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Proof. By 3.3 the proof can be reduced to that of the following
elementary fact: If (a,) 1s & non-decreasing sequence of positive numbers
such that Za,,,, < oo, then there are integers j; < Ja << ja... with (j,) ~ (ay).

Remark. The method based on the invariance of diametral dimen-
sion and Lemma 3.1 is insufficient to settle conjecture 1 in the case of
power series spaces of infinite type. In fact, if

@, == ex]p (exp(exp n)) and

then (b,) < (a,), but (b,) ~

(bn) = ((’/27 gy Qgy Qg y gy g, )7
to no subsequence of (a,).

Added in proof. A. Using the method of section 3 one can show
that Conjecture 3.0 is true for all the spaces listed in Preliminaries,
p. 427,

B. An interesting Dragilev-type theorem concerning the spaces
Play '] (not necessarily nuclear) is given in [11].
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A general maximum principle for optimization problems
by
M. ALTMAN (Warszawa)

Halkin and Neustadt [10] have presented a very general maximum
principle for a mathematical programming problem over an arbitrary
set. This principle includes and extends all the most important necessary
conditions for optimization problems. Two basic features are character-
istic for the Halkin-Neustadt principle. The first one is the “dunal form?
of the necessary ecriterion. Roughly speaking, by the “dual form” we
mean some relation (equality or inequality) in a proper conjugate space.
A classical example is Lusternik’s theorem ([11], p. 339): The problem
is to find an 4 such that F(3)= min{F(z)| P(x)= 0}, F: X - R',
P: X+ 7Y, X,Y being Banach spaces. The necessary condition in the
“dual form” is F'(#) = P'(z)] for some leY, where P’ (z) denotes the
adjoint of the Fréchet derivative P'(#) of P at @. However, the essential
role is played by the necessary condition in the “primary form?”
max {F'(#)y| P'(#)y =0, |y| = 1} = 0, which is more suitable for con-
strueting eomputafulonal algorithms (see [3]-[5]). This observation seems
to be of general character, The second characteristic feature of the Halkin-
Neustadt principle is that the assumptions as well as the additional
equality constraints are closely. connected with the method of proef
based on Brouwer’s fixed-point theorem. This method may be considered
as a further development of the method of (}anon, Cullum and Polak {67,
and Halkin [9]. :

The purpose of this paper is to- present 2 more general and stronger
maximum principle. In -eomparison with the Halkin-Neustadt prineiple
it has the following properties. The necessary condition has a: “primaxry
form” (which implies the “dual form”) and is .stronger than the
Halkin-Neustadt necessary condifion. The additional equality constraints
are of a much more general nature. Finally, the abstract framework
for the optimization progcess under consideration is much more general
and does not depend on the application of Brouwer’s fixed-point the-
orem. Moreover, it is impossible to apply Brouwer’s fixed-point the-
orem under such general hypotheses. Besides, it should be emphasized
that no continuity assumptions are made in the general ‘cage.” ’
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1. ProBLEM. Given a set I and real-valued functions F = f, f;,
i=1,...,m, defined on L, and a map P: L~ Y, Y being an arbitrary
linear space. The problem is to find an element zy¢L which minimizes ¥
on the set of all e that satisfy the constraints P(2) = 0 and f;(2) <0
fori=1,...,m.

2. AssumprIoNs. There exist convex sets H,; (¢ =0,1,...,m-1)
in a real linear space S, real-valued functions ; (¢ = 0,1, ..., m) defined
on the corresponding H; and a linear (affine) map P': Hy 1 — Y and a set
M < 8 with the following properties:

m41

5 m.]-l
(i) 0[] H; and M < [[Hy;
i=0 =0
(ii) M is convex;
(iii) the funetions h; (i =0,1,...,m) are convex and h;(0) =0
for each i;

(iv) for each y of M such that P’y = 0 there exist: a sequence of Yr

of M, a sequence of positive numbers 8 convergent to zero, and a sequence
of elements 0(yx, dx)eL such that

(a) lim Jil0(Wns ) 1~—Fi(20) — h(Sr72)

<0 for each i =0,1,...,m,

k—c0 O
(b) Lim {hi(y2)—hi(y)} <O  for each ¢ =10,1,...,m,
Fsoo
(e) POy, 8p)1 =0 for k=1,2,...

3. Tum MAXIMUM PRINCIPLE (the primary form). Let 2, be a solution
of the preceding problem satisfying the above hypotheses. Then

(1) int{olhi(y) <o, i =0,1,...,m; P'y=0, yel} >0,

or min{olh;(y) <o, ¢ =0,1,...,m; P'y = 0,yeM} =0 if 0eM (3.

Proof. Suppose that there exist an element yeM and a negative o
such that P'y =0 and I(y) < o for i = 0,1,...,m. Then there exist
a sequence of elements y, and a sequence of numbers & satisfying the
assumptions of section 2. Hence it follows from (b) that hilye) < o2
for sufficiently large k, and thus, by (i) and (ii), the inequality &% A8,y
< o/2 holds also for sufficiently large k. In virtue of (a) we have

L0 (Yry 0k)]1—TFil2
wﬁg% for sufficiently large k.
7 4

(.1) This is equivalent to min {Ay(y)|hi(y) < 0, i = 1,...,m; Py =0, yeM}
=0, if 0eM and [y: hi(y) <0, i = 1,...,m; P’y =0, yeM] is not empty.
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From the last inequality and from assumption. (¢) we conclude
that #, is not an optimum solution.

4. THE MAXIMUM PRINCIPLE (the dual form). In addition to the
assumptions of section 2, let us assume that Y is a linear space such that
the set of internal points of the image P'(M) is not empty. If 2, is @ solution
of the problem (section 1), then there exist a linear Sfunctional 1 defined on ¥
and real numbers ¢y, ¢y, ..., ¢, such that

m

() 2 &) FUP'Y) <O for all yef;
i=0 '
(B) Cyy Cry vyl and 1 do not vanish simultaneously;
() <0 fori=0,1,...,m;
(3) Gfi(z) =0 fori=1,..,m.

In addition, if for a certain subset £ of {0,1,...,m} the point O is
an internal point (see the Appendix) of H; for oll i of # y and if 0eM, then
there exist linear functionals l; (1<) on 8 such that

() 2 elily)+ Y ah@)+UP'Y) <0 for ally of M
' ief 1,;}

and

(n) L) <hly) for all y of H; and every i of £.

Moreover, if 8 is a topological linear space and, for some ief, 0 is in
the interior of H; and h; i8 continuous at 0, then l; is continuous on S.

Proof. We shall show that relations (@), (B), (v) and (8) follow from
relation (1), which holds also in the case where the indices i = 1,...,m
are replaced by iel(z) = [4: fi(z,) = 0]. In the product space R™'x Y
consider the set W= (he(y)— &, hy(4)— &1, ..., han(y) — En, P’ y} for y running
over M. It follows from the convexity of &; and from the linearity of P’
that W is convex, since so is M. The set of internal points of W is not empty
by assumption and the convex set W does not meet the convex cone
K= [(&, &1, 00y by 0): £i<0,0<i<m] in R™' XY (0¢Y). Hence,
there is a hyperplane through 0 in R™*'x ¥ separating W from K, i.e.,
there exist a linear functional I on ¥ and real numbers cy, e, ..., cx
satistying the conditions (w), (B), (y) and (3). To prove statements (&)
and () we shall apply the corollary of the generalized Mazur-Orlicz
theorem (see the Appendix). Let us show that if 0ed and £ i as indi-
cated in the theorem, then there exist linear functionals ‘I; (ie#) on §
such that (¢) and () are satisfied. Let ¢ = {i,, ..., 4} and put

m
9@ = — Y eilehi(y)—ci; ' UPY), yeM,
)
Studia Mathematica XXXI,4 . 21
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assuming that ¢;, # 0. It is evident that g(y) is concave and ¢(y) < hy (y).
Hence, in virtue of the corollary (see the Appendix), there exists a linear
functional I, on S such that g(y) <Iy(y) for all y of M and I;(y) < I (y)
for all y of H; . Replacing ¢(y) by g.(¥), where

m
@) = Y G ahy)— WP Y~ o Ly), yeM,
iy
we can show just as before that there exists a linear functional I, on §
such that g,(y) < L(y) for all y of M and l,(y) < hy (y) for all y of H;,.

In this way the convex functionals %; and hiz‘in relation (&) have
been replaced by the linear funetionals I, and I,, respectively. Succes-
sively repeating the above argument we arrive at relations (e) and ().

If § is a topological linear space and, for some 4, h; is continuous
at 0, then it follows from (x) that I;(y) <1 in a neighbourhood of 0.
Therefore ([3], p. 447, Lemma 7), I; is continuous on 8.

Remark 1. If ¥ is a locally convex linear topological space and
the interior of the image P’(M) is not empty, then I in relation («) is
a continuous linear functional on Y.

It is clear that the preceding results are valid also in the particular
case where the mapping P is determined by # real-valued functions
fmi1y ooos Jmon and the corresponding linear mapping P’ is defined by n
linear real-valued functions by, ..., fm ., and ¥ is the linear n-space R,
ie.,

P(z) = (fm+1(z))fm+z: (#), ---yfnz+n(z)): zel,

Py = {hm+1(?/), seey hm+"(y))’ yell.

We shall now disecuss this case under hypotheses sufficient for the
agsumptions in seetion 2 to be satisfied.

anp

9. ProBrEM. The problem is the same as in section 1, where the
constraint. P(z) = 0 should be replaced by the equalities f;(2) =0,
j=m+1,...,m+n.

6. AssuMPTIONS (see [10]). There exist convex sets H; (4
...ym+mn) in 4 real linear space S, real-valued functions h; (¢
<.y m+n) defined on the corresponding H;, and a set M < § with the
following properties:

M4 min
(i) O H; and M = N H;.
=0

=0

=0,...,
=0,...,

(ii) M is convex.

(ili) The functions %; are convex for ¢ < m and linear for i>m,
and %;(0) = 0-for each 1.

(iv) Denote by M, the subset of elements y of M such that h(y) =0,
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where b = (hmi1, ...y lmys), and for yeM, let 4, be an n-simplex with
vertices y;eM(j = 1,...,n+1) such that y is an interior point of A, and
h{y;) are in general position, i.e., the vectors h(y;— ¥,.1) forj =1,...,n,
are linearly independent. The set of all such 4, for y <M, will be denoted
by A(M,). We shall now assume that for every y of M, there exist an 4
of A(M,), a set D < (0,1) and a mapping § from A xD into I such
that

(a) 0eD,

(b)
lim Fil0(y, 8)1—Ffilze)—Ri(8y) [ = 0 for each ¢ = m+1,...,m+n,
50 9 <0 for each i =0,...,m

uniformly over 4, and
(e) for every deD and every j =m-+1,..., m+n the mappings
1;16(0, 8)] are continnous on A.
The continuity on 4 is to be understood with respect to the ordinary
finite-dimensional Euclidean topology on A.

7. Tk MAXIMUM PRINCIPLE (the primary form). Let 2, be a solution
of the problem of section B satisfying the hypotheses of section 6. Then

it {o|hi(y) <o, 4 =0, ..., m; hify) =0, i =m-+L,...,m+n,yeM}>0

or

(2) min{ohi(y) <o, i =0,...,m; I(y) =0, i =m+1,...,
veymtn, yeM} =0 if 0eM.

Proof. Using the results of section 4, it is sufficient to show that
for each 7 of M, the assumptions of section 4 are satistied, where the
mapping P should be replaced by f, P(2) = f(2) = (fms1(2)s -5 frm 4 (2))
eR* and P’ by b= (Bmy1y---» hmyn). First let us prove assumption (c)
(section 2). Choose a sequence of positive mumbers e converging to 0
as & tends to infinity. Then it follows from (a) and (b) that there exists
a sequence of positive numbers «D converging to 0 such that for each
kE=1,2,... we have

(8) M_’_‘;’“_)]_i‘_(_z_o)__hi(y) g% fér i =m+1,...,m+n
k

uniformly over the n-simplex A corresponding to 7 of M,. Put K
= [2: ||zl < e, weR"]. Since 7 is an interior point of the n-simplex A
by assumption, 0 is an interior point of the n-simplex h(4) = R" with
vertices h(y;), § =1,...,n+1; y; are the vertices of A. Therefore,
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I, < h{4d) = R" for almost all k. Let us define the mappings 2*(x) =
= 0(y, &) for & = h(y), yed (k==1,2,...) and the mappings

1
i (z) = (S—Af[zjc(a'ﬂa 2 =0y),yed,f = Fners-eos Fugn)y
for k=1,2,...

Tt follows from (c) that Fy is a continuous mapping from A(4) = E"
into R" and we have, by (3),

1P (z)—a) <e, for meh(d), b =1,2,...

Hence, for almost all &, #— ' (x) maps Ky into itself and by Brouwer’s
fixed-point theorem there exist ek, such that Fy(w) =0, Le.,
FI0 @z, 0r)] = 0. Since h(yz) = 2, — 0 = h(F) as k — oo, We have g — 7.
But 7 is an interior point of 4 and k; (0 < 7 < m) are convex functions;
consequently, #; are continuous at 7. Hence we obtain h;(yx) — hi(7)
as k —co for ¢ =0, ..., m. Thus we have shown that assumptions (b)
and (c¢) of section 2 are satisfied.

Condition (a) of section 2 iz already contained in condition (b) of
gection 6.

8. Tue MaxiMuM PRINCIPLE (the dual form). Let 2z, be a solution
of the problem of section b satisfying the hypotheses of section 6. Then there
exist real numbers ¢y, ..., Cnyn Such that

m4n

(o) D) ehily) <O for all yeM;
= myn
(8) D lal > 0;
=0
() <0 if i<my
(8) efi(ze) =0 ifi=1,...,m.

In addition, if for some subset # of {0, ..., m} the point 0 is an internal
point of H; for all i of # and if 0eM, then there emist linear functionals I;
(ief) on S such that

min

(e) D ekly)+ D ahily) <O for all y of M,
A

and

() Ly <hly) for all y of M and every i of #.

Moreover, if 8 is a topological linear space, for some i of #, 0 is an
indervor point of H; and hy is continuous at 0, then 1; ¢ continuous on 8.

icm

Optimization problems 325

Proof. The proof follows from relation (2) exactly in the same way
as the proof given in section 4.

Remark 2. Let us observe that Lusternik’s necessary criterion for
the conditional minimum mentioned in the introduction can also be
included in the general scheme of the masximum principle considered
above. For this aim it is sufficient to put f; =0, h; =0fori =1, ..., m.
Besides, in the case where the constraint of the form P(z) = 0 is not
involved in the optimization problem, one can put P =0, P' = 0. In
all these cases the general argument is still valid.

9. Regular directions. In some simple cases of non-linear programming
it is convenient to use the notion of feasible directions (see [2]). For the
conditional minimum of a functional Lusternik [11] has applied the
notion of a tangent direction. Dubovitskiy and Milyutin [7] have used
the notion of variations for more general optimization problems. Neu-
stadt [14] and others have considered the first-order convex approx-
imation of non-convex sets. We shall use the notion of a regular direction.
This is actually a generalization of the feasible and tangent directions
and can be used in place of variations as well as instead of the first-order
convex approximation. All these notions have a common nature. However,
the regular direction method seems to be more convenient in eonstructing
computational algorithms, especially by using the primary form of the
maximum prineciple in which the relations between the introduced con-
straints (for differentials or subdifferentials) and the original ones are
better exhibited with regard to their role in the optimization process
itself. Generalized gradient methods as in [3]-[5] can be applied also
in the case of the primary form of the maximum principle. Given a set L,
the vector y is said to be a regular direction for z,¢L if there exist a set D
of numbers §e¢D < (0,1) and a set of elements o(d), deD, such that

(r) 0eD; and 2+ 0y +o(8)eL for every 6 of D and 0(6)/6 — 0 as
6—0.

It is clear that the set M of regular directions for z, is a cone and
OeM. Tt yeM and o(8) = 0, then y is called a feasible direction. Consider
the problem of minimizing the functional f, on L subject to additional
inequality constraints fi(2) <0, zeL, i=1,...,m. Suppose that L
has a convex set M of regular directions for the optimal solution 2.
In order to obtain the maximum principle for this problem, it is sufficient
to have a differentiability notion in the sense of Milyutin and Dubo-
vitskiy [7], i.e., there exist convex functionals h; (i =0,...,m) such
that

v_fi(zo"‘ d2)—f(2s) s Tuly)

) 8->0-F
=y

()
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or

@) g Jelea 89)—F e —Tsly) _ o
04 8
Zsy

Then the maximum principle in the primary form is
(4) min{o{h:(y) < o, yeM, i =0,...,m} = 0.

Thus we see that having the notion of a regular direction one can
put
(5) Oy, 8) = 2+ dy+o0(8)eL, &eD,
as o special case of the function 6(y, 6) involved in the preceding con-
siderations, where the properties of 0(y,d) and of the constraints are
combined (see (a), section 2.). In the case where relation (5) is supposed,

agsumptions (d) or (d‘) concerning the constraints are made separately,
i.e., independently of 6(y, §).

10. Dubovitskiy and Milyutin [7] have shown that the optimal
control problem can be reduced to the problem of minimizing the func-
tional

41
I@,u) = [ F(z,u,)d,
)

subject to the constraints

1) g(@) <0,
) ‘ p(u) <0,
d.
(3) %Zf(m:“yt): %(ty) = @0,
(4) @(ty) = @,

under certain regularity hypotheses concerning the functions involved.
It follows from [15] that the set L of (z, u) determined by the constraints
(3) and (4) possesses a set of regular directions (%, #) defined as solutions
of the system ’
az _ _ _ _
= =IEELE, Bh) =0, B() =0,
provided that a non-degeneracy condition is satisfied.
It follows from [7] that the optimal control problem is contained
in the scheme considered in section 9.

11. If there are additional equality constraints f;(2) = 0,7 = m-+1, ...,
m-+-n, in the problem considered in section 9, then the convex set M

©
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of regular directions should satisfy some additional hypotheses of uni-
formity replacing the corresponding assumptions in section 5; in relation
(B) the convergence 0(d)/6 -0 as 6 0 is uniform with respect to y
on every n-simplex from the set of 4(M,) defined in section 5. If we
replace, in section 5, 6(y, 6) by (5), the primary form of the maximum
principle is given by (2) of section 7 and the dual form by («)-(n)
in section 8. Neustadt [14] reduces the optimal control problem to that
formulated in section 5 by using the notion of the first-order convex
approximation instead of the uniformly regular direction discussed above.
He uses there the dual form of the maximum principle.

APPENDIX

Definition ([8], p. 410). If M is the subset of the linear space X,
then a point p <M is called an internal point of M if, for each xeX, there
exists an ¢ > 0 such that p+ dxeM for |§| <e.

BASIC SEPARATION THEOREM ([8], p. 412). Let M and N be disjoint
conver subsets of a linear space X, and let M have an internal point. Then
there exists a non-zero linear functional f which separates M and N.

THE GENERALIZATION OF THE MAZUR-ORLICZ THEOREM ON INE-
QUALITIES. Let W be a convew subset of the linear space X and let 0 W
be an internal point of W. Qiven a subset Z of W and a real-valued function
o(w), weZ, defined on Z, and o real-valued convexw fumction p(x), xeW,
defined on W and p(0) = 0. In order that there exists a linear fumctional
f(@), weX, defined on X and such that ¢(x) < f(x) for zeZ and f(z) < p(»)
for weW, the condition

g

(6)

I
e

te(m) <p f 1)
7 i=1

for arbitrary w;eZ,
n
n=1,2,..., 30 with )<l
. i=1
is necessary and sufficient.
" Proof. The neeyessity of condition (6) is obvious. We shall show

that condition (6) is also sufficient. We define the following two subsets
of X xR:

U= [(@, 2): 2eW, 4= p(@)],

V= [(z, u): g = jtmi, "< Ztic(mi), mieZ],
o

i=1
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where n =1, 2,...; #; and f; are arbitrary elements and numbers such
n
that a;eZ,% >0 and D' f; <1.
T=1

Tt is easily verified that U and V are convex subsets and that (z, 1)
= (0, 1) is an internal point of U. Further, it follows from (6) that U
and V are disjoint. Hence, in virtue of the basic separation theorem,
there exist a real number ¢ and a non-zero linear funectional I(z, 1) on
X xR such that I(z, u) <e¢<l(r, ) whenever (2, u)eV and (@,2)eU.
It is evident that (iw, t4) eU (vespectively V) whenever (#, 1)eU (respe-
ctively V) and 0 <¢t< 1. From this it follows that ¢ = 0. Further,
l(», ) = I(@)-+ ald, where I, is a linear functional on X and @ is a real
number. If @ = 0, then I,(x) > 0 for all  of W, and I; 7 0. But this is
impossible since (0,1) is an internal point of W. Thus, since (0,1)eU,
we get ¢ > 0. Let us set f(a) = —a~'1; (). Since I, ()4 ap(z) = l(z, p(v))
>0 for zeW, we have f(z) < p(®) for # of W. Suppose now that there
exists an element # of Z such that f(x) < ¢(z). Then there is a number b
such that f(z) < b < ¢(x). Hence, (#, b)eV and U(z,d) =, (z)+ab < 0.
Thus, expressing I,(») in terms of f(x), we get —af(z)+ab < 0. Since a
is positive, b < f(x), which is a contradiction. Consequently, we have
proved that e¢(z) < f(z) for all » of Z.

Remark 3. In the Mazur-Orlicz theorem ([12], p. 147) the func-
tional p is sublinear, i.e., subadditive and positive-homogeneous. Besides,
condition (6) is supposed to bhe satistied for arbitrary mnon-negative
numbers #;. Pertinent to this theorem is also a paper by Milman [13].

CoROLLARY. If the sets Z = W are conves, 0eZ and 0 is an internal
point of W, if ¢(x) is concave on Z, p(x) is convex on W and c¢(x) < p(z)
for all © of Z, then there exists a linear functional f on X such that ¢(x) < f()
for » of Z and f(x) < p(x) for  of W.

The proof of this corollary follows from the generalization of the
Mazur-Orlicz theorem.
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