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A bounded orthonormal system of polygonals
by

Z. CIESIELSKI (Gdarisk)

1. Introduction. There is an old problem to characterize the Lip-
schitz functions in terms: of the coefficients of their classieal Fourier
expansions. In this note we solve the corresponding problem in the case
of an orthonormal and uniformly bounded system of polygonals. The
new orthonormal set has some of the properties of the Walsh and trigo-
nometric systems. The Walsh functions are not suitable for our purpose
because they ave discontinuous. The relation between our new set and
the Franklin set is the same as between Walsh and Haar systems. Since
we know how to characterize the Lipschitz functions in terms of the
coefficients of their Fourier-Franklin expansions (ef. [17 and [2]), we
are able to do the same for the new orthonormal set of polygonals.

2. Construction of the orthonormal system. We assume that all
functions considered below are defined on the closed interval <0, 1>,

Let #,(t) denote the m-th Rademacher function, ie. 7,(f) =
sign sin2"z¢. The Walsh functions are defined as follows: w,(f) = 1 and
Wa (1) = a1 (1) ... Tnye1(t) Whenever n = 142" ... +2" with 0<n,
<...<y. The Haar orthonormal set {y,,n =1,...} is indexed as
in [1]. o

The definition of Walsh functions gives immediately
(1) Wym 3,(1) = Py (Hwp(t), m>=0, 1<k

This and the definition of Haar functions imply

0 for m # n,
@) (Wam ygey amy1) = 2724, (2l~1

) for m = mn,

whenever 1L <k < 2™, 1 <I1<2" m >0 and n> 0. It should be remem-
bered that )

21—
Wy (l——l) = wg(t) for te(

217!-}-1

1
) and 1 <k<2™.

g
2m 2m
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For given m >0 we define

" ¥
AP = (wom gy gama7)  for Tk < 9™ and 1< 1< 2™,

Tt is clear that (447, 1< k< 2™, 112", is an orthogonal ma-
trix. We are also going to show that it is symmetric. According to (2)
it is sufficient to prove

21—1 2k—1 _om
3) wye (—27:{:17) = W, (W)’ 1<k ?ij 1<l <27.

Since w, (t) = 1 for all ¢ and 20 (t) = 1 for £(0, 1/2™ and for 1<k
< 2™, it follows that (3) is satistied if either % or 1 is equal to 1. In the
case of k>1 and I>1 we proceed as follows. Let &k = 1—}—27“1-{»...-*—2“‘*,
0 <y <o < kyy D= 142040425, 0l <o <o and let

el
= >

=1

be the diadic expansion of te(0,1y. We know that 1y (t) = 1—2g(t)
for almost all ¢. Since

A—1 w 1 1 1
o1 =Zj o1 + o+l = Z ”27:
.

1By

where B; = {m—1l,..., m—I, m+1}, we have for p <m

, 21—1\ —1 for peBy,
? 2"‘“)— 1 for pé¢B;.

On the other hand, if we denote by A; the set {1+k, ..., 14k},

then
wi(t) = [ [r:0).

fed},

Since 1 -+ &k < m, we obtain

21—1 "
wk(-zrﬁﬁ) = (—1)"",

where Ny, is the cardinality of Ay ~ Bi. If pedy ~ By, then p = T +1
= m—1; for some i and j, whence ;41 = m—Fk; and therefore ¢ = L1
— m—k; is in 4; ~ Bg. Since g is uniquely determined by p, it follows
that Ny < Np and by symmetry Ny = Np.

As a simple corollary of (2) and (3) we obtain

(4) (Wny tm) = (Wmy %)  for m =1 and m >1.
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Now, the well known relation between Haar and Walsh functions
(cf. [3]) can be stated as follows (1 <k <<2™, 112", m>=0):
21}1
Wom 1. (T) = 2 A(ﬁl) Z2711+1(i),

l=1
am

tamgalt) = 3 A wgn 4 ().
=1
These formulas can be used to define one of the systems {w,}, {(n}
in terms of the other one. In general, to every orthonormal system we
can construct in this way a new orthonormal set. In particular, let us
start with the Franklin orthonormal set {f,,n =0,1,...} (see [1]).
The new orthonormal set is defined as follows:

6(t) =folt) =1, o) =f() =1,

o

(3) Ozm,i_k(t) = ZAE:;L)_&,RMU)’
I=1

where m =0, 1 < k< 2™, 112", Clearly,
am
(6) fomyrlt) = D) Al esm (1),
I=1
Thus {¢,,n =0,1,...} is related to the Franklin set in the same
way as {w,} is related to {y.}.
THEOREM 1. {¢,,n = 0,1, ...} is a bounded, orthonormal and complete
system in L*<0,1) such that

(Wny xm) = (Cn, f) for n =0 and m = 0.
It is clear that the boundedness only requires a proof. Howerver,

(5) and (2) give

m

9

legm ()] < 2™ D fam 2 ()],

%

o~
I

1
whence by Theorem 5 of [1]

(7) leymyr(8)] < 2°-3%,  1<EL2™, m=0.
CoROLLARY 1. There exist absolute comstants M, and M, such that
0< Myn < vare, < Myn, 0 >0.
@1
Indeed, formula (2) and Theorem 1 give
21)’0

oMt — N (g ks famoa 1<hg2”
2 WGy Jamia)ly :
=1
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whence by Theorem 16 of [2]
Var ym = ]l[i (Zmy - 76) .
€0,1y

M|
oML

On the other hand, em.j; is a polynomial of the degree
therefore, by Theorem 2’ of [1],
1

Varegm,; = f|0‘7’1+k( ) di < §-2™ f [egm 1 ()] dt.
{0,1> [

This and (7) give the second inequality of Corollary 1.
It may be worth to indicate that (5) and (34) of [2] imply

0< My L lewlly < Mpy nm20,1<p <00,

where M, and M, are absolute constants.

3. Lebesgue functions and Fourier coefficients. Let us define

Iy(f) = [ VeL ] ds

and let
Ln = malX-Ln(.t) .
<0,1)
THEOREM 2. The Lebesgue constants of the orthonormal set {¢,} satisfy
the following inequalities:

Ly = O(1) and L, = 0(logn).

Since the matrices (Afy’) are orthogonal, it follows that

am oM

E Com ]» C';m. +k 8 yfr,m+l ,m |.l

Thus, Lym(f) is identical with the corresponding Lebesgue function
for the Franklin system and therefore the first part of the theorem fol-
lows.

The proof of the second part is based on the first part and on the
estimates of the Lebesgue constants for the Walsh system. It is known
that for the Walsh system the Lebesgue functions are bounded from
above by O(logn) (see [3], appendix, p. 455). It remaing to show that
uniformly in #e{0,1) and p, 1 < p < 2™,

1 p
/ [Eczmﬂ(t)@m(s)]ds = 0(m).

and
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This is shown as follows. According to (34) of [2] there is a constant M
such that

» P Y )

f ‘Z > ZAQ’;Q)A’”)]”WM )f,m+l(s)ids

i=1 k=1 =1

om am

< Mo—me g 7; ( \?A(’"‘ 4"“’) fzw;—k(t)'
»
(Z w; ("2;"7—?11‘)“1 (?7{1;:_)) I °m+k(t)1

om  am

= g~y 2 2

=1 (ko1 Vit
o o ZE1) ) l
=2 S wi(s)) 2m+k(t)]d8
-1
y [f ( ;)71L+1 )’wi(s) (ZS
I (21
5 2k —
< M érjﬁész Zwi (W)wi(s) ds
I ] i=1

= O{logp) = O(m).

In what follows we shall employ the following notation. For x L, {0, 1>

we write
n

Sul@;t) = (@, ffult),

k=
n

Onlz; t) = D) (@, o) ai(t).

k=0

The symbols || [, || Il, @ (6;%), w,(6;%) and B (z) and B, (z)
have the same meaning as in [2].

THEOREM 3. There ewists an absolute constant M such that for
zelpd0,15, 1< p < oo, ‘

lo— Cu(@)ll, < M[1+1og(n+1)1BP (x), n >0,
and for z<C{0,1)
lz— Cu(w)l] < M[1+1og(n-+1)1B.(2), n=0.

The proof is standard and it is based on Theorem 2.
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COROLLARY 2. For weL,<{0,15, 1 <p < o0,

\ 1
llz— Ca(@)llp < M [1+1og(n+1)]of (—n%——l’ m):

and for £eC{0,1) ‘
1
llz— Cu ()] < I‘Il[l+10g(n+1>]")1(7—z:;€; 90),

where M, is a constant.

This immediately follows from Theorem 3, Theorem 8 of [2] and
Theorem 3 of [1].

THEOREM 4. If #eL,{0,1), then there exists an absolule constant M
such that

n=0.

1
o001 < 0l 5]

We observe that formula (5) implies

oM

@, oomyn)l <27 D'\, fomia)], 1T
k=1

This and (34) of [2] give

2m

2~ 2 () fam )] < 2°-8'" N —-" (@) — 8y (@)l
k=1

whence by Theorem 8 of [2] the required result follows.
CoROLLARY 3. If @ is of bounded variation on 0,1, then

w

|(.€G, )| = 0 (—1—) .

4. Characterization of the Lipschitz functions.

-

THEOREM 5. Let 0 < a <1 and let 1 < p < oo, Then

2‘ byt (t)
n=y

18 a Fourier series; convergent in the L,<0, 1>-norm, of a function xeL,{0, 1)
satisfying the Lipschitz condition o (8; x) = 0(0%) if and only if
a
b2m+k = 9~ MU+ 2 A%) Aym g,
1=1

(9) am
(27 3 lam a7 = O(1).
=1

(8)

1<k<2™,

icm°®
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Remark. Theorem 5 can be extended in the usual way to the case
of infinite p.

TQ prove the first part of Theorem 5 we assume that rel,{0,1>
m_1<1 wﬁ")(é;‘w) = 0(6%). Corollary 2 gives the I,<0, 1)-convergence of (8).
Since {f,} is a basis in L,<0, 1>, we have

(10) € = Zdufny dn = (m;fn)-
N=0
The sums Cym(x) and Sya(z) are identical and therefore
EX m
; bym g eym g (1) = E dym 1 fom (1),
=1 I=1
hence
2’"14
b21)L+k = E A%l) dzm_:__z .
I=1
Now, Theorem 11 of [2] gives
m
ez (3= 3 1gm, ') = 0(1).
I=1

Thus, aym,; = 2" dm,, satisties (9).

The converse can be proved as follows. We assume that (9) is satisfied
and that a,, b, and d, are related as above and therefore

g o
m(1/2—1/p) \¥P _ geam [g-m \ P —an
2 (A‘S-‘: [dom 1] ) =2 2 LZ [ @y z| = 0(27"").
= f=]

Applying Theorem 11 of [2] we find that » given by (10) is in L, {0, 1>
and o (8; ) = 0(6%. This and Corollary 2 imply that (8) is the Fourier
series of x convergent in the I,{0, 1)-norm.

Remark. Theorem 5 remains true if all the capital O’s are replaced
by little o’s.

Suppose that there is given a sequence {n;} of positive integers such
that np,,/m; >¢ >1. The series in (8) is said to be lacunary if b, = 0
for n # g, k=1,2,...

The following result has its anologue in the trigonometric case:

TurorREM 6. Let 0 < a < 1 and let (8) be lacunary. Then (8) is a Fou-
rier series of an w00, 1> with w,(8; ©) = 0(8°) if and only if b, = O(n™"%).

In one direction the theorem immediately follows from Theorem 4.
On the other hand, b, = O(n™°) and

oM

Ay ] == 2‘1)1(1/z+a) ZA%I) bzmq-k;
k=1
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whence

2711
oan 1 e —
@il <27 3 bamyal = 2 g lbn,| = 0(1),
hut this means that the »’s and a’s satisfy (9) with p = co. Applying
Theorem 5 adapted to this case we complete the proof.
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O cnexTpe CHATYISAPHBIX MHTErpadBHBIX 0nepaTopoB B UpocrpancTsax L,
U I. TOXBEPT u H. . KPYIHUK (Kumuses)

Iocsugaemen C. Maaypy u B. Opauuy

PaccmoTpum crepsa camBii IPOCTONl MMACE OXHOMEPHEIX CHHTY-
AAPHEIX MHTErPAJIbABIX QIIEPATOPOB — NHCKPETHHIE olepaTopsl Bunepa-
Xomda.

Ilycte T, — mHHeHHBIH orpaHHYeHHBIH OIIepParTop, OoupemeleHHbIi
B mpocrpaucrse l, Gecroreunoit marpuueil ||la;_f%_,, rae a; — wosdu-
nuentsl Dyphe HeroTOpOlt orpanwuenHoll dymmmEm a(f) (| = 1).

Ecan dynruus a()(|¢| = 1) HeupepsisHa, TO cnekmp onepamopa T,
cocmoum us gcex mover Kpusoil o(f) (J&] = 1) u ecexr KomnaercHbix wicen 2,
He feycaujux Ha 9moll kpuseoli, 048 KOMOPUY GeAUNUHA

def 1 .
ind(a—4) =9—]mg(a,(e"°)—-l) oI £ 0.
T

9TO IpeNJIoMene COXpaHfer cuity (cM. [7]), ecmm mpocTpancTBO I,
3aMEHUTh MHOTMMM APYTUME 0aHaXOBBHIMH IIpoCTpaHcrBaMu. B yacrHocTH,
HIPOCTPAHCTBO [, MOMHO 3aMEHHTH MIOOHIM IPOCTPAHCTBOM hy (1 << p < o0)
nocnenoBarenbHocTeit KoddduimenTon Oypbe GyHHKIUA U3 COOTBETCTBY-
Towero mpocrpancrsa Xappu H, (cm. [2]). Ilomomenme ycmosxesercd,
ecin GYHKINA a(l) He ABIAETCA HeNPepPLIBHOK.

B ciryuae, rorma dyuxmua a(f) (|{| = 1) HempephBHA CIeBa B HMEET
KOHEYHOE YHCJI0 TOYeK paspeBa. (i, Lsy ..., ln cneemp onepamopa T,
6 npocmparcmee 1, (cMm. [3]) cocmoum us ecex mouer kKpusoid V(a), noay-
uenHoll Jobasnentiesm K MHOMCECMBY ecex 3Hadenull fiyuryuu a(l) _ompeskos
wa(Cp)+(L—pu)a(le+0) (0 <p<1), a marnwce us mouex A¢V(a), 0aa
KOmopux

def 1
ind(a— 1) = — fdtarg(t— 2) #0.
™ vin

9ToT peayibrar HepecTaer OHTL BEPHBIM B IIPOCTPAHCTBAX hy (p # 2,
1 <p<oo): ¢ cayuae KycouHo-HenpepwléHoll @ynryuu a(l) cnekmp one-
pamopa T, 6 h, mensemca ¢ USMEHEHUEM P,


GUEST




