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801t p(2) = 62"+ ...+ ¢y ¢ # 0. Puisque mg(T) = O, on aaussi p(T) = 0,
d’ott il s'ensuit que, pour tout ke et pour tout entier m =0, T™h est
une combinaison linéaire de h, Th, ..., T" *h. 8i h est un des vecteurs
cycliques pour 7, les vectewrs h, Th, ..., T" 'h sous-tendent donc $,
ce qui contredit ’hypothése que § est de dimension infinie.

Remarque 3. Toute translation unilatérale simple est unitairement
équivalente & Dopérateur S dans Pespace 1%, défini par

8(@g, B, ...) = (0, Toy &1y .o0)-

Cet opérateur § est donc une transformée quasi-affine des opéra-
teurs 7' envisagés dans les propositions 3 et 4.

PROPOSITION 5. S est une transformée quasi-affine de 8*.

Démonstration. Soit 7' un opérateur autoadjoint vérifiant les
hypothéses de la proposition 4, par exemple soit T 'opérateur dansg les-
pace $ = L*(0, %), défini par Th(z) = zh(z). (Un vecteur cyclique est
fourni par h(z) = 1). En vertu des propositions 3 et 4, § est une transfor-
mée quasi-affine de T, c’est-a-dire qu’il existe une quasi-affinité X telle
que TX = XS. Tl en dérive X*7T = §*X* et par conséquent

SHX*X) = (8" X" X = (X'T) = X*X(1X) = X*(XI) = (X*X) 8.

Comme X*X est aussi une quasi-affinité, cela prouve notre asser-
tion.

Remarque 4. Les vecteurs cycliques de S sous-tendent I’espace I*;
il n’y a qu's envisager les vecteurs cyecliques v, = (1,7,7%,...), |7| < 1.
Tout opérateur 7' qui est relié & S par la relation 77X = XS moyennant
une quasi-affinité X, admet alors aussi des vecteurs cycliques, notamment
les vecteurs Xu,, et ces vecteurs sous-tendent linéairement ’espace de 7.
En particulier, il s'ensuit P'existence de vecteurs cycliques pour 8% De
plus, on déduit de la proposition 4 que si un opérateur dun espace $ de
dimension infinie admet un vecieur cyclique, Vensemble de tous les veeleurs
cycliques sous-tend $ (5).

(>) M. L. Gehér vient d'étendre ce résultat aux opérateurs d'un espace do
Banach quelconque.

Begu par la Rédaction lo 29. 1. 1968
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On analytic functions of Smirnev-Orlicz classes
by

W. KOKILASHVILI (Thilisi)

Introduction. The present paper deals with the class of analytic
functions which is the extension of the known Smirnov E,-class (p > 1).
The class introduced is called the Smirnov-Orlicz class. Here are proved
the so-called theorems on multipliers and decomposition which represent
analogues of the well-known Marcinkiewicz and Littlewood-Paley the-
orems with regard to series of generalized Faber polynomials correspond-
ing to the analytic functions of the Smirnov-Orlicz class. The theorems
obtained are used to study the question of approximation of the analytic
functions of the Smirnov-Orliez class by polynomials in the mean on the
boundary. The so-called indirect theorems of approximation have been
proved. It turns out that in some cases the structural characteristics
of the boundary function depend not only on the rate of approaching
the best approximation to zero but also on the metric of the space in
question.

For the Fj-class (p > 1) of analytic functions the problem of approx-
imations by polynomials in the mean was discussed in [1] and [20].
In [5] and [6] the results of [1] and [20] were generalized and direct
and indireet theorems containing the best estimate (in the sense of order)
were obtained.

Definition. Suppose we are given N-function u(u), that is, the
function allowing the representation (see [7], p. 16)

wlu) = [ p(ydt,
0

where p(t) > 0 for ¢t > 0, and p(¢) is continuous on the right for ¢ 0,
non-decreasing and satisfying the following conditions:

p(oc0) = limp (f) = oo.

t-p00

p(0) =0,

Let us further assume that G is & simply connected domain with a Jor-
dan rectifiable boundary I. The analytic function f(2) in domain G will
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be called an B,-function or a function of the class B, if
(1) [ ulf(2)11del <0,
Yr

where y, is the image of the circumference |w| = » with regard to a con-
formal mapping of the disc |w] <1 onto @.

We shall call the H,-class the Smirnov-Orlicz class. If wu(w) = a|?
(p > 1), the B,-class coincides with the well-known F,-Smirnov class. If
the domain G represents a unit civcle, the K, -classes turn into Hardy-
Orlicz classes, whose properties were studied earlier in [8] and [16].

It is evident that any analytic function f(z) belonging to the I, -class
will also Dbelong to the H,-class, that is,

[ 17 1d=] <
r
uniformly in r, 0<r<1.

It is well known that any function of the H,-class has summable
non-tangential boundary values at almost every point of I'. Taking this
fact and the Fatou lemma into consideration, we conclude that every
function of the F,-class has at almost all points of ' non-tangential
boundary values belonging to the I,-class.

Further on we shall consider the analytic functions in domain @
with a smooth boundary, for which the angle 0(s) between the tangent
and a certain fixed direction expressed in the form of a function of the
are length has a modulus of continuity satisfying the following condition:

(2) f“?mw<+m

<0< oo

The curves satisfying condition (2) will be called Liapunov type curves.
Let us suppose that the function z = y(w) conformally maps |w| > 1
on the domain D with the conditions y(oo) = oo, y’(cc) > 0. D is an

exterior of G. w = @(z) is the inverse function. Under the ahove-mentioned.
conditions the inequalities
3) 0<h <lp(w) <1y, |w =1,

are valid [21]; I, and I, are constants depending on G- Similar conditions
are satistied by the function 2 = ¢(w) mapping conformally & onto jw| < 1.

Consequently, if f(t)eL,(I"), then f[y(w)]eL,(0), O is the unit ciroum-
ference.

Let us introduce a norm in the Orlicz sense [11] in LI,

(4) I @iz, = sup| [FOg(t)at],
xr

icm

Analytic functions of Smirnov-Orlicz classes 45
where the least upper bound is taken along all g(¢)eLy(I") for whieh

[ ¥lgminag <1

(N (v) is a function complementary to wu(u) in the sense of Young). The
Banach space obtained will be denoted by L, (I).

The linear operator constructed on the basis of series of generalized
Faber polynomials will serve as an apparatus of approximation. The
generalized Faber polynomials are defined through expansion,

9lv(w)lv' (w) _ Z“’w Ba(2)

y(w)—z g s Rl

N=0

where the weight function g(z) is analytic in D and positive at infinity.
The properties of the generalized Faber polynomials are given in a survey
article [19].

Let I'g be a preimage of |w|
Then the equality

= R > 1 while the mapping w = &(z)-

fg)ww)
o E—z
is true for the 2 situated within I'g.

Hence we obtain the formula

1 "

(see [19]) for zeD.
According to the main Privalov lemma (see [13], p. 182) for boundary
values on I we infer the validity of the formula

1 g(&) D"(&)
2 If*-é—

In the sequel the assumption that the function. g(2) is continuous
in D and differs from zero for any zeI’ will always be maintained.

1
(5) Bu(t) = 5 4(0) (1) +

1. On multipliers and decomposition. We shall assume that the func-
tion generating the ¥, -class satisfies an additional condition, namely
that there exist ¢ and f for which

up (%)

(6) 1<e<—ms

<h< +oo

for sufficiently large w.


GUEST


46 W. Kokilaghvili

Therefore (see [7], p. 37) the functions w(w) and N (v) satisfy the
A,-condition.
As Orlicz has shown, this condition is equivalent to the fact that
the space generated by the function u(u) is reflexive.
TueoreM 1.1. Let f(z) e, in a domain with a Liapunov type boundary.
Suppose further that a, are Fubeﬁ coefficients, that is
1 Jly(w)] dw

a,,zh— n=20,1,2,...
2mi ), glv(w)] W i

If the sequence {ln}%(, of complex mwmbers satisfies the conditions

om41_q
(M) |4l < Ao,

gt

=2l < Ay,

then there exists an analytic function F (2)e B, in G for which {A, an}., serve
as Faber coefficients

Qy, }“n =

1 f Fly(w)] dw

2mi gly(w)] w™T

|w=1

and for mon-tangential boundary wvalues the estimate

(8) IIF(t)[le(p) < Ai(p, 1) AO”f(t)HL’u(l‘]
holds.
Proof. Let us consider the Cauchy type integral
) 1. fle@] e
2ri J gly(0)] =—w

representing the analytic funcnons Iy (w) in |w| < 1 and hy(w) in |w| > 1.
According to the main Privalov lemma for non-tangential boundary
values we have

L flpm] | 1 fly()]
hi = e
o T = ] T B Hf JTpIr—m)
S BN 0 I
2 gy | B i aTp() (=)

almost everywhere on the boundary I

Consequently, by virtue of the boundedness of a singular operator
in fhe Orlicz space Iy (C) (see [17]), we have B (zg) eI (O) and ki (7,)
L, (0). What is more, hi" (vy) ¢ L, hy (7o) e L. In fact, owing to condition (6)
we have

)
wlu)
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and hence

fmdt>ajﬂ or u(u)>a-—7p- {1k u®
5 B P U
for sufficiently large u.

It is known (see [2], p. 67) that if non-tangential boundary values
of a Cauchy type integral are summable in power a, a > 1, then the func-
tion given by this integral is representable by a Cauchy integral, i.e.
it belongs to the H,-class. Consequently, the functions h,(w) and h,(w)
belong to the H,-class in domains |w| <1 and |w| > 1 {espectively.

Further, from (10) we have

TG — 15 (r0)
gly(m)]
Thus for Faber coefficients we can derive
g = 2 [ Tyl dw
2t il gLy (w)] whH
+ —
_ 1 hi (w) dp— 1 hs (w) Do

k+1 k+1

2t wim1 W 2l ity W

As the funetion h,(w) belongs to the H,-class in lw| > 1, the second
integral vanishes (see [13]) and therefore a; serve as Taylor coefficients
for hy(w).

Let us consider the polynomials

= ZlkakBk(z)
Fe=0

Now we shall prove that the sequence {Q,(t)}n., converges in the
mean. in L} (I"). By (5) for any m and n the equality

'n kE lk ag Q)k (’M) g (u)
p > Bl 2 b+ 55 f T ™
== =M

is valid.
By the boundedness of the smgular operator on contour I' (see [17];
for p(uw) = |uf’[p,p >1, of. [2]) we obtain the estimate

| Zn TanBil) |5, zy < Aalty T) | an‘ R
k=m =M
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Taking into consideration the theorem on multipliers of Fouvier
series in the Orlicz space (see [12]), we conclude that

k3

I S haBil oy < Aotiss 11| 3 00",

Ie=m (=

(11)

It is known that the partial sums of the Fourier series of a function
from I converge to the given function; therefore the right side of (11)
tends to zero. Let us denote the corresponding limit of @, (?) in the mean
on I' by F(1).

According to the boundedness of the partial sums of the Fourier
series in L% (I"), see [15], we derive the estimate

n
| 3 aaanBul) | oy < Auliry DI ()],
k=0
Therefore (10) implies

(12) I 2 Bl ey < Aty DI Oz, -

Now since the sequence {Q,(f)}52, converges in the mean in L} (I,
it also converges in measure, and by (12)

”Qn(t)”Lﬂ(l‘) < Aop, D).

Further, it is easily seen [7] that if the N-function u(w) satisfies
the A,-condition, then every bounded set with respect to norm is bounde
in the mean as well. So

(13)

[ pli@n()11@t] < Aq(u, I);

consequently
I #l@ulo(@]]do < d4(u, T).
Hence
2
J m{1@ulp(e™)I}do < Ay, 1.
0
Thus ’

2

[ It {Qulp(ré®) 1)} o < Ag(u, I)
[1]

for any r, 0 <r< 1.
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Now the use of the Khinchin-Ostrovski theorem (see [15], p. 118)
gives us the conviction that the sequence {Q, [qa(re"")] g COLVErges uni-
formly within the unit circle; therefore {@,(2)}n., converges uniformly
within domain G to the function F (2) possessing non-tangential boundary
values almost everywhere and coinciding with F(f) on I

Further, the function @.,[¢ (r6™)] is continuous in a closed unit circle
and so it is representable by the Poisson integral

1—r?
1—2rcos(z—y)+ 12

. 1 .
Aulp(ré] = 5 [ Quli(e) ay.

By using the Jensen inequality (see [9], p. 78), integrating both
sides from 0 to 2= and inverting the order of integration, we obtain

2

an
‘ 1 .
fM{IQn[w(W”)]l}dw QEI MT|Qulp (€)1 de.
0

2

[ #{1Qulp(ré™)1}de < Ay (g, 1)

0

uniformly with respect to », 0 <7r<<1.
Hence by virtue of the uniformly convergence of the sequence
{@n(2)}n.e Wwithin G we have

21

[ w{Plp(re™}dn < Awlp, ),
]

or
[ullF@)]11de] < Asa(p, T)

Yy

uniformly with respect to r, 0 <r < 1.
Now we shall show that

=
27

wi=1

A g, = MM@_
e glv(w)] W

The function A,[vw(w)]—w"glyw(w)leH, in |w| > 1; therefore

B, [y(w)]—w"g[y(w)]
W™ gy (w)]

Studia Mathematica XXXI,1 4

dw=0, m=0,1,2,...

|w|=1
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That is why
B,ly(w)] dw (1 when m =n,
gly@)] w™* 10 when m #mn.

Jwi=1

Let us suppose that y,, are Faber coefficients of F'(2); then for any m
we have

N
1 AP Lw(w)]— ZﬂkakBk [y (w)]}

—a = dw
VYm— CmAm O i m“J["P(

[w=1

with N > m. Thus

=0

lym— O A} < .AM(,LL, n)\g (t)"Qn(t‘)”L“(F)

and hence yy, = Anon, for any m =0,1,2,...

In the case of u(u) = |u|®/p, p > 1, from theorem 1.1 it is clear
that if {ex}5, is any sequence of numbers -1, then for f(2)ell, (p > 1)
in domain @ with a Liapunov type boundary the following inequalities
are valid:

552, D IF Bzl < | Lemk Wz < 4@ DI Dlzyin)”
where
2k_1
Ag(t) = aBy(t), M (1) = D wBi(t) when k> 1.
Femgfe1

Consequently, if {ry(@)}%., is & sequence of Rademacher functions
and the point # is not a dyadic number, we have

A, D)3 @Bt < /| Srua) Au)f 1y
k=0 I k=0
oM.l

< Ay(p, ) (HZ 03By (1) Lj)(p))p-
it

If we integrate this inequality with respect to @ on (0, 1) and invert
the order of integration taking into consideration the fact (see [20]) that

Lol [l
for any ~k2;ﬁk""k(”) with kZ |Bx|* the inequalities
= £

B,{ 2 B2} < { f ) Zﬂm

‘1) < 0, {2 B},

§>0,
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are valid, then we deduce the estimate

Ay, D Y 141 < flfi‘m(w)dk(t)]”m
k=0 0 k=0

n

SAzo(P,P)(ZMk(t)\ )pl‘ tel,
and further k=
A, (|3 aButt]g o) < J( 3 1400 121

2.1

< ot D3 0

If we pass to the limit as n - oo, we obtain (9). Thus we have

THEHEOREM 1.2. For f(2)eE, (p > 1) in domain G with a Ligpunov type
boundary the following inequalities hold:

n

e, DOy, <{ (Y 146 0P)" " < daa(p, DIFOzyy-

k=0

(14)

Our purpose is to establish similar results for the E,-class. It is known
({71, p. 110) that if w@(u) is an arbitrary N-function and f(t)eL:(F),
then for the norm the following formula is true:

17Ol = int % (1+ f wlkIf() 1Y)

Considering the above-mentioned fact and according to the Koizumi
interpolation theorem (see [3]) it ean be stated that if T’ is a linear trans-
formation of functions defined on one space with measure into a meas-
urable function on an other space with measure, acting as a bounded
operator from L, into L, and from I, into I, then it will be bounded
as an operator from L into I, where the N-function u(u) satisties the
following conditions:

19()<b

p(w)
Consequently the theorem is valid.
TurorEM 1.3. For f(2) B, in domain G with a Liapunov type boundary
the following imequalities are true:

l<ate< e<< Foo (6> 0).

18) Al Ol < [( 31460875 g < Aslas DY IF Dz
fe=0
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The obtained result is also new for By, p > 1.

Now we shall assume that g(e) = 1 and the corresponding polyno-
mials are denoted by @,(2). ’

THEOREM 1.4. For analytic functions whose derivative belongs to
the B,-class in domain G with a Liapunov type boundary the inequalities

(16)

AﬂHf’( /L(I) B8 “ ZMk ) ) “L (D) = < Agg(p, 1 “f ”L,,(r)

are correct.

The proof is similar to the previous ome. Let us outline the proof
with » = 1.

At first we prove that if f'(2)e B, in domain ¢ with a Liapunov type
boundary and the sequence {i,}a_, of eomplex numbers satisfies condi-
tions (7), then the series

D b Bi(?)

k=0

(17)

converges uniformly into G to the analytic function F(#)eX,, its non-

tangential boundary values F(t) almost everywhere on [' coincide with

the sum in the mean of (17) and the estimate
1F (9], all) = < Ay (p, ) AG|lf' (2 HL#(I')

holds true.

Let us consider integral (9). Since the function f'(z)eH, (and con-
sequently eI,), its primitive is continuous in G and absolutely continu-
ous on the boundary as a function of arc length ([13], p. 208); in addition,
the derivative f'(f) of boundary values almost everywhere coincides on, I"
with non-tangential boundary values of f'(2)

In view of the fact for a Liapunov type curve the inequality

8(t)— 8 (k)

<
t—1, <M

for any i, f,el’,

1s valid.
.S (t) being the arc abscissa corresponding to the point ¢/, the function
f(2) is absolutely continuous with respect to ¢ and therefore f[ ()] == fy(7)

is absolutely continuous on |7] = 1.
~Consequently,
, 1 flv(@)] 1 rfi
hy (W) = — —dr = — ELANE
1) 27 (v—w)? 4 2 T— W d

II1

=foly (0] (2).

z|=1

Further f;(z) Thus fo(r)eL3(0).
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The arguments of the proof of theorem 1.1 lead us to the eonclusion
that h(w)eH, and the non—t-angential boundary values

NERNYIOR

21@ pley T W

[ () 1+ f o{w)

belong to I on |w| = 1. And from the formula

s 1 B[P0 (2
Qk(z)_—‘ﬁ (o] (t)
“tr

dt
t—=2

for the boundary values on I' we obtain

k(D ’H@
L T)] 9 4y, er

DL = T FIBWI @ (1) +—f

Let us note that k-« are Taylor coefficients for hy(w)eH,; whose
non-tangential boundary values belong to ij(O’).

Now the proof of theorem 1.4 can be completed in the manner of
theorems 1.1 and 1.3.

2. On approximation in the mean of F,-class functions. Here we
shall discuss a question about the order of approximation of analytic
funetions by polynomials in the mean on the boundary.

For f(2)eB, we introduce the following quantities: the modulus of
smoothness of non-tangential boundary values

o{)(8, f) = sup lldﬁfo(ﬂ)HL,‘/m
1hi<d
‘where

n

Afol6) = D) (—

r=1

D fo(642h),  fol(8) = FLp(e™)];

and the hest approximations by polynomials in the mean on the boundary

o (f, I) = inf]f(2)
where the greatest lower bound is taken over all the possible poly-
nomials Py(f) of degree < m.

TrmoreM 2.1. Let us assume that the fumetion W(w) = pu(u') ds
conves for some a,1 < a < 2. Then for f(z)eH, in domain G with a Liapu-
nov type boundary the estimate

w(l")( ;f) Aso(ﬂ;bpy k) {i’

=1

—Plc (t)”L,u(I') ?

,un—l [Q(l.‘_)l (f’ Iv)]u}llu

8 right.
In the general case we have
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THEOREM 2.2. For the functions f(2)e B, in domain G with a Liapunov
type boundary we have the following inequality:

2 (/4) (f, I

=1

1 Ay (p, Iy k)
o) (E’ f) e
‘We shall need to consider two lemmas to arrive at the proof of the
theorems.
LemMA 1. For f(z
we have

VeB, in a domain with a Liapunov type boundary

1) —8u(f, ¢ Mewr) < < Aga(py T @%) £ 1,

where
n

Bufy 1) = D a0, ®,(0)

ve=0

and the constant Ay (u, I') depends only on the boundary and the space.
Proof. For Faber polynomials we have

_ 1 IR § [(D(’u)]” "
D, (1) —T?:_ D))"+ ET-C_'L —1 v, tel.
Consequently
d g’aqu’(”)l
1 1 o’
18) Sl =5 D a0l 45 [F—— .
r=0 r

As we have a bounded character of the singular operator and con-
dition (3), we obtain

(19) 1847, Dy < Auslsa, 1) > a0’ |

L)

As was mentioned above, {o}2, are Taylor coefficients for hy(w)
whose non-tangential boundary values belong to L%i(I"). Therefore, ac-
cording to the boundedness of the pa.rtlal sums of the Fourier series in
the reflexive Orliez space [15], (19) implies

182 (£ DIz, ry
Then by (10)

< A (p, T) [0 ()15 o) -

1 flv()]

1
+ —
M) = gt o [0
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Hence
180 (f5 Dllz,ry < Aas(pty D D)z

Let us suppose Q,(t) is the polynomial of the best approximations
of degree n for the function f(z) in the mean on the boundary

Qg‘)(f: I) = ”f(t)_Qn(t)“Lp(r)-

Thus we have got

17 @) —8a (S5 D,y < W@ —QulOll, @+ 182 (@n—F5 Dz, )

< Ag(u, D) (f, T).

The lemma is proved.

LeMMA 2. If P,(2) is a polynomial of degree m, then for a Liapunov
type boundary the following inequality holds:

1P (Bllz,m <

This lemma can be proved quite like theorem 3 of [1]; it is suffi-
cient to use the inequality for the derivative of trigonometrical polyno-
mials in I} deduced in [14].

The set L,(I") with convex u(u) can be turned into a Banach space
with the help of other norms.

Let (see [7], p. 95)

<A (i, D)0 (|Pa(Dllz,0y-

. 1)
(20) Ol = int{ [ [V <3},
>0 P
It is known that the norms (4) and (20) are equivalent:

IF Oy < MFCE

Proof of theorem 2.1. Let us suppose that 1/2"F'<
n = [1/h]. Then we shall have

||L o< 2f(t ”L,,(r)

h<1/2™,

(21)  1f Ty (w))—fTw (0™l 0
< |4 {F Ty (w)

By lemma 1 one can conclude that

JHz0) <

1—Sgmt1_1 [y (w)]l‘L”(a)+ |45 Sgmt1_y [ (w)]“L,‘(G] .
(22) |4 {f o ()] — Sgm1_1 [y (w0 Ag(py T) (f, T).

Let us write
q(w) = Sym+1_1[p(69)].
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It is easy to see that

la(e-+1)—a(e)l = | f ¢ (et u)du| < f lg' (4 )l ds.
Consequently
lg(@-+1)— g (@)l < Ass (2, D HISmt1- Bz, 0y

According to theorem 1.4 we receive

m 27'\1 1
, 2\1/2
[Simers 01 < s s DR D] 5 a0
v==2"
or
m e
18ym+1_y (Bl << Agy (12, F)hll[r;; 53(1)] HL,,(J')’
where
2l
t):] > a,,(ﬁi(t)‘A
v=2r
Then (21) implies
m
PNAU
ISimes 2 O] < Aulps, Dyint [ | e 101 <1
>0 I T
af2
=4 i =t &t < 1.
40 #7 ~:>o f |: :|] I ]
From the condition 1< a <2 it is clear that
m
’ 2 6{;
i1 (0] < Aua i, Tt 1 [ | e <
Ir
or
(23) W12 (g, < Aao u,r)(\l F O]
In view of lemma 2 we deduce
(24)
8zm+1_3 (0)]] < Auals, ) 2 185 (Dl g) ™ < A (s 1 (Zna g, n) -

=1
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Now by applying lemma 1 it is easily seen that

(25)  14nSmi1a [y (0)]lz,0 < Auali, )b 2207 [(f, DI
r=0

Since the sequence of the best approximations converges mono-
tonically to zero, (21), (22) and (25) imply the desired estimate.

Proof of theorem 2.2. Above we had the inequality

(26)  f T (w)]—FLw (we™) | < A (g, ) {h]Smr1_y ()] -+ 02 (f, I}
Thus
m-+1
Spnt1_y(t) = So(0)+ D) [Swr_a (8)— 812 (0)];
T=1
therefore
m+1
ISty (O < D) ISer_s (8)— Byr-1_1 (D).
Tzl
By lemma 1
“SZH'I——l(t)—SZ"—l (t)“ < A44(F7 I')'Qg‘—l—l(f: F)-
Consequently
m41
(27) [185m 1y (D] < Auslp, T 2 2 o1 (f, 1)

Now the desired estimate is received from (26) and (27).

The method of the proof of the above-mentioned theorems ensures
the correctness of the following statements:

TuorEM 2.3. Let the function ¥(u) = pu(u"®) be convex for some a,
1< a<2, and let the series

]

S ef, T

v=1

converge.
Then f'(2)

1 ’
w:(l#)(';7f) <

e, and the following inequality is valid:

1 [ Ya
T ) D e iy

=1
o

+(2

=741

1o
e r)]“) }
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In the general case we have

TuEOREM 2.4. Let f(2) e B, in a domain with a Liopunov type boundary
and let the series

ST, 1)

converge; then f'(2)eB, and the estimate

1, 1 (v , N e
o (2,5} < s, T, (2 (5, 1)+ (:}i (5,1}

holds.
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