Countably modulared spaces

by

J. ALBRYCHT and J. MUSIELAK (Poznań)

1. Let X be a linear space and let a sequence of s-convex pseudomodulars $\varrho_i, i=1,2,\ldots$, be defined on X. This means (see [4] and [5]) that $0 \leqslant \varrho_i(x) \leqslant +\infty$ for $x \in X$ and that: $\varrho_i(0)=0$; $\varrho_i(-x)=\varrho_i(x)$; and $\varrho_i(ax+\beta y) \leqslant a^s \varrho_i(x)+\beta^s \varrho_i(y)$ for $a,\beta \geqslant 0$, $a^s+\beta^s=1$, where $0 < s \leqslant 1$. Moreover, let us assume that $\varrho_i(0)=0$, for $i=1,2,\ldots$, implies x=0. We define for $x \in X$

$$\varrho(x) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\varrho_i(x)}{1 + \varrho_i(x)};$$

then ϱ satisfies the conditions: $\varrho(x)=0$ if and only if x=0; $\varrho(x)=\varrho(-x)$; $\varrho(x)$ is finite for all $x \in X$; $\varrho(\alpha x + \beta y) \leq \varrho(x) + \varrho(y)$ for $\alpha, \beta \geq 0$, $\alpha^s + \beta^s = 1$. Let us remark that the last property is a generalization of that assumed in the definition of a modular in [4], i.e.

$$\varrho(\alpha x + \beta y) \leqslant \varrho(x) + \varrho(y)$$
 for $\alpha, \beta \geqslant 0, \alpha + \beta = 1$.

It is easily verified that the following properties of a modular given in [4] remain valid for the modular ϱ : $\varrho(ax)$ is a non-decreasing function of $a \ge 0$ for each $x \in X$;

$$\left(\left(\sum_{i=1}^n a_i x_i \right) \leqslant \sum_{i=1}^n arrho \left(x_i
ight) \quad ext{ for } \ a_i \geqslant 0 \,, \, \sum_{i=1}^n a_i^s = 1 \,, \ 0 < s \leqslant 1 \,.$$

1.1. The linear space

$$X_{\rho} = \{x : \rho(\lambda x) \to 0 \text{ as } \lambda \to 0, x \in X\}$$

will be called countably modulared. The formula

$$\|x\|_{\varrho} = \inf\{\varepsilon > 0 : \varrho(x\varepsilon^{-1/s}) \leqslant \varepsilon\}$$

defines a Fréchet norm in X_e (see [1]) which has the same properties as the norm defined in [4], 1.21. Let us recall that X_e is said to be *strongly e-complete* if there exists a constant $\lambda > 0$ such that the Cauchy condition

 $\varrho(x_n-x_m) \to 0$ as $m,n\to\infty$, $x_n,x_m \in X_\varrho$, implies $\varrho\left[\lambda(x_n-x_\varrho)\right] \to 0$ as $n\to\infty$ with an $x_\varrho \in X_\varrho$. As in [4] it is seen that if X_ϱ is strongly ϱ -complete, then X_ϱ is complete with respect to the norm $\|\cdot\|_\varrho$.

1.2. Let
$$X_{e_i} = \{x : \varrho_i(\lambda x) \to 0 \text{ as } \lambda \to 0, x \in X\}; \text{ then } X_e = \bigcap_{i=1}^n X_{e_i}$$

and

(*)
$$||x||_{\varrho_{\ell}} = \inf\{\varepsilon > 0 : \varrho_{\ell}(x\varepsilon^{-1/s}) \leqslant 1\}$$

is an s-homogeneous pseudonorm in X_{ϱ_i} such that $\|x\|_{\varrho_i}=0$ for i=1, $2,\ldots,$ $x \in X_{\varrho}$, implies x=0. Moreover,

$$||x||_{\varrho}' = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{||x||_{\varrho_i}}{1 + ||x||_{\varrho_i}}$$

is a Fréchet norm in X_{ϱ} equivalent to the norm $\|\cdot\|_{\varrho}$.

This follows from the fact that $x \in X_{\varrho}$ if and only if $\varrho_{i}(\lambda x) \to 0$ as $\lambda \to 0$ for every i, separately, and each of both conditions $||x_{n}||_{\varrho} \to 0$, and $||x_{n}||_{\varrho} \to 0$ is equivalent to the following one: $\varrho_{i}(\lambda x_{n}) \to 0$ as $n \to \infty$ for every i and every λ , separately.

1.3. Let us now define an s-convex modular in X by the formula

$$\varrho_0(x) = \sup_i \varrho_i(x).$$

Formula 1.2 (*) with i=0 defines an s-homogeneous norm in the space

$$X_{g_0} = \{x : \varrho_0(\lambda x) \to 0 \text{ as } \lambda \to 0, x \in X\},$$

which will be called the uniformly countably modulared space. An element $x \in X$ belongs to X_{ϱ_0} if and only if $\varrho_i(\lambda x) \to 0$ as $\lambda \to 0$ uniformly for all $i=1,2,\ldots$ The condition $\|x_n\|_{\varrho_0} \to 0$ as $n \to \infty$ is equivalent to the following one: for every $\lambda > 0$, $\varrho_i(\lambda x_n) \to 0$ as $n \to \infty$ uniformly for all $i=1,2,\ldots$ Hence and from 1.2 we conclude that $X_{\varrho_0} \subset X_{\varrho}$, and the imbedding of $\langle X_{\varrho_0}, \|\cdot\|_{\varrho_0} \rangle$ into $\langle X_{\varrho}, \|\cdot\|_{\varrho} \rangle$ is continuous.

1.4. Let $\varrho_i(x_n-x_0)\to 0$ as $n\to\infty$ imply

$$\varrho_i(x_0) \leqslant \liminf_{n \to \infty} \varrho_i(x_n)$$

for $i=1,2,\ldots$ If X_{ϱ} is strongly ϱ -complete, then X_{ϱ_0} is strongly ϱ_0 -complete. If $\langle X_{\varrho},\|\cdot\|_{\varrho}\rangle$ is complete, then so is $\langle X_{\varrho_0},\|\cdot\|_{\varrho_0}\rangle$.

Let the sequence $\{x_n\}$, $x_n \in X_{\varrho_0}$, satisfy the Cauchy condition $\varrho_0(x_n-x_m) \to 0$ as $m,n \to \infty$. Then $\varrho_i(x_n-x_m) \to 0$ as $m,n \to \infty$, uniformly in i, and by the assumption of strong modular completeness of X_{ϱ} , $\varrho_i[a(x_n-x_0)] \to 0$ as $n \to \infty$ for an $x_0 \in X_{\varrho}$ and every i, where a is a fixed positive number independent of $\{x_n\}$ and i. Consequently, $\varrho_i\{a[(x_n-x_m)-x_0)\}$

 $-(x_n-x_0)$] $\} \to 0$ as $m \to \infty$ for every i. Let us put $\lambda_0 = \min(\alpha, 1)$. Given an $\varepsilon > 0$ there exists N independent of i such that

$$\varrho_i[\lambda_0(x_n\!-\!x_0)]\leqslant \liminf_{m\to\infty}\varrho_i[\lambda_0(x_n\!-\!x_m)]<\varepsilon\quad \text{ for } n>N.$$

It remains only to prove that $x_0 \, \epsilon \, X_e$; but this follows from the inequality

$$\varrho_i(\lambda x_0) \leqslant 2^{-1/s} \varrho_i[2^{1/s}\lambda(x_n-x_0)] + 2^{-1/s} \varrho_i(2^{1/s}\lambda x_n),$$

where $\lambda \leqslant 2^{-1/s}\lambda_0$. The second part of our assertion is proved analogously.

1.5. Let ϱ_i be convex (i.e. s=1). Then $\langle X_e, \|\cdot\|'_e \rangle$ is the projective limit of spaces $\langle X_{\varrho_i}, \|\cdot\|_{\varrho_i} \rangle$ for $i=1,2,\ldots,$ with respect to embeddings of X_e into X_{ϱ_i} .

This fact follows from the definition of the projective limit [6] and from 1.2.

Let us remark that the above-defined notion of spaces X_e and X_{e_0} is connected also with the results of [7] concerning Banach spaces.

2. Let $\varphi_i(u)$ be φ -functions such that $\varphi_i(u) = \Phi_i(u^s)$, where $0 < s \le 1$ and Φ_i are convex φ -functions, i = 1, 2, ... Moreover, let $\varphi_i(u)$ satisfy the following conditions:

 $1^{\circ} \varphi_i(u)$ are equicontinuous at u=0;

 2° for every index n there exist positive constants λ_n , β_n , v_n such that for every $u \geqslant v_n$ and $k \geqslant n$ there holds the inequality $\varphi_n(\lambda_n u) \leqslant \beta_n \varphi_k(u)$.

In the case of powers $\varphi_i(u) = |u|^{p_i}$, where $p_i > s > 0$, and the sequence $\{p_i\}$ is non-decreasing, the above conditions are satisfied always.

Let μ be a non-atomic finite measure in a σ -algebra $\mathscr E$ of subsets of an abstract set E. We denote by X the space of μ -measurable functions x(t) defined on E and we put

$$\varrho_i(x) = \int\limits_E \varphi(|x(t)|) d\mu.$$

Then X_{q_i} is the Orlicz space $L_{q_i}^*[5]$.

2.1. In order that $X_e = X_{e_0}$ it is necessary and sufficient that there exist positive constants k, c, u_0 and an index i_0 such that for every $u \ge u_0$ and $i \ge i_0$ the inequality $\varphi_i(cu) \le k\varphi_{i_0}(k)$ holds.

Sufficiency. It is easily seen that the condition in the above assertion implies existence of k>0 and an index i_0 such that for every u_0 there exists c_0 satisfying the inequality $\varphi_i(u)\leqslant k\varphi_{i_0}(c_0u)$ for $u\geqslant u_0$ and $i\geqslant i_0$. Hence, if $x\in X_o$, then

$$\varrho_i(\lambda x) \leqslant k\varrho_{i_0}(e_0\lambda x) + \mu(E)_i(u_0).$$

Given $\varepsilon > 0$ we choose u_0 so small that $\mu(E)\varphi_i(u_0) < \varepsilon/2$ for $i = 1, 2, \ldots$ Since $x \in X_{ei_0}$, there exists λ_0 such that $k \varrho_{i_0}(c_0 \lambda x) < \varepsilon/2$ for $0 \leqslant \lambda \leqslant \lambda_0$. Hence $\varrho_i(\lambda x) < \varepsilon$ for $\lambda \leqslant \lambda_0$ and all i. Consequently, $x \in X_{e_0}$.

Necessity. Let us suppose that $X_\varrho=X_{\varrho_0}$ and for every $k,e,u_0>0$ and any index i_0 there exist a number $u\geqslant u_0$ and an index $i\geqslant i_0$ such that $\varphi_i(cu)\geqslant k\varphi_{i_0}(u)$. Let us fix k>0, and put $c=2^{-k}$. Then there exist sequences $i_{n,m,k}$ and $u_{n,m,k}$ such that $i_{n,m,k}\geqslant n$, $u_{n,m,k}\geqslant m$, and

(*)
$$\varphi_{i_{n,m,k}}(2^{-k}u_{n,m,k}) > 2^{k}\varphi_{n}(u_{n,m,k})$$
 for $n, m, k = 1, 2, ...$

We choose an increasing sequence of indices m_k in such a manner that $\varphi_k(m_k) \geqslant 1$ and $m_k \geqslant v_k$, and we put $u_k = u_{k,m_k,k}$. Next, we take a set $A_k \in \mathscr{E}$ for which $\mu(A_k)\varphi_k(u_k) = 2^{-k}\mu(E)$. Then $\mu(A_k) \leqslant 2^{-k}\mu(E)$ and consequently, the sets A_1, A_2, \ldots may be chosen pairwise disjoint. We define $x(t) = u_k$ for $t \in A_k, x(t) = 0$ for $t \in E \setminus UA_k$. Then

$$arrho_n(\lambda_n x) \leqslant \sum_{k=1}^{n-1} \mu(A_k) \varphi_n(\lambda_n u_k) + eta_n \sum_{k=1}^{\infty} \mu(A_k) \varphi_k(u_k) < \infty,$$

and so $x \in X_{\varrho}$. Consequently, $x \in X_{\varrho_0}$. Hence there exists $\delta > 0$ such that $\varrho_i(\lambda x) < 1$ for $0 \leqslant \lambda \leqslant \delta$ and $i = 1, 2, \ldots$ But inequality (*) implies

$$egin{aligned} arrho_{i_k,m_k,k}(2^{-k}x)&\geqslant\int\limits_{A_k}arphi_{i_k,m_k,k}[2^{-k}x(t)]d\mu\geqslant 2^k\int\limits_{A_k}arphi_k[x(t)]d\mu\ &=2^ku(A_k)arphi_k(u_k)=\mu(E)\,, \end{aligned}$$

a contradiction.

Let us remark that condition 1° was needed only in the proof of sufficiency and condition 2° only in the proof of necessity. Moreover, let us observe that in case of powers $\varphi_i(u) = |u|^{p_i}$, where $p_i \geq s > 0$, and the sequence $\{p_i\}$ is non-decreasing, 2.1 gives the following necessary and sufficient condition for $X_{\varrho} = X_{\varrho_0}$: there exists i_0 such that $p_i = p_{i_0}$ for $i \geq i_0$.

3. Let $\varphi_i(u)$ be a φ -function such that $\varphi_i(u) = \varphi_i(u^s)$, where $0 < s \le 1$ and Φ_i are convex φ -functions, i = 1, 2, ..., and let us suppose that for every index n there exist positive constants λ_n, β_n, v_n such that for every $0 \le u \le v_n$ and $k \ge n$ there holds the inequality $\varphi_n(\lambda_n u) \le \beta_n \varphi_k(u)$.

If $\varphi_i(u) = |u|^{p_i}$, where $p_i \geqslant s > 0$, and the sequence $\{p_i\}$ is non-increasing, this condition is satisfied always.

3.1. Let $\{\omega_i\}$ be a sequence of positive numbers for which

$$0 < \liminf_{k \to \infty} \omega_k < \infty, \quad \omega_k > 0.$$

We denote by X the space of all sequences $x = \{t_i\}$, t_i —real numbers, and we put

$$\varrho_i(x) = \sum_{j=1}^{\infty} \omega_j \varphi_i(|t_j|).$$

Then X_{e_i} is the space of sequences $x = \{t_i\}$ such that

$$\sum_{j=1}^{\infty} \omega_j \varphi_i(\lambda_i |t_j|) < \infty \quad \text{for some } \lambda_i > 0.$$

3.2. In order that $X_e = X_{e_0}$ it is necessary and sufficient that there exist positive constants k, c, u_0 and an index i_0 such that for every $0 \le u \le u_0$ and $i \ge i_0$ the inequality $\varphi_i(cu) \le k\varphi_{i_0}(u)$ holds.

Sufficiency. It follows from the above condition that there exist positive constants k,c,u_0 and an index i_0 such that the inequality $\varphi_i(u) \leqslant k\varphi_{i_0}(c_0u)$ is satisfied for $0 \leqslant u \leqslant u_0$, $i \geqslant i_0$. If $x \in X_\varrho$, then $\omega_j \varphi_i(\lambda_i | t_j |) \to 0$ as $j \to \infty$ for every i and for λ_i sufficiently small. According to the assumption on $\{\omega_j\}$, this implies $t_j \to 0$ as $j \to \infty$. Hence $|\lambda t_j| \leqslant u_0$ for λ positive and sufficiently small and $j = 1, 2, \ldots$, and we conclude that $\varrho_i(\lambda x) \leqslant k\varrho_{i_0}(c_0\lambda x)$. From this inequality it follows $X_\varrho = X_{\varrho_0}$.

Necessity. If $X_{\varrho}=X_{\varrho_0}$ and the condition in the theorem is not satisfied, then there exist sequences $i_{n,m,k}\geqslant n$ and $0< u_{n,m,k}\leqslant 1/m$ such that inequality 2.1 (*) holds for $n,\,m,\,k=1,2,\ldots$ Let

$$\liminf_{k\to\infty}\omega_k=\omega.$$

We choose an increasing sequence of indices m_k in such a manner that $\omega \varphi_k(1/m_k) \leqslant 2^{-k-1}$, $1/m_k \leqslant v_k$, and we put $u_k = u_{k,m_k,k}$. Let $\{\omega_{r_j}\}$ be a subsequence of the sequence $\{\omega_j\}$ such that $\frac{1}{2}\omega < \omega_{r_j} < \frac{3}{2}\omega$. Then there exists a finite set A_k of indices j for which

$$\frac{1}{2^k} \leqslant \sum_{j \in A_k} \omega_{r_j} \varphi_k(u_k) < \frac{1}{2^{k-1}},$$

and the sets A_1, A_2, \ldots , may be chosen pairwise disjoint. Indeed, in other case we should have

$$(\omega_{r_{j_1}} + \ldots + \omega_{r_{j_8}}) \varphi_k(u_k) < \frac{1}{2^k},$$

but

$$(\omega_{r_{j_1}} + \ldots + \omega_{r_{j_g}} + \omega_{r_{j_{g+1}}}) \varphi_k(u_k) \geqslant \frac{1}{2^{k-1}}$$

and consequently

$$\frac{3}{4} \cdot 2^{-k} \geqslant \frac{3}{2} \omega \varphi_k(1/m_k) \geqslant \frac{3}{2} \omega \varphi_k(u_k) \geqslant \omega_{r_{j_{s+1}}} \varphi_k(u_k) > 2^{-k},$$

a contradiction.

We define $t_j = u_k$ for $j \in A_k$, $t_j = 0$ if j does not belong to $\bigcup A_k$, and we put $x = \{t_j\}$. Then

$$\varrho_n(\lambda_n x) \leqslant \sum_{k=1}^{n-1} \left(\sum_{j \in d_k} \omega_j \right) \varphi_n(\lambda_n u_k) + \beta_n \sum_{k=n}^{\infty} \left(\sum_{j \in d_k} \omega_j \right) \varphi_k(u_k) < \infty,$$

and so $x \in X_{\varrho}$. Consequently, $x \in X_{\varrho_0}$, and we conclude that there exists $\delta > 0$ such that $\varrho_i(\lambda x) < 1$ for $0 \leqslant \lambda \leqslant \delta$ and $i = 1, 2, \ldots$ But by 2.1 (*)

$$\varrho_{i_k,m_k,k}(2^{-k}x)\geqslant \Bigl(\sum_{j\in A_k}\omega_j\Bigr)\varphi_{i_k,m_k,k}(2^{-k}u_k)\geqslant 2^k\Bigl(\sum_{j\in A_k}\omega_j\Bigr)\varphi_k(u_k)\geqslant 1\,,$$

a contradiction.

3.3. Let $\{\omega_j\}$ be a sequence of positive numbers for which

$$\liminf_{j\to\infty}\omega_j=0 \quad and \quad \sum_{k=1}^{\infty}\omega_k=\infty.$$

We denote by X the space of real bounded sequences $x = \{t_i\}$ and we define the modulars ϱ_i by the same formula as in 3.1. Then the Theorem 3.2 remains valid.

Since $x=\{t_j\}$ ϵX_e implies $\{t_j\}$ to be bounded, the sufficiency is concluded as in the proof of 3.2. In order to prove the necessity we suppose that $X_e=X_{e_0}$, and we define the sequences $i_{n,m,k}$ and $u_{n,m,k}$ as in 3.2. Let us choose an increasing sequence of indices m_k for which $1/m_k \leq v_k$ and let us put $u_k=u_{k,m_k,k}$. Given k, we define a finite subsequence of indices $A_k=\{r_{j_1},r_{j_2},\ldots,r_{j_s}\}$ in such a manner that inequalities 3.2 (**) hold. Applying the assumption $\liminf_{j\to\infty}\omega_j=0$ we choose $\omega_{r_{j_1}}$ so that $\omega_{r_{j_1}}\phi_k(u_k)<2^{-k}$. Let us assume that the numbers $\omega_{r_{j_1}},\ldots,\omega_{r_{i_p}}$ are chosen in such a manner that

$$(\omega_{r_{j_1}}+\ldots+\omega_{r_{j_p}})\varphi_k(u_k)<2^{-k}.$$

Let us write

$$\sum_{p+1} = (\omega_{r_{j_1}} + \omega_{r_{j_2}} + \ldots + \omega_{r_{j_p}} + \omega_{r_{j_{p+1}}}) \varphi_k(u_k),$$

where $\omega_{r_{j_p+1}}$ is different from all $\omega_{r_{j_1}}, \ldots, \omega_{r_{j_p}}$.

We consider the following cases:

1° if
$$2^{-k} \leqslant \sum_{p+1} < 2^{-k+1}$$
 for some $\omega_{r_{j_{p+1}}}$, we put $s = p+1$;

2° if
$$\sum_{p+1} < 2^{-k}$$
 for any $\omega_{r_{j_{p+1}}}$ we choose $\omega_{r_{j_{p+1}}}$ arbitrarily.

Let us observe that 1° and 2° exhaust all possible situations. Indeed. let us suppose that $\sum_{p+1} \geqslant 2^{-k+1}$ for any $\omega_{r_{j_{p+1}}}$. Then $\omega_{r_{j_{p+1}}} \varphi_k(u_k) = \sum_{p+1} -\sum_p \geqslant 2^{-k}$ for almost all elements of the sequence $\{\omega_j\}$, a contradiction with the assumption $\liminf_{j\to\infty} \omega_j = 0$. From the divergency of the series $\sum_{k=1}^{\infty} \omega_k$ it follows that the above-defined subsequence A_k is finite

It is easily seen that our assumption makes it possible to define the sets A_1, A_2, \ldots pairwise disjoint. The remaining part of the proof of necessity runs the same lines as in 3.2.

4. An example of another type is obtained if we take as X the space of infinitely differentiable functions f(t) of n variables $t=(t_1,\,t_2,\,\ldots,\,t_n)$ and set

$$\varrho_i(f) = \int\limits_{\mathbb{R}^n} \varphi[|D^i f(t)|] dt,$$

where $i=(i_1,\ldots,i_n)$, $D^i=\partial^{i_1+\ldots+i_n}/\partial t_1^{i_1}\ldots\partial t_n^{i_n}$, and $\varphi(u)$ is convex. The space X_ϱ is equal to the space \mathcal{Q}_φ (see [3]). Let us remark that $X_{\varrho_0}\neq X_\varrho$ for every $\varphi(u)$; this follows from the fact that if $f\epsilon X_{\varrho_0}$, then either $f\equiv 0$ or the support of f is equal to R^n . Indeed, let $\mathcal Q$ be the complement of the support of f and $\mathcal O\neq \mathcal Q\neq R^n$. We take a point $t_0\,\epsilon\partial\mathcal Q$. Now, from $f\epsilon X_{\varrho_0}$ it follows that

$$\int\limits_{B^n} arphi \left[\lambda \left| \left. D^i f(t)
ight|
ight] dt \leqslant 1$$

for a $\lambda > 0$ and every i. By (4) of [2] we conclude that

$$\varphi\left[\frac{\lambda}{2^n}|D^if(t)|\right]\leqslant \sum_{p\in P}\int\limits_{\mathbb{R}^n}\varphi\left[\lambda|D^{p+i}f(t)|\right]dt\leqslant 2^n,$$

where P is the set of multi-indices $p=(p_1,\ldots,p_n)$ with $p_j=0$ or 1 for $j=1,2,\ldots,n$. Hence, all the derivatives $D^if(t)$ are uniformly bounded. Consequently, f can be developed in the Taylor series in a neighbourhood of t_0 . Since, $t_0 \in \partial \Omega$, $D^if(t_0)=0$ for every i. Hence, f(t)=0 in a neighbourhood of t_0 , a contradiction.

References

- [1] S. Banach, Théorie des opérations linéaires, Warszawa 1932.
- [2] R. Bojanic and J. Musielak, An inequality for functions with derivation in an Orlicz space, Proc. Amer. Math. Soc. 15 (1964), p. 902-906.
- [3] J. Musielak, On some spaces of functions and distributions (I), Spaces D_M and D_M' , Studia Math. 21 (1962), p. 195-202.
 - [4] and W. Orlicz, On modular spaces, ibidem 18 (1959), p. 49-65.
- [5] W. Orlicz, On spaces of Φ -integrable functions, Proc. Int. Symp. on Linear Spaces held at the Hebrew Univ. of Jerusalem, July 5-12, 1960, p. 357-365.
- [6] A. P. Robertson and W. J. Robertson, Topological vector spaces, Cambridge 1964.
- [7] Z. Semadani. Limit properties of ordered families of linear metric spaces, Studia Math. 20 (1961), p. 245-270.

Reçu par la Rédaction le 29. 2. 1968