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1. Let X be a linear space and let a sequence of s-convex pseudo-
modulars o;, 4 =1,2,..., be defined on X. This means (see [4] and [5])
that 0 < gi(®) < oo for zeX and that: p;(0) = 0; oi(—a) = pi(x);
and  gfaz+By) < oi(w) 4 Fraily) for a,f=0, o’+f =1, where
0 <s<1. Moreover, let us assume that g;(0) =0, for ¢ = 1,2,...,
implies # = 0. We define for zeX

NERRION

2° 14 gi(@)’

then g satisfies the conditions: g(w) = 0 if and only if = 0; o (#) = o(—2);
o (@) is finite for all ze X; o (am+ fy) < o(#)+o(y) for a, f 2 0, *+-4° = 1.
Let us remark that the last property is a generalization of that assumed
in the definition of a modular in [4], i.e.

o(x) =

i=1

o(antfy) <e(@)+ely) fora,f>0, atp=1.

- It is easily verified that the following properties of a modular given
in [4] remain valid for the modular g: o(a#) is a non-decreasing function
of >0 for each zeX; . ’

»

n n
Q(Zabm,)ézg(%) for ai>0,2a§=1, 0<s<<1.
Ci=1

i=1 g1
1.1. The linear space
‘ X, ={x:9(Ar) >0 a5 A0, veX}
wﬂl be ca]leci countably modulared. The formula
llzll, = inf{e >0 : o(we™"") < &}

defines a Fréchet norm in X, (see [1]) which has the same properties
as the norm defined in [4], 1.21. Let us recall that X, is said to be strongly
p-compleie if there exists a constant 2 > 0 such that the Cauchy condition
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Q(wn~ ) —> 0 as m,n -—> 00, &y, mmEng imp]ies. Q[l(a"n_wo)] -0 as
2 — oo with an e X,. As in [4] it is seen that if X, is strongly o-complete,
then X, is complete with respect to the norm [|-|l,.

1.2. Let X, = {z: 0:{d®) > 0 as A—0, weX}; then X, = @Q X,

and .

() flell,, = inf{e >0 : o;(ae” £y 1}

is an s-homogencous pseudonorm in X, such that |l@ll,, = 0 for i =1,
9y .ery BeX,, vmplies & = 0. Moreover,

, e 1 H‘””e;,
bl = 5 T ol

is @ Fréchet norm in X, equivalent to the morm ||-|l,-

This follows from the fact that zeX, if and only it o;(Ax) -0 as
-0 for every i, separately, and each of both conditions |la,l, = 0,
and [|z,], — 0 is equivalent to the following one: os(Awy) — 0 a8 m — oo
for every i and every A, separately.

1.3. Tet us now define an s-convex modular in X by the formula

20(®) = sup ei(x).

Formula 1.2 (x) with ¢ = 0 defines an s-homogeneous norm in the
space
X, = {w: 0(Aw) >0 as A—=0, veX},

which will be called the uniformly countably modulared space. An element
zeX belongs to X, if and only if ¢;(Az) -0 as A—=>0 un.iformly for all
i=1,2,... The condition [af, -0 as n—oco is equivalent to the
following one: for every i >0, g;(d®,) —0 a8 n — o0 uniformly for all
i=1,2,... Hence and from 1.2 we conclude that X, = X, and the
imbedding of (X, lIlley into <{X,, |Ill,> is continuous.

1.4. Let o;(wn—ay) ~ 0 as n— oo amply

i (%) < lim inf g;(,)
100

fori=1,2,...If X, is strongly o-complete, then X, is strongly o4-complete.
If (X, |I-ll> is complete, then so is (X ogs 1Ml -

Let the sequence {©,}, %,<X,, satisfy the Cauchy condition. go(@n—
— &) - 0 as m,n > co. Then oi(@y— @) — 0 as m,n — oo, uniformly
in i, and by the assumption of strong modular completeness of X,, o; [a(wn—
— )]~ 0 as n — oo for an z,¢X, and every 4, where a i3 a fixed positive
number independent of {z,} and 4. Consequently, o;{a[(@n—@m)—
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— (8 —o)]} >0 as m > co for every i. Let us pub 4, = min(a, 1).
Given an & >0 there exists N independent of i such that

0:[ Ao (#n—®,)] < liminf o;[Ay (2, —2,,)] << & for n > N.
TM—>00

It remains only to prove that @yeX,; but this follows from the ine-
quality

oi(Am) < 271 a:[22 (ay— )] +27° 91 (21”}*‘1’"’) ’

where 4 <27 %1,. The second part of our assertion is proved analo-
gously.

1.5. Let g; be convex (i.e. s =1). Then (X, I'lloy 48 the projective
limit of spaces (X, I lle> for i =1,2,..., with respect to embeddings
of X, into X,,.

This fact follows from the definition of the projective limit [6] and
from 1.2.

Let us remark that the above-defined notion of spaces X, and Xop
is conmnected also with the results of [7] concerning Banach spaces.

2. Let p:(u) be p-functions such that ¢;(u) = @;(u"), where 0 < s < 1
and @; are convex g-funetions, ¢ = 1, 2,... Moreover, let ¢;(u) satisfy
the following conditions:

1° p;(u) are equiconfinuous at u = 0;

2° for every index m there exist positive constants A,, fn, v, such
that for every u >v, and %k >n there holds the inequality @n(i,u)
< Purlt).

In the case of powers ¢;(u) = |#|", where p; > >0, and the se-
quence {p;} is non-decreasing, the above conditions are satistied always.

Let u be a non-atomiec finite measure in a o-algebra & of subsets
of an abstract set E. We denote by X the space of u-measurable functions
z(t) defined on F and we pub

eil@) = [g(j(t)])du.
E

Then X, is the Orliez space Lg,[5].

2.1. In order that X, = X, it is necessary and sufficient that there
exist positive constanis k, ¢, uy and an index i, such that for every w > u,
and © > i, the inequality p;(cu) < ky; (k) holds.

Sufficiency. It is easily seen that the condition in the above asger-
tion implies existence of % >0 and an index ¢, such that for every u,
there exists ¢, satisfying the inequality ¢;(u) << ky; (cow) for 4 > u, and
it 24y, Hence, if weX,, then

0i(Ax) < Fogiy (60A2) + 1 (B): (wo) -
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Given ¢ >0 we choose u, S0 small that u(B)e:(u,) < ef2 for

i=1,2,... Since weXe,, there exists A, such that ko (c,An) < &f2
for 0’<Z</'L,,. Hence g;(Az) < e for <4, and all i. Consequently,
reX,y.

Necessity. Let us suppose that X, = X,, and for every 7(;', Gy Uy >0
and any index 1, there exist a number % > %4, and an 1n11§x i = 4, such
that ¢;(en) = kg (u). Let us fix k >0, and put »c = 27", T}en there
exist sequences inmk and Uy SUCh that ump = By Unnk = M, and
(%) for n,m, kb =1,2,...

—~k I
(f"i“’m,k(z un,m,l:) >2"py (“u,m,lr)

We choose an increasing sequence of indices my in such a manner
that g (my) > 1 and my > V%, and we pu];ﬂ Upy = Ukmp b Next, Wfk take
a seb Ape & for which u(4dz)er(un) = 27" u(E). Then ;4(4k).<2. .,u.(E)
and consequently, the sets A, Ay, ... may Dbe chosen pairwise disjoint.
We define z(t) = uy for tedy, (t) = 0 for teENUAy. Then

n—1 o0

on(An®) < Z /‘(Ak)‘Pnunulc)“’I‘ Bu ZI‘(Ak)‘Pk(uk) < 00,
=1 k=1

and 50 zeX,. GonSequenﬂy, weX, . Hence there exigty d >0 suc:h th';nt
oi(Ar) <1 for 0<<A< 6 and ©=1,2,... But inequality (x) implies

0 m@70) = [pimal2 e (0] dp > 2° [oeloildp
Ay, Ap

‘ = 2" u(A)pi(m) = p(B),
a contradiction.

T,et ug remark that condition 1° was needed only in the proof of
sufficiency and condition 2° only in the proof of necessity. Moreover,
let us§ observe that in case of powers ¢;(u) = |u|Pt, where p;>=>s >0,
and the sequence {p;} is non-decreasing, 2.1 gives the following necessary
and sufficient condition for X, = X, : there exists 4, such that pi = p;,
for ¢ > 14,.

3. Let gi(u) be a g-function such that g;(u) = @;(u’), where
0 < s <1 and @; are convex p-functions, ¢ = 1,2, ..., and let us suppose
that for every index n there exist positive constants Au, fu, vn gich. that
for every 0 <w<v, and k>n there holds the inequality g (A,%)
< Bugi(t). _

It @;(u) = |u|", where p;>s >0, and the sequence {p;} is non-
increaging, this condition is satistied always.

3.1. Le%‘{w‘,-}; be a sequence of positive numbers for which

0 < liminfo, < oo, w;>0.
: ko0 .
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We denote by X the space of all sequences z = {;}, {;—real num-
bers, and we put

)

ai(@) = D ().

j=1
Then X, is the space of sequences # = {t;} such that

Dl oipilti) < oo for some ;> 0.
iz

3.2. In order that X, = X, it is necessary and sufficient that there
exist positive constanis k, ¢, g and an index iy such that for every 0 << u < Uy
and i > i, the inequality o;(cu) < kg (u) holds.

Sufficiency. It follows from the above condition that there exist
positive constants %, ¢, u, and an index 4, such that the inequality
@i(u) < ki (cou) is satistied for 0<u <uy, 924, If zeX,, then
;@i (Alt;]) = 0 as j — oo for every ¢ and for A; sufficiently small. Accor-
ding to the assumption on {w;}, this implies #; — 0 as j — oc. Henece
|4t <we for A positive and sufficiently small and j =1, 2, ..., and we
conclude that g;(4z) < kpi,(¢oAz). From this inequality it follows X, =X, 0

Necessity. If X, = X, and the condition in the theorem is not
satisfied, then there exist sequences tame 27 And 0 < Upymz < 1/m
such that inequality 2.1 («) holds for n,m,% = 1,2, ... Let

liminfow;, = ©.
k->o0

‘We choose an increasing sequence of indices my in such a2 manner
that wpy(l/mg) <2751, 1/my < v, and we pub w, = gyt L6t {00}
be a subsequence of the sequence {w;} such that }o < wy, < o. Then
there exists a finite set A, of indices j for which

1 1
‘2—k—< qutpk(ﬂk) < =12
Jedy,
and the sets A;, 4,,..., may be chosen pairwise disjoint. Indeed; in-
other case we should have

()

1
(w771+. ot wr,a)‘l’k (uk) < _2k 3
but

(wr71+- -+ wqa+ wr,-a_l_l)q’k (uz) =

and consequently

2k—~1

3-27" 2 Lope(L/my) =} oy (u) = wrjs“qik(u;c) > 927k,

a contradiction.
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We define f; = w, for jedy, t =0 if j does not belong to {J Ay,
and we put @ = {f;}. Then

n-1 =)
on(2nt) < y (Z"’J‘) @ (At} -+ B 2 (Z wi) @i (ur) < o0,
I?.:{ fedy k=n Jedp

and so zeX,. Consequently, veX,, and we conclude that there exists
§ > 0 such that g;(lx) < 1for 0 <A< 9 and i =1,2,... But by 2.1 (x)

O (27 F0) > (vai)qﬂik,nzk,k(?_kuk) > 2 (ij)qak(uk) =1,

Jedp, fedy,
a contradiction.

3.3. Let {o;} be a sequence of positive numbers for which

=]
limintw; =0 and Za)k = co.
j-s00 k=1

We denote by X the space of real bounded sequences & = {t;} and we
define the modulars o; by the same formula as in 3.1. Then the Theorem 3.2
remains valid.

Sinee # = {t;} ¢ X, implies {t;} to be bounded, the sufficiency is con-
cluded as in the proof of 3.2. In order to prove the necessity we suppose
that X, = Xgo, and we define the sequences iy m and Uymp 28 in 3.2.
Tet us choose an increasing sequence of indices my for which 1/m; < v
and let us pub wug = Ukmyk- Given k, we define a finite subsequence of
indices Ar = {75 ¥y55 - 77} in such a manner that inequalities 3.2 (x)
hold. Applying the assumption liminfw; =0 we choose w, 80 that

00
fu,y,lzpk(uk) <2 % TLet us assume that the numbers Wry g eeey Ony are

chosen in such a manner that

(w,il—}—. o+ wrip)qwk('uk) <ok,
Let us write

ZMI = (mrl'1+ w’iz+' ot w%+ w,j.pﬂ)(pk(uk),

+'where o, is different from all w,, , ..., @y .
Tp+1 h Ip
We consider the following cases:
1°if 275 < S < 9-%+1 for some Ory 0 e put ¢ = p-+1;
. —k - T
2° i Fpyn <27 for any o We choose o, arbitrarily.
Tet us observe that 1° and 2° exhaust all possible situations. Indeed.
let us suppose that Y., > 27" for any o, - Then wy;  grlu)
P
= N,—p = 27" for almost all elements of the sequence {w;}, a con-
tradiction with the assumption liminfw; = 0. From the divergency of

700

the series Zwk it follows that the above-defined subsequence A4, is finite
k=1
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It is easily seen that our assumption makes it possible to define the sets

Ay, Ay, ... pairwise disjoint. The remaining part of the proof of necessity
runs the same lines as in 3.2.

. 4: 'An example of another type is obtained if we take as X the space
of infinitely differentiable functions f(#) of # variables t = (f1, oy .-y ta)
and set

oilf) = [olIDf1a,
RM

where 7 = (i1, ..., %), D"‘:B"h‘"'“‘i”/at;'l ...0tr, and p(u) is convex.
The space X, is equal to the space 2, (see [3]). Let us remark that
X,, # X, for every ¢(u); this follows from the fact that if feX,, then
either f == 0 or the support of f is equal to R™. Indeed, let Q Dbe the
complement of the support of f and @ +# 2 == R". We take a point
t,e02. Now, from feX, it follows that

[ola Difm1ae <1
b

0

for a 4 >0 and every 4. By (4) of [2] we conclude that

A .
o[ar P ]< 3 [ormona <,
“ DeP pn

where P is the set of multi-indices p = (py, ..., ps) With p; = 0 or 1 for
j=1,2,...,n. Hence, all the derivatives Dif(t) are uniformly bounded.
Consequently, f can be developped in the Taylor series in a neighbourhood
of t,. Since, t,e02, D'f(t,) = 0 for every i. Hence, f(f) = 0 in a neigh-
bourhood of ¢,, a contradiction.
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