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W&, Thus f, is I-convergent. Since j may be chosen arbitrary, it follows
by induction that all sequences belonging to some (r) are I-convergent.
Thus, every VI-convergent sequence is I-convergent.

10. The following diagram shows which implications between the
considered kinds of convergence have been stated, so far:

o .
11° I | Distributional
| convergence
I (eonvergence in D))

|
|
11w I
— ]

: Tempered
|

TV ==3p-IV© I convergence
|

\— (convergence in ')
|

VI I v, | Convergence
| \ I in Fourier

l coefficients
______________ B P

Strong } Weak i
l convergence I

From this diagram we can immediately read that all possible impli-
cations hold between the 12 kinds of convergence, i.e., that all the 12
kinds of convergence are, for sequences of periodic distributions, equivalent.
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On symplectic mappings of contraction operators”
by

R. 8. PHILLIPS (Stanford)

Dedicated to
Stanistaw Mazur and Wiadyslaw Orlicz

One of the more familiar theorems in funetion theory states that
every conformal mapping of the unit disk onto itself is a fractional linear
transformation. In 1943, Siegel [3] proved that this result holds as well
for symmetric complex matrices. Our purpose is to generalize this theorem
still further and show that it holds both for contraction operators and
for symmetric (as distinguished from Hermitian symmetric) contraction
operators.

More precisely, let #; denote the set of all strictly contractive linear
operators on a Hilbert space H,

v=[J; ] < 1],

and let Z, denote the set of all strictly contractive symmetric linear
operators on H,

Z,=1[%;|Z4)<1 and Z = Z'],
where for a given conjugation %,
7 = ¥7*¢.
We shall consider the group ¢ [ %] of one-to-one bianalytic mappings
g of f#, [2,] onto itselt with the metric
lps— ol = sup gy (J) — @u(J)| over 7, [or £,].

Let @, [¢,] denote the principal component of ¢ [&]. It will turn out

that &, == &. The analogous assertion does not hold for ¢ even in the

case of matrices; for example @(J) ==J’ belongs to ¢ but not to %,.
The transformation

(1) J = (AT + B)(0J +D)™*

* Spnogored by the National Science Foundation, contract NSF-GP5841.
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with 4, B, 0, D linear bounded operators on H is called general symplectic if

@) A* C*\(/I 0\/A B I 0 A B\ (I 0\/4* ¢*
B* p*)\o —1/\c b/ o —1) \¢ p/\0 —1)\B* D*
and symplectic if in addition D = 4 and € = B; here we denote ¥.1% by I,

In terms of these concepts our result becomes

THREOREM 1. Every mapping in %, [&] is general symplectic [sym-
plectic].

The proof beging with a few remarks on the symplectic group which
permit us fo restriet our considerations to the analytic mappings ¢ for
which ¢(0) = 0. Then by suitably generalizing Siegel’s proof we show
that such a ¢ is a linear isometry. Finally we make use of results due to
Kadison [2] and Wigner [5] to show that @ is actually symplectic.

In the finite-dimensional case it is known that a one-to-one analytic

map is necessarily bianalytic. We do not know whether this is true in
the more general case treated in this paper. " ‘

1. The symplectic group. We note that J belongs to #, if. a,nd only
if J*J—1I < oI for some negative ¢ and that this is equivalent by (2) to

(47 +B)* (AT +B)— (0T -+ D)*(0J + D) < o'

for some negative ¢'; it follows that the general symplectic transformation
takes £, onto #,. The additional conditions imposed on the symplectic
transformation are just enough to show that it takes %, onto &, It is
also clear from (1) and (2) that the general symplectic and the symplectic
transformations form transformation groups. Further condition (2) shows
that transformation (1) is general symplectic if and only if

(1.1) A"A—C"C=1=D*D—B*B and A*B = ("D.
and

(1.2) 44" —-BB* =1 = DD*—00* and ACQ* = BD*.

Hence in the symplectic case necessary and sufficient conditions on
A and B are

(18) « A*A~BE=AA*~BB* =I,A"B=BA and AB — BA.

) JFinaJlIy we remark that (1.1) and (1.2) imply that 4 and D are neces-
sgmly regular and the general symplectic transformation is analytic
since (0J D)~ can be expanded in powers of J.

Lewmya 1.1. The general symplectic group and the symplectic group are
transitive. ’ . (

Contraction operators 17

Proof. To prove the first assertion of the lemma it suffices to show
that 0 goes into any given J, in #, under some general symplectic trans-
formation. For such a transformation we see by (1) that J, = BD™*
so that (1.1) requires that D*D—D*JiJ,D = I, or equivalently that
(DD*)™' = I—J5J, > 0. This suggests that we define

(1.4) D = (I-J3J)"" and B =J,D,

where we take the positive square root. Also by (1.1), A*J,D = A*B =
=(*D, which requires

(1.5) C =dJrd;

and inserting this in the first relation of (1.1) we see that an appropriate
choice for 4 is

(1.6) A = (I—d,J3) ",

where once again we take the positive square root. Tt is clear that the
operators 4, B, 0, D defined by (1.4)-(1.6) satisfy relations (1.1) and
hence define a general symplectic transformation taking 0 into J,. Finally,
if we replace J, by Z, belonging to #, in the above-mentioned formulae,
then the resulting operators also satisty D = 4, ¢ = B and (1.3); and
therefore define a symplectic transformation taking 0 into Z,.

LemmA 1.2. The general symplectic group and the symplectic group
are each connected.

Proof. Suppose the given general symplectic transformation takes 0
into J,. We then construct a one-parameter family of general symplectic
transformation as in Lemma 1.1 for the operators [iJy; 0 < < 1]. The
resulting operators 4,, By, 0y, D, are continuous in ¢ ag are the coefficients
for the inverse transformations, namely, A7, —Cf, — B*, Df. Composing
these inverse transformations with the given transformation, we see that
the given transformation is connected within the class of general symplectic
transformations with a general symplectic transformation taking 0 into
0 and hence of the form

(1.7) K = AJD,

where by (1.1) 4 and D are each unitary operators. Using the spectral
representations for 4 and D it is easy to see that they can be connected
t0 the identity by a one-parameter family of unitary operators, say [ 4, D;\ll
In the symplectic case we proceed in the same faghion. In this cage .D = A
in (1.7); we can therefore choose DI, = 4, and stay within the class of
gymplectic transformations. :

Studia Mathematica XXXI1 g‘
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2. The modified ¢ is a linear isometry. Given a one-to-one bianalytic
map ¢ of £, [Z,] onto itself, we now compose it with a general symplectic
[symplectic] transformation taking ¢ (0) into 0 so that the resulting mapping
takes 0 into 0. We call this resulting map the modified ¢ and continue
to use the same symbol for it. We consider the ¢ and & cases in turn.

Lzmva 2.1. Any one-to-one bianalytic map of #y onto J, which takes 0
nto 0 is a linear isometry.

The proof of this lemma will be broken up into three steps.

Step 1. Applying Schwarz’s lemma (see [1], Theorem 3.13.4) in turn
to @(¢J) and ¢~ (), [L<|J|77, yields

(2.1) lg()] = |J].

Next we express p(J) in a Taylor series (see [1], Chapter 26),

(2.2)

where P, is a continuous homogeneous polynomial of degree m on #,
to #,; the series converges absolutely and uniformly for all J of norm
< r< 1. Thus for J in #, and |{] << 1 we have

llp (G| = 1211y ()| = 01212
and making use of (2.1) we obtain
|71 = 1Po(D)]| = O(I2])-
- +'This implies
(2.3) [Py ()] = |J].

“The anglogous assertion holds for

Now

T =g p) = D QuPuld);

k,nz1
and comparing the first order terms on each side of this relation shows that
(2.4) Q1 (Po(J) = J.
Likewise

(2.47) P1(Q1(J)) =dJ

icm
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50 that P, and ¢, are linear isometries of #, onto #,. Finally, we note that

o1 oo =
(25) 0 x;ﬂ—{ (=g ()" p e )]d0 =I—21Pn(J>Pn(J>.

Step 2. We set

0() = p(@:(D) = X Pol@uld)) = I+ > Eald).

fs n>2

The results of step 1 also hold for 8. Suppose next that U is
a partial isometry and let  lie in the range of B = U*U. Applying (2.5)
to ¢U, |{| <1, we see that R,((U)x = 0 for all n > 2 and hence that
0(¢U)w = {Ux. We would like to show that this holds as well for all »
in H. If B = I, there is nothing more to prove. It B # I but UU* = I,
we seb

(@, 9) = (2, )= |LI7*(6(20), 6(LT)y)

for any { of absolute value < 1. By (2.1) this is a positive semi-definite
form and since (%, #), = 0 for # in the range of H, it follows that (2, y), = 0
for such # and any ¥ in H. In particular, for ¥ orthogonal to the range of
B we have

0 = (6(¢U)w, 0(¢TV)y) = (tUz, 6(:T)y)

and since the range of U is all of H in this case, we conclude that
6(¢U)y = 0. As this holds for all || <1, it follows that R.(U)y =0
for all ». Thus

B, (U)=0, n=>2,

when U is a partial isometry and either UU* or U*U equals I.

Step 3. We now represent an arbitrary J in #, in polar form: J = U8,
where U is a partial isometry with either UU* =TI or U*U = I and §
is a positive selfadjoint contraction. Approximating 8 by a finite linear
combination of projection operators leads to an approximation of J by &
gimple operator of the form

I (Ayy Aoy ooy An) = Z}'iUi?

where the U, are mutually orthogonal partial isometries (i.e. UiU; =0
= U; U} for i #j) and either JU;U; =1 or YU, U =1. In éither
case step 2 shows that

R, (J) =0, n=2,
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whenever |4;] = 1 for all of the 4. Since Rn(J'" (41, Aq, ..., &) is analytic
in the polycylinder

D =k <1, t=1,2,...,n],
it follows from Cauchy’s formula for 2 that B, (J') = 0 for all {4} in 2.
By continuity, R, (J) = Pn(Ql(J)) = 0 for » > 2 and all J in #, and, since
the range of @, is again £, we can assert that P,(J) = 0 for n > 2 and
all J in #,; in other words, ¢(J) = Py(J), as desired.

Before proving the analogous result for 2, we need two preparatory
lemmas.

LemMa 2.2. Bach selfadjoint operator S is unitarily equivalent to o
“real” selfadjoint operator @, thatis a Q satisfying @ = @* = Q.

Proof. By the usual procedure employed in multiplicity theory
(see [4], Chapter 7) we can represent H as a direct sum of L,(E, m) spaces
(mis a measure on the Borel subsets of the real numbers),

(2.6) H' = X2@L (R, m,)
on which the action of § is multiplication by the real variable 1. We de-
fine an auxiliary conjugation ¢’ on H' as: . SIRE!
e [Zf1A) = fu(d).
It is obvious that 8 = ¢'8¢’. Now the given conjugation ¢ splits H
into “real” and “imaginary” parts:

’ H=H,@iH,; H,=[2;%c = x].

A similar decompogition holds for @':

H = H,®iH,;

Let V be any unitary map of H, onto H, extended to H by V(v %)
= Vao+iVy for all &,y in H,. Since V¢ = ¢'V and ¢V* = V*¢, it is
clear that @ = V*SV satisfies all of the assertions of the lemma.

Liewwa:2.8. If Z = 7', then there emists a unitary operator U and a
“real” positive operator P (P = P* = P > 0) such that
2.1 ’ o Z = UPU.

Proof. Let § denote the positive square root of Z2* = ZZ. According
to Lemma 2.2 there exists a selfadjoint operator @ with @ = @ and a uni-
tary operator V' such that § = 7*QV; obviously §* = V*(Q'V. Following
Siegel [3] we set - -

(2-3) ) P =YZV',
.Then F = F'; moreover, ¥' iy normal. In, fact,
FF* = VIZ'V* =@,
F'F =VZ2'ZV' = [VZZV*] ={* = .

1

H, = real-valued function in (2.6).

icm°®
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The W*-algebra generated by F and F* is therefore Abelian and
consists only of (')-symmetric operators. The resolution of the identity
{B,} for ' is contained in this algebra and therefore

F= f 2E,,
€1

where I} = B, We write 2 = |2]exp(if (1)) and set
P = [ |1aB, W = [exp(i0(2)/2)dE;.
Then P 20, P =P'; W is unitary, W = W’; and
F = WPW.

Setting U = WV we obtain (2.7).

LuMMA 2.4. Any one-to-one bianalytic map of &, onto &, which takes 0
into 0 is a linear isometry.

Proof. The proof of this lemma follows that of Lemma 2.1. In fact,
Step 1 carries over ag stated while the argument in Step 2 holds in partie-
wlar for all unitary U such that U’ = U. Using the result of Lemma 2.3
and noting that the resolution of the identity for P is (')-symmetric,
we see that any Z in Z, can be approximated () in norm by a simple
operator of the form

2" gy g ooy Im) = D) AT,

4=

and

where the U; are mutually orthogonal partial isometries such that U; = U;
and YU, Uf =1 = YU;U; Hence Step 3 with J" replaced by Z” can
be used to complete the proof of Lemma 2.4.

We note that the above linear isometries can obviously be extended
to the set of all bounded linear operators ,# and the set of all bounded
linear (')-symmetric operators Z, respectively.

3. A characterization of linear isometries. Affer normalizing ¢ so
that it takes I into I, we shall show that it preserves the Jordan structure
of # [and &]. In essence the proofs of these facts can be found in Kadison
[2]; however, since Kadison’s paper assumes a ring structure whereas &
has only a Jordan structure, some of Kadison’s arguments will have to
Dbe slightly modified, For notational convenience we shall in this section
denote the closed unit balls in ¥ and & by ¢, and Z%,, respectively.

(1) As pointed out by Ebbe Thue Poulsen, this approximation can also be obtain-
od by making use of a generalized spectral representation due to A. Ghika, Revue

o
Math. Pures et Appl. 2 (19567), p. 61-109, in which Z = of AdU;, where Uy is. an
increasing family of partial isometries; that U, = U, follows from the uniqueness

of this representation.
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Lemma 3.1 (Kadison [2], Lemma 2). The identity is an extreme point
of both #, and Z,.

Lmmma 3.2 (Kadison [2], Theorem 1). The extreme points of #, consist
of the mazimal partial isometries, that is partial isometries U such that

either OUU* =1 or U'U =1
LeMMA 3.3. The extreme points of &, consist of the (')-symmelric unitary
operators.

Proof. Let U be a unitary operator in 2, and suppose that there
exist operators 4, B in %, and positive numbers a, b with a-}-b =1
guch that

U = ad--bB.

The W*-algebra generated by U and U* is contained in & and con-
taing a unitary square root of U¥, which we denote by U~ Hence

I = ad,+bB,,
where

A, = UPAU-" and B, = UVBU

both belong to Z,. According to Lemma 3.1, 4, = I = B,, from which
it follows that 4 = U = B, so that U is an extreme point of 2.

Suppose next that W is an extreme point of 2,. As in the proof of
Lemma 2.3 we can find a unitary operator V such that I' = VWV’ is
(')-symmetric and normal. Obviously F' and W will be extreme points
of &, together. However, since F iy normal, it is clear from the function
space representation of F that it can be extreme only if it is unitary in
which case W = V*FV is also unitary.

A linear isometry will of course take extreme points into extreme
points. In particular, the modified ¢ acting on & will then take I into
a unitary operator. Kadison [2], Theorem 7, has shown that this is also
true of ¢ acting on 7.

We now set

(8.1) 1) = o(I)'e(J), J in g,
and
(3.2) v(2) = (I Pep(Z)p(I)",  Z in Z;

here, as in the proof of Lemma 3.3, ¢(I)~"* is a square root of ¢(I)* be-
longing to 2. Then 7 [»] is a linear isometry of ,# onto ,# [Z onto Z]
taking I into I.

Kadison [2] has proved that 5 preserves the Jordan structure of f.
Actnally his arguments apply equally well to » gince they use only the
Jordan structure of %. Thus his Lemma 8 shows that »(Z*) = »(Z)* and
it follows from this (see Kadison's proof of [2], Theorem 7) that » is

icm
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order preserving. If we denote the positive operators in 2, by %7, then
the argument used by Kadison in [2], Theorem 4, shows that the extreme
points of 27 are the set of orthogonal projections in 2. As a consequence,
» maps the projections in onto themselves. Finally, Kadison’s alternative
ending to [2], Theorem 7, shows that » preserves the Jordan structure
of 2. We shall also need the following

Lemma 3.4 (Kadison [2], Lemma 6). If o preserves the Jordan siruc-
ture, then

(3.3) e(BAB) = ¢(B)o(4)e(B).

The pure states of both ,# and % are 1-dimensional projections of
the form

(3.4) Bzx = (z, f)f,

where |f| =1. If E' = F as when F lies in Z, then since H* = E, we
also have K = E, in other words,

(3.5) Ex = (x, €)%f.

Now f is determined only up to a factor a of absolute value 1 and
since (3.4) and (3.5) imply 4f = ¢f for some |¢| = 1, there are two ways
and only two ways of choosing a so that #(af) = af, namely & = 4.

If ¢ is a linear isometry of # onto ,# [Z onto Z] taking I into I,
then-as we have seen above-it maps the projections onto the projections
and is order preserving. It follows that it maps the pure states onto the
pure states. We can therefore write

(3.6) o(B)z = (=, 9)9,

where |g| = 1. In this way we can correspond to f a vector ag, where |a] = 1,
and in the case of # the choice of a can be limited to 4-1 by requiring
that €f =f and g =g.

Finally, we note for F of the form (3.4) and B,z = (=, f,)f; that

B, EB, = I(f’fl)!ﬂEl-

Applying Lemma 3.4 with ¢ (E) of the form (3.6) and o(E) % = (@, §,)d1,
we see that
(3.7 g, g)1® = (£, fI%
that is ¢ preserves the transition probabilities between states.

LeMMA 3.5 (Wigner [5], p. 233-236). If o is a mapping of the pure
states of f [Z] onto themselves which preserves the tramsition probabilities

between stales, then there exists either a unitary or an anti-unitary operaior
U such that

(3.8) o(B) = UEU*
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for all of the pure states in J [Z 1. In the case of & it is possible to choose
U to be wnitary with U = U.

Strictly speaking, Wigner considers only the case #. We now sketch
his argument and indicate how it can be modified so as to yield 1.3he z
assertion. First choose a complete orthonormal set {f,} for H which in
the case of Z consists entirely of vectors in H,. As shown above, ¢ deter-
mines & correspondence between vectors up to a factor of absolute value
one,

Ja= G

where in the & case we choose the ¢'s in H,. We single out a particular
member of this set, say f, and fix g,, leaving the other ¢’s arbitrary to
within a factor of absolute value 1 in the case of # and to within a factor
+1 in the cage of 2. The set {g,} is a complete orthonormal get by (3.7)
and the onto property of the mapping. Now we also have the correspon-

dence
fo '+fa g g0u

and it i3 easy to see that gy, is of the form

R Joa = apa(go+ @afa) -
We choose a,, =1 and adjust g, so that

oo = g0+ Ja-
Finally, any vector # = Seafay € # 0, will correspond in this way to

w >y = a6 gd),

where |a| =1 and |¢,| = |¢,|; in the case of 2 we limit the ¢’s to be real.
We now determine « so that ac, = ¢, in which case ¢+ s = |- Cal.
In particular, fy+ ifs> go-+ €afey Where &, =: 4-4. This imposes a sec-
ond condition on the ¢’s, namely, |co—i6,] = |6+ &,¢a|. As Wigner shows,
there are only two possibilities: if &, = 4, then ¢, = ¢, for all vectors,
whereas if &, = —4, then ¢, = 8,6,/¢, for all vectors (assuming that e, 0).
In the case of 2, where both o and y le in H,, the ¢, and the ¢, are neces-
sarily real 5o that ¢, = ¢, It is clear by continuity that the above-men-
tioned correspondence also holds for states for which ¢, == 0. Finally we
note that e, = ¢ since otherwise we would have both f-+fs — gu-1-¢p
and i(f,+fs) — e.(g.—19s) which does mnot preserve trangition probabil-
ities. We now define the operator :

U: anfa hnd ZO;QM,

where ¢, = ¢, or ¢, for #, and ¢, = ¢, for Z. Thus U may be anti-unitary
for #, but because we need only consider real vectors in describing the

icm

Contraction operalors 25

pure states of 2, U can be chosen to be unitary on Z'; note that in the
case of 2 the resulting operator satisties 7 = U. Finally, we see that in
either case (3.8) is satisfied.

Proof of Theorem 1 for Z. Given y in &, we can find a symplectic
transformation § by Lemma 1.1 such that ¢ = Soy belongs to & and

takes 0 into 0. According to Lemma 2.4, ¢ is a linear isometry and as
shown above )

v(2) = p(I) " Pp(Z)p (1)

preserves the Jordan structure of &. Further, Lemma 3.5 shows that one
can find a unitary operator U with U = U such that

»(B) = UET'
for all of the pure states in &. Applying Lemma 3.4 we see that for arbi-
trary Z in &
v(EZE) = v(EB)v(Z)v(E).
Taking E of the form (3.4), BZE = (Zf,f)E and hence by linearity
(Zf,f)UBU' = UBU'»(Z)UREU';
cancelling out the extreme U’s gives
(Zf,f)B = B{U'+»(Z)U)E = (U'»(2) Uf, f} B,

so that we finally obtain

(3.9) (Zf, f) = (U»(2)Uf, f)

for all fin H. If Z is selfadjoint and (')-symmetrie, then so is »(Z) (and
hence U'»(Z)U) and in this case (3.9) implies by polarization that
Z = U'»(Z)U, that is

(3.10) v(Z) = UZU'.

Since any Z can be written as a linear combination of selfadjoint
operators in &, it follows that (3.10) holds for all Z in 2. Thus

p(2) = [p(I)"* U1Z[p(I)* UT
and since ¢ (I)¥* is (')-symmetric, we see that ¢ is symplectic and there-
fore so is » = 8 'oq.

Proof of Theorem 1 for #. Let ¢, denote the general symplectic
group. We wish to prove that %, is the principal component of ¢. Since %,
is connected by Lemma 1.2, it suffices to prove that there exists an ¢ > 0
such that the e-neighborhood of %, in & is just %,.

Suppose for a given y in ¢ and G in &, that

(3.11)

L2

lp—G| < e
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Setting o = oG~ we see that

(3.12)

here : denotes the identity transformation. Next let J, = w(O);’ then
[Jo| < ¢ and if we construct the general symplectic trafns.form&mon (eX
taking 0 into J, as described in the proof of Lemma 1.1, it is easy to see
that [I—A| <e?, |B|<eg |C]<eand [I—D|<é As Dbefore
A*—0*
o

lo—1| < &3

ot N(

and a crude estimate shows that
(3.13) |G — 1] < 3¢

for ¢ sufficiently small. Finally, we set ¢ = G7'ow and conclude from
(3.12) and (3.13)

(3.14)

Since ¢ takes 0 into 0, it follows from Lemma 2.1 that ¢ iy a linear
isometry and from previous material in this section that

(J) = p(I)*p(J)

preserves the Jordan structure of #. According to Lemma 3.5 there
exists an operator U either unitary or anti-unitary such that

n(B) = UBT*
for all pure states #. Combining this with (3.14) we get
lp(I) UBU*— B| < 4¢
and setting V = o(I)U and W = U"* we finally obtain
(3.15) \VEW— B < de

for all pure states B in 7.
Next suppose that U is anti-unitary; then so are V and W. Taking B
of the form (3.4) with'® = f, inequality (3.15) implies

(3.16) (f, WHVF—F| < 4e.

Since W is anti-unitary, we can adjust f by a factor of absolute val-
ue 1 so that (f, Wf) > 0. We can likewise choose g with |g|= 1 orthogonal
to f so that (g, Wg) = 0. We then obtain from (3.16)

|f—Vfl<8 and |¢g—Vyg]< 8¢,
and consequently, if % = (f-ig)/V2, we get
[h—(Vf+iVg) V2| < 16e.

lp—1] < 4e.
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On the other hand, (3.16) applied to % gives
|h—(h, Wh)Vh| < 4e.

However, this is impossible if ¢ < 1/32, since then % is a distance of
less than 1/2 from two orthogonal vectors, namely (Vf+iVg) /1/5 and
(h, Wh)(Vf—ng)/]@, one of which is of unit length.

It follows that with ¢ < 1/32, U must be unitary. By an argument
analogous to that used in the proof of Theorem 1 for Z we can show that

n(J) = UJO*
for all J in #. Hence
) = ¢)n(J) = [pI) U1 T*

is a general symplectic transformation and so is y = Gi'ogo@. This
concludes the proof of Theorem 1 for £.
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