorphic under the map: Ztnxn—>2tnyn Hence

the quasisimilarity of the bases also implies isomorphism of the spuaces.
Let U and V be convex symmetric neighbourhoods of zero in X.
The n-dimensional Kolmogorov diameter of V with respect to U is

(V, )= inf int{t >0: L+tU = 7},

dim Ln
the first inf taken over all at most n-dimensional linear subspaces of X.
The space X is nuclear if for every U there exists a ¥V such that

Z‘ 4,(V, U) < co. (By Mitiagin [5], this definition is equivalent to the

standard definition of nuclear spaces by means of nuclear operators,
see e.g. Pietsch [1].) We recall that every closed subspace of a nuclear
space is nuclear.

Definition 2. A basic sequence (#,) in a nuclear Fréchet space X
is said to Dbe represented by a matrix [apm}, p,n = 1,4,... (briefly:
() ~ [@pa]), if there is an admissible system (]-|p) (z,)-balanced
geminorms on the space Y = spa.n(:rn) such that |#uly = @np. If X has
a basis represented by [ay], we will say also that X is representable by
the matrix [ap.].
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The clagsical Dynin-Mitiagin [4] theorem states that every basis
(#,) in any nuclear Fréchet space iy absolute, i.e. 3|fu(®)w,] < co for
any  in X and any seminorm |- | on X. Each of the next two propositions
is equivalent to this theorem:

1.5. Let (y,) be a basic sequence in a nuclear Fréchet space X. Then
for every seminorm |-| on X there is a seminorm |||, with |x| < |#] and
3 lunt/lyall < oo (here we assume 0/0 = 0).

1.6. If basic sequences (2,) and (Y.) in nuclear Fréchet spaces X and ¥

can be represented by the same molrix [ap,], then (x,) and (y,) are similar
(of course, provided that both spaces are over the same field of scalars).
The following lemma is a consequence of 1.5:
1.7. If (@) is a basis in a nuclear Fréchet space X, then (x,) can be
reordered in such a way that for any seminorm |-| there is a seminorm |||
such that

(2) el = n¥lwa|  for m=1,2,...

The proof of this lemma is given in [1], but for completeness
we present it also here.

By 1.5, there is an admissible system of seminorms (|'|,) on X such
that

-l
Z I@t’p/lwnlvﬂ < oo

for all p.
=1
Let Cpn = [@nlp/|@alp41- We can easily define by induction a sequence
(en) of positive numbers such that
o
ch‘ < o0 and [

N=1

for all but finitely many values of n. Let (r,) be a permutation of positive
integers such. that (¢, ) is non-increasing; then K = supme,, < oo,
Hence, for each p, noy, < ne;, < K for all but finitely many =, and
therefore there exist constants K such that ney,, <K, for cull n. The
last. mequahty means that

C By |0 lpy = 0|0

Now let |-| be an arbitrary seminorm on A. Since the system (] |,)
is a,(lmlsmble, there exist a constant ¢ >0 and an index po such that

o) < Cloly,. Letting |jo] = Ky Ky |olpys0, We obtain
gl >

‘ 0 "7’ K o[y lvgia = Ot [, |pg =
W}:uch completes the proof of -the lemma,

n? Imrnl y

icm
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Definition 3. A matrix [ay,] is of type (D,), i all the numbers
ayn are positive, and for each p, the sequence (apa/dp.i.) is non-in-
creasing with respect to n. [a,] is of type (D,), if it is of type (Dy),
and, 1n01eover, a;, =1 for all n, and for every p there is a ¢, with
Qg > Gy Tor all n. [ap,] is of type (D,), if it is of type (D,) and, more-
over, lima,, = 1 for all n, and for every p there is a ¢ with 1im apn jagy = 0.

» n

A basic sequence (z,) in a nuclear Fréchet space X is said to by
of type (D), if there is a matrix of the type (D;) representing it. Bases
of type (D) are also called regular [3].

We obviously have

1.8. If [ay] is a matriz of a type (D) and (k,) is & non-decreasing
sequence of positive inlegers, with ].u:nk = oo, then the matriz [ap,] is
of the same type (D).

The classical examples of nuclear Fréchet spaces are:

1° The spaces of analytic functions defined on an open domain .D
in the complex r-dimensional space, with the topology of uniform conver-
gence on compact subsets of D.

2° The spaces of infinitely dlﬂerentmble functions defined on a com-
pact . O -manifold (with or without boundary), under the topology of
uniform convergence of the functions and all their derivatives.

We shall list some of these spaces:

A(%) — the space of all entire functions of one complex variable.
The sequence (¢"~') is a basis in this space and is represented by the
matrix [(¢" 1?~1], which is of type (D).

: A(#") — the space of all entire functions of r complex variables.
The system of mononomials (<) EF- A g PN LI ) basis in this
space; this basis, when properly ordered, is represented by the matrix
[(e" %P1 (see [8]), which.is of type (Dy).

A(.@) — the space’ of all -analytic funetions of " complex variables
defined on a convex bounded open domain D is represenfable by the

T

matrix [6~V™?], of type (2,), see [10], and for the special ‘case of
9 = %}, the r-cylinder — [8] and [9].

0®(T) — the space of all infinitely differentiable periodic functions
defined on . the interval ' [—m;=]. The trigonometric system 1, cost,
sint, cos2 . (and also the system (e "“) in the complex case) are bases.
They are represented by the matrix [n7'], which is of type (Dy).

According to Ogrodzka [6], spaces O (M) of all infinitely differen-
tiable funetions on a compa.ct finite-dimensional manifold M are repre-
sented, in general, by the matrix [#*~'], and therefore are 1s0m01~p‘hlc
to the space C*(T).

We ghall conclude the preliminaries with two propositions concerning
Kolmogorov diameters.
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1.9. If (w,) is a basis in X, ay, b, are positive numbers such that
bija; > by @y = bslag > ... and A, B denote the cubes

[>+]
{w = ,§1tnwﬂ: [tal < an}z {50 = Ztnmu: [ta] < bn}y
=1 =1

then dy(B, A) = byy1[@nyq for n=0,1,2,...

This proposition is intuitively clear; a precise proof of it follows,
for instance, from the Pietsch’s argument ([7], Seet. 9.1).

By the diametral dimension and the inverse diametral dimension
of the space X we mean the sets of scalar sequences:

X) = {(t.): L{Ey{g limt,/d,_(V, U) = 0}
and

X) = {(t.) VE{ lim#,

13

)L—-I(V! U) = 0}7

where ¥V and U run over all convex symmetric neighbourhoods of zero
in X.

1.10. The sets §(X) and 8'(X) are isomorphic invariants of spaces X,
moreover, if X and Y are nuclear Fréchet spaces and Y is isomorphic to
a subspace of X, then

(3) 8(Y) < §(X) and & (Y) > &' (X).

If X has a basis (w,) represented by a matriv [a,.] of type (Dy),
then

4)
§(X) = {(t,,) E[tht Lo —0}

n L

(6) X)) = {(tn): V3mt,ay, = 0} = {(t,,,): Zt,,m,, 8 cmwergent},
» n -

8(X) = {( : VO limi, 22 o},
Gyn

g n

if ©=1;

(6) = {(t,): thtnapn =0} = { )t Zt,,mn is cmwe'rgem},
n

if i =2.

) The invariance of sets §(X) and ¢'(X) immediately follows from
their definitions. For the proof of (3) see Mitiagin [5], p. 81.

Proof of (4). Write

(N el = ng [fa(®)ami, p=1,2,..

icm
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If (|-]l,) is any admissible (z,)-normal system of seminorms on X
such that |#./l, = ay,, then, by 1.5, for every p there is a ¢ such that

o = D Izalp/lzalle < oo,
N=1
and therefore

el < D1 fu(@)] - lalh < e l2lles

and since the seminorms (||-|l,) are (x,)-normal, we obtain

Jaly < el < eplixly,  for all @ in X,

i.e. system (7) is also admissible. Using this fact, and also

(8) V', T) c dy(V,T) for V' cV,UcU;

d,(aV, bU) =%-dn(v', U) for a,b >0,

we conclude that

6{X) = {(t.): [[thtn/d,;(Kq, K,) =0}

and

6 (X) = {(t,): VA limt, d.(K,, K,) = 0},

ng n

= {-’17 znZ: tnitnt 1l
Now, from condition (D,) it follows that d,(K,, K,) can be computed
by means of 1.9. This gives the required formula (4).

Proof of (5) and (6). From conditions (D;) and (D,) it follows that
in the first formula of (4) we may replace a,, DY @y, = 1 and in the second
formula we may replace gy, by ]jm ag = 1, which gives the middle expres-

where - K; = {z: |z} <1} < 1agp} for j=1,2,..

leIlS in (8) and (6). By 1.5, the condition thtnl.tnh, =0 implies that
y [ty ®nlp < oo for all p which in turn 1mp11es that the series Z‘t x, is
comergeut Hence we get the (second) equalities of (5) and (6 )

2. Dragilev theory. All the results of this section are consequences
of the following:

2.0. CrUCIAL LEMMA. Suppose that X is a nuclear Fréchet space
with a basis (x,), (f.) s the sequence of coefficient functionals of the basis,
and (y,,) is & CBS in X. Then there ewist positive integers ky, with limk, = oo,

"


GUEST


314 C. Bessaga

such that f;;,,(@ln) # 0 for all n and such that for any :(x,)-normal seminorm

||y there is a seminorm ||*| satisfying the condition .
(9) @ T, o < [Yalo < “nr”:‘ck,,L y
where

(10) ty = |fr, (yu)l  for n=1,2,...

Proof. Reordering the basis (w,), if necessary, we may assume
that the assertion of 1.7 is satisfied. Let (g,) be linear functionals biortho-
gonal to (y.) and satisfying condition (1) of 1.3. Since,

1= galyn) = E!/"b(mk)fk(yn))
k=1
we geb

(o]
, D gn @0 flyn)] > 1
i =1
Comparing the last series with ) k7%, we conclude that for every m
: 3 '

[o<]
o™t ky?, where o = Y u7?. Hence,
=1

there is a &, with |g, (o) fr, (v, =
by (10), o L
(1) lgulae,)| = 0"k ag” for all m.

By condition (1) of 1.3 and by 1.1, |#| = sup|g. () Yulo 18 & seminorm
‘ n

on X. Hence, by 1.7 and 1.5, there is a seminorm ||| such that
(12y o l%l <ot J%H for all m = '
and o o L o
@y Z :ynwuynu < oo
( . Then - . ‘

g ( Ty, f‘/nlﬂ = EHPU:I(QL* )Jﬂu = |5"lc J < ‘17"’172”mkn||7

and by‘f;,,(ll)"? :

. o Ngnlon,)Yulo = 1gn (@) | Yo = 0,07 5 Ynlos
1.e

Tl
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and, by (13),

Tim |, o, | = 0.
n

Hence, for any j for which |z;], # 0, the set {n:k, =j} must be
finite. But since for any given j we can find an (2,)-normal seminorm
| fo for which |ayl, # 0, all the sets {n : k, = j} are finite, i.e. limk, = oc.

- n

2.1. COROLLARY. Let X, (24), (Yu), (@a), (ka) e such as in 2.0, and
let (]1p) be an admissible system of (x,)-normal seminorms on X. Then
Jor every index p there exist a q(p) and a constant Cp >0 such that

@y iy lp < [Yulp < Cptnln, lopy  for all u.

The proof immediately follows from 2.0 and 1.0.

2.2. THEOREM. Suppose that X is a nuclear Fréchet space with a basis
(@), (@n) ~ [bpn], and (y5) is a CBS in X. Then there are positive inte-
gers ky, with imk, = oo and positive real numbers a, such that (a;'y,)

n

~ [byikn] -

Proof. Let (|-|,) be an admissible system of seminorms on X such
that |2u)p = byy, and let (a,), (k,) be such as in 2.0. Further, we let
Y = span(y,) and ¢g,e Y™ De the coefficient functionals of (y,).

Using 1.0 and 1.5 we eagily conclude that the system of seminorms

s = suplgu@llyule,  ye¥, p = 1,2, ..,
is admissible for Y. Hence, by Corollary 2.1, also the system
| Wl = supanlga(@)llen,sy 2 =1,2,...,
is admissible for Y. We have
Nz Yl = l2x, lp = bpr,  for all n and p,

which completes the proof. .

2.3. COROLLARY. Let X be a nuclear Fréchet space. If X admits
a basis (x,) of a type (D), then every CBS (y,) in X is gquasisimilar to
a CBS of the same type (Dy).. ’

Proof. Applying Corollary 2.2 and reordering the sequence (y,),
it necessary, we gebt (@n¥u) ~ [byn,] a,nd the matrix [b, ] is, by 1 8, of
type (D).

2.4. COROLLARY (Theorem of Dragilev). If X is a nuclear Fréchet
space having a basis (@,) which is either of type (Dy) or is of type (Ds),
then all the bases in X are quasi-similar. ‘

Proof. Let (w,) be an arbitrary basis in X. By Corollary 2.3, there
is a Dasis (y,) of type (D;) which is quasisimilar to (w,). Hence, applying
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formula (4-+4) of 1.10 first to the basis (#,) and next to (y,), we conclude
that these bases are similar.

9.5. CoroLLARY. If X is one of the spaces A(%), A(2),0>(T),
listed in the preliminaries, then oll the bases in X are quasisimilar.

ProprEM 1. Is it true that in every nuclear Fréchet space with
a basis all the bases are quasisimilar? How aboub the cartesian product
A4(6")X A (@) and the tensor product A(¢)&A4(2)?

This question is related to a problem on isomorphic classification
of spaces of analytic functions (Rolewicz [8], p. 142).

Conditions (D;) and (D) concerned the bases in a given nuclear Fréchet space X.

Now we are going to discuss briefly similar conditions stated in terms of the space X
itself; they are

(dl) AV lmdy(V, W)/dn(”r, U) =0,
UWV n
and
(d,) VAV Wimdn (W, U)/du(V, W) = 0,
h Uwvy n

where U, ¥V, W denote convex symmetric neighbourhoods of zere in X.

These conditions (stated in an equivalent but more complicated way) have
been introduced by Dragilev [3]. The following is obvious:

2.6. ProposiTIoN. The properties (d;) and (d,) are isomorphically invariant.
A space satisfying (d;) cannot satisfy (d,).

Thoe next proposition can be found in Dragilev [3] in an implicit form.:

2.7. ProrOSITION, Let ¢ be either 1 or 2. Let X be a nuclear F'réchet space with
@ basis (xx) of type (Dy). Then the following are eguivalent:

() (wn) is semisimilar with a basis of type (Di);

(ii) every basis in X is quasisimilar with a basis of type (Di);

(ill) X satisfies the condition (di).

From the last two propositions it follows

2.8. COROLLARY. There is no nuclear Fréchet space having bases of both fypes:
(D) and (Dy).

Now, by 2.3, we get

2.9. CoroOLLARY. Let © and j be any positive integers with i+j = 3. Then there
is no nuclear Fréchet space having o busis of the type (D;) and a CBS of type (Dj).

In the last statement one cam not replace “CBS” by “basic sequence’: The
space A (%), of all analylic functions on the disk, which can be represented by a
matriz of type (Dy) contains a subspace isomorphic to A (%) ([8], Theorem 2.4) and
therefore there are basic sequences in A (%) of type (D).

3. Complemented subspaces of X. Here X denotes a nuclear Fréchet
space with a basis (x,) represented by a matrix [a,,]. Since by the Dynin-
Mitiagin theorem (mentioned in the preliminaries) (w,) is an absolute
basis, every subsequence («;,) is a CBS. Hence, if

(14) Y is a space representable by a mairiv [ay, ], where j; << j, < ...
then Y 148 isomorphic fo a complemented subspace of X.

@ © _
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By Corollary 2.2, condition (14) is “almost’ mnecessary: we have
only to replace the increasing sequence (j,) by a non-decreasing one. This
suggests the following:

3.0. ConJECTURE. Suppose that X and ¥ are nuclear Fréchet spaces
with bases and X is representable by a matrix [a,,]. Then Y is isomorphic
to a complemented subspace of X if and only if Y is representable by
(s, 1 for some strictly increasing sequence (jy).

‘We shall discuss the situation in the case of a special class of nuclear
Fréchet spaces: power series spaces of infinite type ([7], 6.1.5), i.e. such
spaces X which are representable by a matrix the p-th row of which is
the (p—1)-power of the second row (such matrices are obviously of
type (D,)). In particular, we will show that Conjecture 1 is true for
X = A(¥) and for X = C*(I).

From 1.10 it folows

3.1. LEmMA. Suppose that X and ¥ are nuclear Fréchet spaces, X is
representable by o matriz [a2'] and ¥ is representable by [b3~'1, where
(@) and (by) are non-decreasing sequences. Then 6(Y) = 6(X) if and only if

(15) Hlima, b} = 0.
P

Given non-decreasing sequences of positive numbers: (a,) and (bn),
we shall write (b,) < (a,) if condition (15) holds, and (a,) ~ (b,) if both
(az) < (by) and (By) < (an).

3.2. ProrostTioN. If X is representable by [dh '] and the sequence
(ay) has the following property:

(*) if By <ky<... and (o) < (an), then there is a strictly increasing
sequence (jn) of imdices such that (ax,) ~ (a;,),

then every complemented subspace of X having a basis must fulfil (14).
This proposition follows directly from Lemma 3.1 and Corollary 2.2.

3.3. COROLLARY. Let Y be a nuclear Fréchet space with a basis. Then ¥
is isomorphic to a complemented subspace of A(%) if and only if Y is repre-
sentable by a matriz [(€7)p~] and X is isomorphic lo a complemented sub-
space of C*(T) if and only if X is representable by a matriz [§5-*1, for some
strictly increasing sequence (j) of indices.

Proof. We check the condition (x). Let (ax,) < (as). If an =",
then (ar,) = (¢") ~ (") = (@), With jo =kptn. If an=mn, then
(kn) m (nln), ie. (az,) = (az,) foT jn = nky.

3.4, COROLLARY. Let ¥ be a nuclear Fréchet space wilh a basis. Then ¥
is isomorphic to a complemented subspace of the space C°(T) if and only
if X is a power series space of infinite type.
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Proof. By 3.3 the proof can be reduced to that of the following
elementary fact: If (a,) 1s & non-decreasing sequence of positive numbers
such that Za,,,, < oo, then there are integers j; < Ja << ja... with (j,) ~ (ay).

Remark. The method based on the invariance of diametral dimen-
sion and Lemma 3.1 is insufficient to settle conjecture 1 in the case of
power series spaces of infinite type. In fact, if

@, == ex]p (exp(exp n)) and

then (b,) < (a,), but (b,) ~

(bn) = ((’/27 gy Qgy Qg y gy g, )7
to no subsequence of (a,).

Added in proof. A. Using the method of section 3 one can show
that Conjecture 3.0 is true for all the spaces listed in Preliminaries,
p. 427,

B. An interesting Dragilev-type theorem concerning the spaces
Play '] (not necessarily nuclear) is given in [11].
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A general maximum principle for optimization problems
by
M. ALTMAN (Warszawa)

Halkin and Neustadt [10] have presented a very general maximum
principle for a mathematical programming problem over an arbitrary
set. This principle includes and extends all the most important necessary
conditions for optimization problems. Two basic features are character-
istic for the Halkin-Neustadt principle. The first one is the “dunal form?
of the necessary ecriterion. Roughly speaking, by the “dual form” we
mean some relation (equality or inequality) in a proper conjugate space.
A classical example is Lusternik’s theorem ([11], p. 339): The problem
is to find an 4 such that F(3)= min{F(z)| P(x)= 0}, F: X - R',
P: X+ 7Y, X,Y being Banach spaces. The necessary condition in the
“dual form” is F'(#) = P'(z)] for some leY, where P’ (z) denotes the
adjoint of the Fréchet derivative P'(#) of P at @. However, the essential
role is played by the necessary condition in the “primary form?”
max {F'(#)y| P'(#)y =0, |y| = 1} = 0, which is more suitable for con-
strueting eomputafulonal algorithms (see [3]-[5]). This observation seems
to be of general character, The second characteristic feature of the Halkin-
Neustadt principle is that the assumptions as well as the additional
equality constraints are closely. connected with the method of proef
based on Brouwer’s fixed-point theorem. This method may be considered
as a further development of the method of (}anon, Cullum and Polak {67,
and Halkin [9]. :

The purpose of this paper is to- present 2 more general and stronger
maximum principle. In -eomparison with the Halkin-Neustadt prineiple
it has the following properties. The necessary condition has a: “primaxry
form” (which implies the “dual form”) and is .stronger than the
Halkin-Neustadt necessary condifion. The additional equality constraints
are of a much more general nature. Finally, the abstract framework
for the optimization progcess under consideration is much more general
and does not depend on the application of Brouwer’s fixed-point the-
orem. Moreover, it is impossible to apply Brouwer’s fixed-point the-
orem under such general hypotheses. Besides, it should be emphasized
that no continuity assumptions are made in the general ‘cage.” ’
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