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Ideals in Banach algebra extensions *
by
RICHARD ARENS (Los Angeles)

1. Let 4 be a commutative Banach algebra with unit, and let ¢,, . <oy CN
be elements of A and suppose that the ideal (€15 .-+, 6y) is proper. Now
let B be an extension of 4, and a commutative Banach algebra. It may
happen that the ideal that C1y-++; Cy generate in B is no less than B.
We present here a necessary and sufficient condition (expressed in terms
of the norm in A) that this cannot happen. We prove the following. Let
O =c,2+...4exywy and suppose there is an &> 0 such that whenever

Josfis ooy fuor are homogeneous polynomials (of the degree indicated)
with coefficients in 4, then

(L1) NleCfa s+ €202yt Cfl - farall+ ..+ Iful] > ifoll;

then there is an extension B of A in which C1y -+ +40n generate the unit
ideal B; and conversely. The norm in (1.1)is a natural one for Alwz,, ..., zy].

The sufficiency of (1.1) to insure the existence of a suitable B is
established by the use of a formula, (2.41) below which was discovered
by Dr. J.-E. Bjérk of Stockholm University. He very kindly told me
his formula before taking the time $o prove it in all generality.

2. In this section we suppose that A is a commutative ring with
unit. For each ¥, let A[,,..., 2y] be the ring of polynomials with coef-
ficients in 4, For a monomial 1 ... 2} we call (k,, ..., ky) the order
of that monomial, and we say

(Byyovey by) > (M, ..oy my)

if the lagt non-zero difference Ty—my, ky—my, ..., ky—my is positive.
Thus each f in A [w, ..., ®y] has a non-zero term of least order.

2. LemMA. Let ¢y, ..., cxed and fed[my, ..., ax]. Suppose (cya,+
4ot enay)f = 0. Then for each vy L <y <N, there is a p, such that
&b =0, where b is the coefficient of the mnom-zero term of least order
n f. ik

* The preparation of this paper was supported in part by N. 8. F. grant GP 6727.
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Proof. Let O = ¢@+...+cy 1@y, and write f as goxﬁiﬁ-u..‘«y.
+ i ™, where gie A [y, ..., wy_1] and where gy # 0. Then g, contains
the coefficient b, in an obvious sense. Evidently

K

(C+ oy an) (Go+ G108+ .+ gm@N) = 0.

Thus cxgm = 0, eNGn_1+Cfn = 0, on Gzt O, = 0, and so
forth. Thus & ¢m_1 =0, ¢vgm_s = 0, and so forth. This latter sequence
terminates with the assertion that ¢%'g, = 0. On the other hand, we
see also that Cg, = 0. Assume that 2.1 holds for N replaced N--1. Then
some power of each ¢, (v <N —1) annihilates b. But the (m--1)-st power
of ¢y also annihilates b.

Thus the proof can be achieved by induction.

2.2. PrOPOSITION. Lét ¢y, ..., ¢x be such a set of elements of A that
¢, =... = oxyb =0 only for b = 0. Then ¢, @+ ...+ cy®y 8 not a zero-
divisor on Az, ..., ox].

Proof. Let b be the coefficient of the non-zero term of lowest degree
of any non-zero f (if there be any) in A, ..., ay] for which (¢,0,+...--
+ eyoy)f = 0. Appealing to 2.1 we conclude that some power of each ¢,
annihilates b. Hence there is an integer K so large that cf1...cfV s
whenever %,+...-+ky = K. Suppose that j,-+...4jy == K—1. Let
@ =c...cb. Then ¢,a =...=oya = 0. Thus a =0. We can now
replace K by K —1 and repeat the argument. In the end we see that b == 0.

This proposition is used here only to establish the following

2.3. PROPOSITION. Let ¢y, ...,cn be as in 2.2 and suppose that (¢ ay--
+ ...+ oyon—1)f is homogeneous (in the usual sense). Then f =

Proof. Denote ¢,&;+...+cyazy by € and suppose (¢ —1)f is homo-
geneous of degree m. Suppose there are terms in f of degree (in. the ugual
sense, not in the sense of order as used in 2.1) p greater than n—1. Let &
be the sum of those terms of f which have the highest degree. If this de-
gree ig greater than n—1, we must have (h = 0. By virtue of 2.2, this b
is 0. Hence we may assume f = fr_;+fuo+...+fin, Where these are
homogeneous of the degree indicated. From (C'—1)f being homogencous
of degree m we conclude that f,, = 0, and after several such steps we
obtain f = 0.

The following theorem establishes a formula proposed by J.-I.
Bjork:

2.4. THEOREM. Let ¢y, ..., ey be such a set of elements of A thai ¢,b
=...==cyxb = 0 only for b =0, and let J be the ideal generated by ¢—1,
where C = ¢;3,4-...+-cyy, i Alwy, ..., zy). Let fedAlay, ..., wy], with
a decomposition into homogeneous summands

f = ﬁw+fn~.1+~--"|'f1+fo~

e ©
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Then fed only if

(2.41) Jo = —Cfar—Cfo_s—...—C"f,,
and conversely.

Proof. Let h = f,40f,_,+...+C"f,. Then f—heJ whence (2.41)
surely implies feJ. This establishes the converse. Now suppose feJ. Then
certainly heJ. But 2.3 tells us that then  must be 0. Thus 2.4 holds.

This theorem makes it very clear that the ideal J, in the circumstan-
ces of the theorem, cannot contain any element of A itself, except 0.
For if indeed acd, define f = f,4f,, where f, = 0 and f, = a. Then (2.41)
agserts that 0 = Ca and this requires @ = 0. Therefore Al®y, ooy 2]
mod J contains a subring isomorphie to A showing that 4 is a subring
of a ring B in which there exist elements &, ..., £y such that

orfit. . foyéy = 1.

In the next section we study an analogue of this result for Banach
algebras.

3. Let B be a commutative normed algebra with unit, and suppose
Cyy ..., Oy i8 & set of elements of B for which there exist byy...,by in B
such that ¢,b,+...+cyby = 1. Then we call {c,, ..., ¢y} a reqular system.
If, moreover, these b’s can be selected with norms not exceeding 1, then
it is a normally regular system. If A is a subalgebra of B and A contains
a system which is regular with respect to B, we call it subregular with
respect to A. It iy clear what normally subregular should mean (3).

In our opinion, the main problem concerning normal subregularity
is whether it is characterized by the (obviously necessary) condition

(3.1) Inf {lesa+... +leal} >1.

3
Iafj=1

When N = 1, this condition is sufficient, but probably not in general.
It is with the hope of contributing to the ultimate solution of this prob-
lem that we present a condition ((8.21) below) which is equivalent to
normal subregularity, and which resembles (3.1) in spirit.

First we must define the norm in A[#, ..., zy] supposing that A4
is a Banach algebra. Actually, we refer the reader to the discussion in
Section. 2 of the paper cited in (1), wherein he should correct the ab-
surdly misprinted (2.3) to read

=D If@l< oo.
§e8(X)

(1) Compare R. Arens, Exlensions of Banach algebras, Pac. J. Math. 10 (1960),
p. 1-16,
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Thus the norm of a polynomial feA[®,, ..., ay] i the sum of the
norms of the coefficients, which are of course elements of 4.

Let ¢y, ..., ¢y be N elements of 4. As before let ¢ be the linear poly-
nomial ¢,%,+ ...+ ey@y, and let J be the ideal generated in. A [w, ..., xx]
by ¢—1, where 1 iy the unit of A. In this notation, it iy possible to ex-
press (3.1) as follows:

(8.11)  For each acd one has ||Cajl = [lall.

The following is therefore a strengthened form of the observation
already made:

3.2. THEOREM. Suppose ¢, ..., ¢y 8 o subset of A. If ¢, ...,cy 18
a normally subregular system, then, for any set fo,fy ...y fu1 of homoge-
neous polynomials from A[w, ..., ux] of the degrees indicated, there holds
the inequality

(3.21) (101 Cfacst oo+ O foll+ I facall - - HIIf 2 il

Here f, is simply an element of 4, of course. To prove 3.2 suppose

A < B and &, ..., £y are elements of B of norm at most one such that
(&, v én) =0+ Fevéy =1,

Define f, to be —Cfy_;—C*fu_s—...—C0"f,. Define p to be f,+
+fa1+...+fi. These summands are the homogeneous congtituents
of p, so surely

loll = Ifall + lfaall -+ IfL
On the other hand, p(éy,..., é&y) = —f, whence -

Ifoll < llp(Exs -ovs &l

Finally, it must be observed that norms in A [@y, ..., x] have been
so defined that

(& -y €W < D,

which completes the proof.
We now establish the converse.

3.3. THROREM. Suppose that whenever fy, fi, ..., o1 are homogeneous
polynomials of the degree indicated, then (3.21) holds. Then ¢y, ..., cy 18
a ‘mormally subregular system.

" To prove this we use a principle (), whose statement unfortunately
has to have its sense restored by the insertion of “the system X” after
“4 and”. In any event our problem is simply to prove that ||p| > |lal
whenever p—aeJ. We now follow the suggestion of J.-E. Bjork and

() Bee op. cit., 2.7.
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apply 2.4. We write p—a = f,+fu_i+...+f,, where n is at least the
degree of p. Thus

P = (—an-l’“ogfn_z*---_an o) o1t fit (ot a),

where the last parentheses contain the constant term of p. To save writing
we merely remark that |p| is equal to the left-hand side of (3.21) plus
llfo+ all, whence

lolh = 1foll 4 ifo+-all > lall-

It follows from this that B = A[®,, ..., #y] mod J contains an iso-
metric copy of 4, and ¢y, ..., oy is obviously normally regular in B, with
& = w;+J. Thus 3.3 is established, and (if one likes) may be combined
with 3.2 to give an “if and only if” statement.

The condition in 3.2 and 3.3 is admittedly complicated. It is interest-
ing to notice that a neater condition implying normal subregularity
is possible.

3.4. ProrosrTioN. Suppose ||Ofll = |Ifll for every homogeneous f in
Alwy, ..., %x]. Then o, ...,cx is normally subregular.

The proof consists in observing that this condition implies (3.21).
Unfortunately, this condition [|0f|| = ||fll is not necessary. Take any
algebra A and let ¢; = ¢, = % (80 N = 2). ¢4, ¢, is a normally regular
system because ¢,14-¢,1 = 1. However, with f = #,—a, we have [|f|]| = 2
but ||Cf]] = 1. As a matter of fact, C is a topological zero divisor in the
algebra A [z, #,] because one can easily find f,, homogeneous of degree n,
guch that {|ful =#»+1 and |[Cf.) =1.

Suppose ¢y, ..., ¢y and d,, ..., dy are subregular systems. We might
say that the former is weaker than the latter if whenever the former is
regular in some extension B of A, then so the is latter.

This concept has an ideal-theoretic meaning which ought not be
passed over.

3.5. THEOREM. Suppose o, ...,cy i weaker than d, ..
some power of the ideal (cy, ..., cx) lies in the ideal (d,, ..
verse also holds.

Proof. By multiplying the ¢; by real numbers we can “make” them
into a normally subregular system. According to 3.3.the system e¢-, ..., cx
is regular in B = A[®,, ..., 2y] mod J. Hence dy, ..., dy is regular there.
Hence there are polynomials py, ..., Py such that

adp+...+ dM_’pM-—I.EJ.

Thus we have a polynomial f whose coefficients lie in (dy, ..., du) such
that f—1eJ. Say the degree of f is n, and let f = fo+fy+...+fo By 2.4,

fn+ Ofn—1+ Ozfn—2+ . --+On_1f1+ On(fﬂ—l) = 0.

Studia Mathematica XXXI,1 3

+y yr. Then
.y Aur). The con-
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Thus the polynomial C" has coefficients in (d, ..., dpr). But these
coefficients generate the n-th power of the ideal (e, ..., en).

The converse also holds.

We have introduced the concept of “weaker” only in order to ask
the following. Let d,, ..., dyr be a subregular system. Can one find a weaker
system ¢, ..., ey such that ||Cf|] > |If|| for all homogeneous f*

Let us call a system ¢y, ..., ox isometric if

llall = llecall+ ... + llew all
for every element a in A4.

3.6. PROPOSITION. An disometric system is normally subregular.

Proof. Using the triangle inequality, we observe that the left-hand
side of (3.21) is ab least equal to

O™ foll + Ufnall o+ Wl = 1Ofar o - €™

Isometrism implies that the first term here equals ||f,], and it
also implies that

[0zt oo O full S HUfall+- o [l

To see that one need only prove ||Of] < |f]l for any polynomial I
Any such f is a sum of monomials and |if|| is the sum of their norms. For
monomial f we have ||Of]| = ||fl], thus completing the proof of 3.6. An
isometric system does not make ||Of]| = ||f| for all homogeneous f. The
example given earlier iy an isometric system.

It is obvious that if ¢,,...,cy and d,, ..., dy are each isometric
systems, then the product system

(6d:1<i<N,1<j<M}

18 also 4sometric. This brings us to the final problem. Is the procuct of
two subregular systems itself subregular?

For sup-normed algebras 4, the condition of 3.2 expressed by ine-
quality (3.21) characterizes a simple situation, namely that for every
maximal ideal m on the Shilov boundary a,, 4 (4) one hag

8y (m)] ...+ ey (m)] = 1.

This does mot follow immediately by inspection, but rather from
the observations made in paper cited in (*), Section 6.

RBegu par la Rédaction le 24. 1. 1968
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Vecteurs cycliques et quasi-affinités
par

B.8SZ-NAGY (Szeged) et C. FOIAS (Bucarest)
Hommage & Monsieur W. Orlicz
1. PRELIMINAIRES ET THEOREME

1. Soit I' un opérateur (lindaire, borné) dans Pespace de Hilbert
(séparable ou non) $. Faisons la suivante

Définition. Si M est un sous-espace de $, invariant pour 7, on
appelle la T-dimension de M et on désigne par dimgy M le minimum da
nombre cardinal d'un sous-ensemble & de M tel que

M = VTG (7)

ou, ce qui revient au méme, le minimum de la dimension d’un sous-espace
N, de MWk tel que
L2l
M = \VI"M,.
n=0
Lorsque dimI = 1, c'est-a-dire qu’il existe un vecteur heMt tel
que M est sous-tendu par h, Th, T2k, ..., on dira que h est un vecteur
cycligue pour T dans M. . ]
La relation suivante est évidente pour tout he$ et pour n=0,1,...:

(1) b =T —TTh+T(I—TTNT*h+ ...+ T NI — TT*) T*" bt TT*",.
Dans le cas ol

(2) T"T**h —0 pour tout he et pour n — oo,

Ia relation (1) entraine

o
(3) h= Y T"I—TT*T*"h
Ne=10
(1) Pour un systéme quelconque {&,}y.r de sous-ensembles de I’espace de Hilbert

on entend par V&, le sous-espace sous-tendu par les ensembles .
vel'
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