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Random measures and harmonizable sequences
by

K. URBANIK (Wroclaw)

By a harmonizable sequence of random variables we mean a sequence
of Fourier coefficients of a random measure. A concept of prediction for
strictly stationary sequences which need not have a finite variance was
introduced in [19] and [21]. In particular, each stationary sequence
admitting a prediction is the sum of two independent stationary sequences,
one deterministic and the other completely non-deterministic. The purpose
of this paper is to give a characterization of deterministic and completely
non-deterministic harmonizable stationary sequences of random variables.
Some modular spaces introduced by J. Musielak and W. Orlicz in [14]
are used as a tool to study harmonizable sequences. They play the same
role in our investigations as the I2-gpaces in the Wiener-Kolmogorov
theory of the best linear least squares prediction for wide sense stationary
sequences.

The first section contains a discussion of an extremal problem
for Musielak-Orlicz spaces and a generalization of the famous Kolmo-
gorov-Krein criterion for IP-spaces. The second one contains an analogue
of 8. Bernstein’s Theorem concerning Gaussian random variables. In
the third section we study the space of all complex-valued functions
which are integrable with respect to a complex-valued isotropic random
measure. The main results concerning harmonizable sequences are given
in the last section.

1. An extremal problem for Musielak-Orlicz spaces. Given a measure
» defined on Borel subsets of the unit interval I = [0, 1], we take a real
function @ defined on Ix R, R, being the space of non-negative reals,
gatisfying the following conditions:

(i) @@, 0) =0 and &(t,z) >0 for > 0 and s-almost all t;

(i) @(t, z)is a continuous non-decreasing function of x for every tel;

(iil) ®(t, %) is. Borel measurable as a function of ¢ for every zeR,;

(iv) if(l)(t, 1)v(dt) < oo
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(v) (the A,-condition) there exists a positive constant x such that
D(t,22) < v P(t, )

for all # and v-almost all .

Throughout this paper we identify functions equal y-almost every-
where. Let f be a complex-valued Borel function on I. It is easily seen
that @(t,[f(#)]) is also a Borel function on I. We define a modular ¢ by
means of the formula

(1.1) olf) = [ @t, |f(8)])»(db).

I
Let Ls(v) be the set of all complex-valued Borel functions f on I
such that o(f) is finite. The set Ls(») is a linear space over the complex
field under usual addition and scalar multiplication. Moreover, it becomes
a complete linear metric space under the non-homogeneous norm

Ifl = inf{c: ¢ > 0, o(c™'f) < ¢}

The space Ly(v) with this norm was introduced and investigated
by J. Musielak and W. Orliez in [14] and will be called a Musielak-Orlice
space.

A sequence {f,} of elements of Lg(») is said to be modular convergent
to an element f of L,(») if

}im;@ (fa—f) =0.

From the A,-condition it follows that the modular convergence is
equivalent with the norm convergence in Ly(v) (see [14], theorem 1.31).
Further, from (iv) it follows that all bounded Borel functions belong
to Lg(v). Moreover, the set of all Borel simple functions, i.e. Borel functions
assuming a finite number of values, is dense in Lg(v).

By v, we shall denote the absolutely continuous component of the
measure » and by dr,/dt a Borel meagurable version of its Radon-Nikodym
density function. It is clear that if the Lebesgue measure is absolutely
continuous with respect to the measure », then

-1
(1.2) e _ (_‘ili)
it \d

almost everywhere in the sense of the Lebesgue measure.
We introduce auxiliary functions 4,, and Q,,, (n =1,2,...)
by means of the formulas

logy {dw,\"!
(1.3) Ao, (1, @) = sup {W (—t—iti) W= w},
(1.4) Qopnl(t) = int{m: Ay, (t, 0) <,z > 1},
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where the infimum of an empty set is defined as co. It is clear that all
these functions are Borel measurable and

1< Qppnlt) Koo (m=1,2,...).

The aim of this section is to prove the following theorem:

THEOREM 1.1. Let Lg4(v) be a. Musielak-Orlicz space with the norm || ||
The equation

k3
(1.5) 1an1+_§J"a,ﬂeﬂ"““g; =0,
k=1
where the infimum is taken over all complex numbers a,, @, ..., a, and
no=1,2,..., holds if and only if no function logQq,, (n =1,2,...)
is Lebesgue integrable over I.

This solution of an extremal problem of Szegd’s type can be regarded
as a generalization of the Kolmogorov-Krein eriterion for Z’-spaces
(see [7] and [8]). For a class of Orliez spaces more general problem was
discussed in [20]. Before proving the theorem we shall prove four
lemmas.

Given an arbitrary set & of complex-valued Borel functions on I,
we pub (&) = int{o(f): fe&}, where o is the modular in IL,(v). Let &
be the set of all trigonometric polynomials

n
1+ 2 ake?‘m“,
k=1

where ay, @y, ..., @, are complex numbers and » is variable. Further,
let 2 be the set of all Borel functions on I such that log|f| is Lebesgue
integrable and [log|f(t)|d > 0.

b

LeMywa 1.1. §(2P) = i(2).
Proof. The inclusion # < 2 is a simple consequence of the Jensen

inequality. Hence we get the inequality (%) = i(2).
To prove the converse inequality we put

Sop =1{f:ra<|fI<B}~2 (a,b>0).

By bounded convergence theorem we get the formula
i(2) = limi(24p).

a—0
b—r00

(1.6)

Congider an auxiliary modular

0ol = o+ [If e
I
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on 2., From condition (iv) it follows that the subset of 2,, consisting
of trigonometric polynomials

m
ikt
b]n sz ,

fe=—m

where b_p, bomy1y .-+ bm are complex numbers and m is variable, is dense
in 2,, in the sense of the modular g,-convergence. Moreover, hoth func-
tionals ¢ (f) and f log|f(t)] d¢ are continuous on Z,;. Conseque ntly, by (1.6),

for every posmve number & there exists a trigonometric polynomial

o g amimt (26 e"mlri) (m,n 2 0)

guch that
(1.7) olg) <i(2)+e and  [loglg(t)dt > 0.
I

Of course, we may assume that ¢, # 0. Further, we can find a trig-
onometric polynomial
n
—_ 2 a, ezm'lrL
k=0

such that |h(t)] = |g(?)] for tel and the polynomial > ap2" has no zero
f=0

inside the unit circle. By the Jensen equation and (1.7) we have
log|ay| = flog]h(t)ldt =0
I

Hence and from (1.7) we obtain the inequality o(a;'h) <i(2)+e.
Since ay'he?, we infer that for every positive number ¢ the inequality
() < i(2)-+¢ holds. Thus 4(#) < 4(2), which completes the proof.

LEMMA 1.2. If the Lebesgue measure is not absolutely contimuous with
respect to the measure v, then i(#) = 0.

Proof. Let B be a Borel subset of I such that |B| > 0 and » () =
where |E| denotes the Lebesgue measure of E. Given ¢ > 0, we can imd
a positive number ¢ such that g(¢) > e. Taking a positive number ¢ satis-
fying the condition logg = |B|™'|loge|, we put ¢ = ¢ ghy, where 71,,0
ig the indicator of the set E. Evidently, ¢(g) = o{¢) < ¢ and )f logg(t)dt =

Thus 4(2) = 0 and, consequently, by Lemma 1.1, i(#) = 0 which com-
pletes the proof.

LemMA 1.3. If the Lebesgue measure is absolutely continuous with
respect to the measwre v and log Q. , is Lebesgue integrable over I for am
index p, then (%) > 0.
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Proof. Contrary to this let us assume that #(#) = 0. Put
a= [logQ,,(t)dt.
I

Let & be an integer satisfying the inequality

a+1

1.8 k .
(1.8) = log?2

Further, let g be a trigonometric polynomial from & satisfying the

inequalities
flog lg(®)|dt =
I

where » is the constant appearing in the A,-condition for the funection &.
Setting h = 2%g and B = {: |h(t)] > Qs,,(1)}, we have, by virtue of
(1.2), (1.3) and (1.4), the inequality

(1.9)

o
—

d
log|h(0]-5- < pO[t, Ih0))  (teB).
Thus
[loglh(p)at<p [ @, h))r(dt) < pe(h).
E E

On the other hand, by the A,-condition and (1.9),

% 1
o(h) < %" elg) <;,
and, consequently,
flog |B(t)|dt < 1.
E

Since

f loglh(t) dt < flog!),,,,p(t)dt
INE
we have

[log|h(n)|dt <a+1.
I

But, by (1.9),
j log |k (t)| dt > klog2

and, consequently, k < (a+1)/log2 which contradicts mequmhty (1 8).
The Lemma is thus proved i

Studia Mathematica XXXI,1
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LEMMA 1.4. If the Lebesque measure i absolutely continuous with
respect to the measure v and no function logQg,n (0 =1,2,...) is Lebes-
gue integrable over I, them i(#) = 0.

Proof. Put

={t:1< Quup(t)<< oo} (n=1,2,...).

First consider the case

(1.10) [log Qopp(t)dt = 0o (n=1,2,...).

A'll

Given &> 0, we take a positive number ¢ for which
(1.11)

From (1.10) it follows that there exists a subset B, of the set 4,
for which
(1.12) 108 Q0 puat =22 n=1,2,..).

Bn

Since, by (1.2), (1.3) and (1.4),

108 0, 0) e — D{t, Laynlt) (1),
we have, by (1.12), the formula
(1.13) Bf@(t, Qo0 (1) v (dl) = (n=1,2,...).
Put g,(t) = 24,.(t) on B, and gn(t) = ¢ otherwise. By (1.11) and

(1.13), we have the inequality o(g,) < e. Moreover, by (1.12),

f log gn(t)dt = fg— + I\ Bylloge.
s

‘ Thus g.e2 for n > 2|loge|/e and, consequently, ¢(2) < ¢ whence the
formula ¢(2) = 0 follows. Now the agsertion of the Lemma is a consequence
of Lemma 1.1.

In the remaining case there exists an index p for which log Qs
is Lebesgue integrable over the set .A4,. Since the sequence Qo un
(n=1,2,..) is monotone non-increasing, the function logQ,, is
Lebesgue mtegrable over the set A, for n > p. Consequently, the sets

(1.14) Cp = {t: Qg ,a(t) = oo}
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have for »n > p positive Lebesgue measure. Given a positive number e,
we take an integer m satisfying the inequalities

2
(1.15) > 2logel
. &

m=p ’

where the number ¢ is determined by (1.11). Put
€ -1
q = exp Emlomi -

By the definitions (1.3), (1.4) and (1.14) the funection

h(t) = inf {w:

is finite on C,, and, of course, Borel measurable. Moreover,

loga dt>m w>1
R |

_J logh(t) [C’,,Lllogq = —Tﬁi

Cm

Consequently, there exists a Borel subset D of C, for which

(1.16) f logh(f)dt = ? .
.D 4
Thus
(1.17) f@bt R()» (@) < — flogh(t)ﬁ:7

Put g(t) = k() on D and g(¢) = ¢ otherwise. By (1.11) and (1.17)
we have the inequality ¢(g) < &. Moreover, by (1.15) and (1.16),

m
flogg(t)dt :__2_8 +|IND|loge = 0
T

Thus (2) < & and, consequently, ¢(2) = 0. Taking into account
Lemma 1.1, we get the formula i(#) = 0 which completes the proof.

Proof of the Theorem 1.1. Since the modular convergence and
the norm convergence in L, (v) are equivalent, equation (1.5) is equiva-
lent with the equation i(#) = 0. Consequently, by Lemmas 1.3 and 1.4,
the Theorem is true if the Lebesgue measure is absolutely continuous
with respeet to the measure v. If the Lebesgue measure is not absolutely
continuous with respect to the measure », then dy.[dt = 0 on a set of
positive Lebesgue measure and, consequently, by (1.3) and (1.4), no fune-
tion logRq,, (m=1,2,...) is Lehesgue integrable over I. In this case
the Theorem is a consequence of Lemma 1.2, which completes the proof.
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We conclude this section with some particular cases of the Theorem 1.1.
If the function @ does not depend upon the variable ¢, i.e. @(¢, #) = O (x)
(tel, meR,), Lp(») is called an Orlicz space (see [11] and [13]). In this
paper we have assumed the A,-condition for @. We say that the function @
satisfies the Agz-condition for a number ¢ > 1 if there exists a constant
ye > 1 such that

D(z)ye < P (aw)

for sufficiently large x (see [12]).

Now we shall prove the original version of the Kolmogorov-Krein
criterion.

TEEOREM 1.2. Let Lg(v) be an Orlice space ond let D satisfy the
Ag-condition for some constant a > 1. Then equation (1.5) holds if and only
if log(dv,/dt) is mot Lebesgue integrable over I.

Proof. Of course, it suffices to consider the case when the Lebesgue
measure is absolutely continunous with respect to the measure ». Since,
by (iv), »(I) is finite, we have the inequality

dy,

log —=dt .

,f B Y=

Thus to prove our statement it suffices to prove that (1.5) is equi-
valent to the equation

d,

flog °

¢ d;

From the A,-condition and the A,-condition for @ it follows that there
are positive constants ¢,, ¢y, » and ¢ such that

dt = —oo.

6,6 < O (2) < 6ya?
for sufficiently large # (see [12]). Consequently, we can find a positive

number , such that

D(x)
logz

(1.18) 02" < <ot it 2> a,.

Hence, in particular, it follows that
lim Ag,(¢, 2) =0
2300
for almost all ¢ in the sense of the Lebesgue meagsure, because dv, [dt

is 49’11most everywhere positive. Consequently, the funections Qyun
(n'=71,2,...) are finite almost everywhere. Put

Fp= {t : ma’X(‘lr wo) < Qw,v,w(t) < °°}
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Then, by the definitions (1.3) and (1.4), the function (dv,[dE)™" 18
bounded on I\ F, almost everywhere and
v\t
108 25,1,(1) (W) — 10 (20,5 (1)
for teF,. Hence and from (1.18) we get the inequalities
dv,
dt

-1
16y 255.(1) <( ) <ney Q3,0 (teF,).

Consequently, no function log 24, (7 = 1,2, ...) is Lebesgue integ-
rable over I if and only if

dy,
1 @t = —oo.
,fog it °°

Our theorem is now a consequence of Theorem 1.1.
THEOREM 1.3. If Ly(v) is an Orlicz space and

then equation (1.5) holds if and only if
dv,
infd——:tels = 0.
€58 { W € }

Proof. If essinf {dy.[dt:tel} = 0, then the seb

G —t.dvc<c}
U da T m

has for every m a positive Lebesgue measure and, by (1.3) and (1.4),
Qpon(t) =oco on G, Hence we infer that no function logfs.n
(n = 1,2,...) is Lebesgue integrable over I.

Suppose now that

d
essinf{—;f-:tsl} =a>0

and put

1
b_-.sup{ ogm: w>1}.

D ()

Of course, b < oo and, by (1.3) and (1.4), Q¢ ym(t) = 1 almost every-
where for all indices m satisfying the inequality m > a~'b. Consequently,
our theorem is a simple consequence of Theorem 1.1.
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In the same way we can prove the following theorems:
THEOREM 1.4. If Ly(v) is an Orlice space and

i D (w) 0
s log"'a =

where p is & positive number, then equation (1.B) holds if and only if

d’ A —~1/p
[(—u) dt = oo.
y\dal

THEOREM 1.5. If Lg(v) 48 an Orlice space and

o) _

240 logalogloge ~

then equation (1.5) holds if and only if

s\
Y i at =
Ifexp{n (dt) lt oo
for all positive integers n.

2. Vector-valued random measures. In this section by (», ¥) and |z
we shall denote the inner product and the norm respectively in EP. Fur-
ther, for any RP-valued random variable X, px(f) (teRP) will denote the
characteristic funetion of X, i.e. the expectation Be'®™),

A function M defined on the ¢-algebra of all Borel subsets of the
unit interval I whose values are RP-valued random variables is called
an RP-valued random measure or shortly a random measure if

(*) for every sequence E,, E,, ... of disjoint Borel sets

M(G En) = Z]VI(E,,,),

N=] =1
where the series converges with probability 1,

(xx) for every sequence K, E,,...,H, of disjont Borel gets the
random variables M (E,), M(H,), ..., M(B,) are indepencent.

The theory of random measures was developed by A. Prékopa in
[18], [16] and [17]. For further results see [6], [22] and [24]. '

A random measure is said to be atomless if M ({a}) = 0 with prob-
ability 1 for every one-point set {}. In this paper we shall consider atom-
less random meagures only. Moreover; we shall identify random varia-
bles which are equal with probability 1. Given a random measure M , We
say that a Borel set B is an M-null set it M (A) = 0 for all Borel subsets A
of H. Relations valid except on an M-null set are said to be valid M-al-
most everywhere.

icm°®
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The concept of the integral of a real-valued function with respect to
a real-valued random measure was introduced in [16] (the unconditional
integral) and in [22]. In an analogous way the integral of an operator-
valued function with respect to a vector-valued random measure was
introduced in [24]. We shall quote the basic definition, which is an adap-
tation of the Dunford’s definition of the integral with respect to a measure
whose values belong to a Banach space {[4], Chapter IV).

Let M be an atomless RP-valued random measure. If F is an operator-
valued Borel simple function on I,

n
F = Z Gy X1E;
j=1
where H; are Borel sets, C; are linear operators on R’ and 1x; denotes the
indicator of B; (j =1,2,...,n), then the integral on every Borel set B
of F with respect to M is defined by the formula

n
[ F(s)M(ds) = D CM (B; ~ B).
E i=1
Further, an operator-valued Borel function defined on I is said to
be M-integrable if there exists a sequence of operator-valued Borel simple
functions {F,} such that
1° the sequence {F,} converges to F' M-almost everywhere on 1,
2° for every Borel set E the sequence { f P (s)M (ds)} converges in
E

probability.
Then, by the definition, the integral [ F(s)M (ds) is the limit in prob-
B
ability of the sequence {[F,(s)M (ds)}.
E
A random measure M is said to be symmetric if for every Borel set B
the random variables M(E) and —M(E) are identically distributed.
Since the values M (E) of an atomless random measure have an infinitely
divisible distribution, we infer that for symmetric atomless random
meagures the characteristic function of the random variable M (H) can
be written in the Lévy-Khinchine form

(21)  owm(t) = exp {—(DM<E)t, ) —

_ f (1—cos(t, @) L+al*

|2[®
RP\(0}
where Dy (E) is a symmetric non-negative operator on R? and Ay (E, -y
is a finite non-negative measure on RPN\ {0}. Moreover, Dy (-) igan operator-
valued Borel measure on I and for every Borel subset 4 of E”\{0}

zM(E,dm},
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the set-function A(-, A) is a non-negative Borel measure on. I. In the

sequel we shall use the notation

(2.2) px(t) = —logex(t)

for symmetric random variables X with an infinitely divisible distribution.
Given a symmetric atomless random measure M, we put

(2.3) Qu(u, v, B) = 2ypm (w)+ 2waqm (0) — W (4-+ 0) — Yy (40— ).
By (2.1) we have

Qrelw, v, B) = 2 f (1—eos(u,m))(l—cos(v,m))l-?
RPN} '

Consequently, @ (-, -, B) is a continuous function and Qu(u,v, )

is a non-negative Borel measure on I. Let us fix an orthonormal basis

€15 €y .-, 6 I0 R7. Given
1
i)
Yy =2I37‘6ﬂ

P
2
L= Z a;¢; and
j=1 =1

we pub
»

voy = 3 estrs,

J=1
Further, for any pair F, G of M-integrable operator-valued functions
we pub

(2.4) S(F, G, u,v) = 29y o x (W) + 2900 ¥ (W) — Yuuo X 4vo 7 (W) — ’/’uoX—vol’(w),
where

w = Zp’ey., X = [F(s)M(ds),

=1 I

Y= [G(s)M(ds) and w,veR?.
I

LemmA 2.1, Let M be a symmetric atomless random measure and let
F,G be a pair of operator-valued M-integrable functions on I. Then for
every triplet a, b, r (a < b) of positive numbers we have the inequality

[ [8F, 6 u,v)audv 207" [ [Qu(u, 0, Upp(F) A Uyp(6))dudn,
Ky Ky Kar Ear
where K, = {w: weR?, 5] < ¢}, Ugp(H) = {s: K, « H*(5) K, < K}, H*(s)
being the conjugate of H(s).

Proof. By the definition of M-integrable functions there are two
sequences of operator-valued Borel simple functions {#,} and {G,} which
converge to F and G M-almost everywhere respectively and

liman(s)M(ds)zfF(s)M(ds), lim fan(s)M((zs) = fa(,s)M(ds).
oo 1 I n—00 § i
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Taking into account definitions (2.2) and (2.4) we infer that
lim S(#,, G, 4, v) = S(F, G, u,v)
N—>00

uniformly on every compact subset of R”x RP. Consequently,
lim f fS(Fn,Gn,u,q;)dud@ = f fS(F,G, u, v) dudv.
MKT K’I‘ Kf KT

Moreover, there exists an M-null set U such that for every positive
number ¢ less than @ we have the inclusion

(2'6) liminf Ua—s,b+e(Fﬂ) (e Ua-s,b-‘.—;(Gn) = Ua,b(F) ~ Ugp (G)\ U.
00

(2.5)

Let » be fixed for a moment. Introducing the notation

k k
F, = ZAJ'ZE:V G”:ZfoEj!
Pt =1

where the Borel sets Ej, H, ..
(2.3) and (2.4), the formula

., By are disjoint, we have, by virtue of

k
8(Fpy Gy, 0) = D) Qu(Ajw, B} v, By).

j=1

(2.7)
Without loss of generality we may assume that

s
(2.8) U Ej‘ = Ua—e,b+s(Fﬂ) ~nU —e,b+s(Gn)7
=1

where s <k and e is a positive number less than a. Consequently, for
j<s the operators A} and Bf are invertible, (47) 'K, > Ky,
(B}) 'K,> K 4 and the inequalities |det (AN7Y = (b-+e)",1det (Bf) ™| =
> (b+¢)~" hold, where the matrix representation of operators with res-
pect to the orthonormal basis e, e, ..., 6y i8 taken. Hence we get the
inequality

[ [@u(4]w, Bfv, By dudo > (b+e)"* [ [ Quu,v, B)dudo
K, K, ’ E(g—e)r K(a—e)r
for j < s. Thus, by (2.7),
[ [8(Fn, Gy w, v)dudo > (b4
K, K,
Hence, by (2.5), (2.8), (2.8) and Fatow’s Lemma, we get the inequality
f fS(F, @, u, v)dudv )

Ky Ky

8
f Qalu, v,HE,)dudv.

Kla—o)r Ela—a)r

>0+ [ [ Qulu,v, Uss(F) ~ Uap(@))dudv.
Eg—e)r K(a—s)r ' e .
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Since & is an arbitrary positive number, from the last inegquality
we obtain the assertion of the Lemma.

Now we shall prove a continuous analogue of the Bernsbein-Darmois
theorem ([1], [2]). For homogeneous random measures this problem was
discussed in [9], [18] and [21].

TaporEM 2.1. Let M be a vector-valued atomless random measure and
let F and G be operator-valued M-integrable functions on I.1If the integrals
{ F(s)M (ds) and [G(s)M (ds) are independent, then for any Borel subsel
p I
E of the set {s: F(s) and G(s) are invertible} the random variables M (H)
are Gaussion.

Proof. By Cramér’s Theorem ([10], p. 271) we may agsume, without
loss of generality, that the random measure M is symmetric. Moreover,
it suffices to prove that the random variable M (U) is Gaussian, where

U = {s: F(s) and G(s) are invertible}.

Since the integrals [F(s)M(ds), [@G(s)M(ds) are independent and
b by

symmetrically distributed, we have, by definition (2.4), the equation
S(F, G, u,v) =0 for all u,veR”. Consequently, by Lemma 2.1,

I [@ulu, v, Usp(F) ~ Ugp(@)dudo = 0

Kar Kar ’
for all positive numbers a, b and » (a<Cb). Taking into account the con-
tinuity of Qu(:, -, H) we infer that

QM(@: v, Ua,b (F) [ u,b(G)) =

for all u,veR” and b> a> 0. Since U = |JUqp(F) ~ Uyp(G), where
the union is taken over all pairs @ < b of positive rational numbers, we
finally get the equation

Qu(uw,v, U) =0 (u,veR").

Consequently, by (2.3), the function f(t) = puw,(?) is a non-negative
continuous solution of the functional equation

-, 2f () +-2f (o) —f(u+0)—f(u—2v) = 0

It is well-known (see [5]) that each non-negative continuous solution
of this equation is of the form f(t) == (D¢, t), where D is-a non-negative
symmetric operator. Hence it follows that the random variable is Gaussian
which completes the proof. 1

(u, veRP).

) bt. Complex-valued {i‘sotropic random measures. In this section we
identify the complex plane and the space K’ The integral of a complex-
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valued function f with respect to a complex-valued random measure M
is defined by means of the formula

[f(s) M (as) = [f(s)M (ds),
b4 b4
where 2 is a matrix representation of the complex number z given by the

formula
. Rez —Imz
g = .
Imz Rez

A complex-valued random measure M is said to be 4sofropic if for
every orthogonal operator V in R’ and every Borel subset E of T the ran-
dom variables M (E) and VM (F) have the same probability distribution.
For an atomless isotropic random measure M the characteristic function
of the random variable M (E), where B is a Borel subset of I, can be
written in the form
61 g0 =exp| [ Flar)—1) =

22
0

where J, is the Bessel function defined by

mﬁ

/"'M(E; dm) }’

(3.2) Jo () =i fcos(msinu)du
. =

and wuy(#,-) is a finite non-negative Borel measure on R, (see [B]).
Moreover, for every Borel subset 4 of R, the set-funetion gy (-, 4) is
a non-negative Borel measure on I. Put vy (B) = uu(¥, B.). 1t is obvious
that (-, 4) <wy and, consequently, all measures: (s, A) are
absolutely continuous with respect to the measure vy Put G (F, x)
= un(E,[0, %), zeR,. By the Radon-Nikodym theorem

(3.3) Gar(B,2) = [ garls, ®)var(ds),
B

where 0 < gy(s, #) <1 and the function gum(-,2) is Borel measurable.
Moreover, we may assume that the function 9(8, -) is monotone non-
decreasing and continuous to the left on R,. In fact, ‘we can always find
a version (-, w) of the Radon-Nikodym densities of Gy(-,w) for ra-
tional numbers w, such that Jar(+, w) is Borel measurable and monotone
non-decreasing as the function of w. Setting

gar(s, #) = Lim (s, )
wsT— .

we obtain’ a Radon=Nikodym density with required properties.
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Put
~ gult
[ g,

(3.4) .

D (t, ) = (tel, meR,).

1z

The function @, and the measure vy correspondlng to the random
measure M satisfy conditions (i)-(v) from section 1. The A,-condition for
&, is a consequence of the inequality

0 oG
Doe(t, 22) = f _gf‘.’.(qjs’fﬁ). duw = 4 f (s $%) du
13z 1fe
<4 F gl ) g 4Oy (t, 7).
v u®

Let £ (M) be the set of all complex-valued M-integrable functions,
where M is a complex-valued atomless isotropic random measure. We
identify functions which are equal M-almost everywhere. The space
2(M) is a complete linear metric space under usual addition and secalar
multiplication with a non-homogeneous norm defined by the formula

11l = | f 1t5) 3¢ as) Il

where |||X]||| denotes the Fréchet norm of the random variable X, i.e.
the expectation B[(1+|X])/|X|] (see [22] and [24]). It should be noted
that the convergence of a sequence of functions in & (M) is equivalent
to the convergence in probability of the sequence of their integrals with
respect to the random measure M. Moreover, the set of ail Borel simple
functions on I is dense in Z(M).

By (3.1), @3z (t) depends only upon the modulus of 1. Consequently,
we can introduce the mnotation

(3.5) Darpgy (1B) = —10gparm (1).

LeMMa 3.1. Let M be a complex-valued atomless isotropic random
measure. There ewists then a positive constant o, such that the inequality
(3.6)

fﬁM(E)(m* Yar = e, fqu 8, a)vy(ds)

K

holds for all non-negative numbers a and all Borel subsets B of 1. Moreover,

for every positive number ¢ there exist a positive constant ¢, and a Borel

subset A of R, such that un (I, 4) < ¢ and the inequality

(8.7) Barm)(0) < 0 [ Bur(s, a)var(ds)+2pae (B, 4)
E

holds for all non-negative numbers a and all Borel subsets B of I.
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Proof. Integrating by parts, from (3.3) and (3.4) we get the formula

1 (o]
(3.8) EfG)M(s,a,)vM(ds) =-2-Df min(a?, @) pa(E, d).

Taking into account the well-known inequality

san\
—-"- = bymin 2
v (1, 9%,

1—

where b, is a positive constant, we get, by (3.2),

1

f (1— Jo(awr))dr >

0

the inequality
bymin(a2x?, 1),

where b, is a positive constant. Hence and from (3.1), (3.5) and (3.8) we
obtain the inequality

f’ﬁ W(E) ar

Formula (3.6) is thus proved.
Given ¢ > 0, we take a number ¢ >
A =(q,00). It is clear that

1+
= b, (mm (a22?,1) -—%2

pa( B, dm) = 20, [ @ar(s, a)vae(ds).
E

1 such that par(l, A)<< e where

9

(3.9) [ = Totam) L a8, d) < 2 use(B, 4)

for all non-negative numbers ¢ and all Borel sets E. Further, taking into
account the inequality 1—cosy < bymin(1,y?*), where by is a positive
constant, we get, by (3.2), the inequality

1—J(ax)

Consequently, by (3.8), for every non-negative number a and every
Borel set E we have the inequality

fm (1= Jy(az))

< bymin(a2x?, 1).

9 q
e
L el dw) < by [ min(a®, a1+ (B, do)

0

&Z
< oy [ Bals, a)va(ds),
B

where ¢, = 2b5(1+ ¢2). Hence and from (3.1), (3.5) and (3.9) we get in-
equality (3.7) which completes the proof of the Lemma.

LEMMA 3.2. Let M be a complex-valued atomless isotropic random meas-
ure. A sequence {f,} of Borel simple functions on I converges to 0 in & (M)
if and only if it converges to O in the Musielak- Orlicz space Ly, (var).
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Proof. Given a Borel simple function f on I, say

k
. fzzaij':/)
j=1

where the sets H,, H, ..., By are disjoint, we pub
ke

Xy = [f(s)M(ds) = D oM (B)).
I Je=l

Since the characteristic funetion px (1) depends only upon the modulus
of ¢, we can introduce the notation Hy (1)) = —logepx,(t). Further, by
(3.5), we have

&
(3.10) Hyr) = > Oy layl).
j=1

By oy we shall denote the modular induced by @y and vy (see defi-
nition (1.1)). From (3.10) and Lemma 3.1, for every Borel simple function f
we get the inequality

ke

(3.11) [H (M dr = 0 Y] [ Puls, lay)ra(ds) = cren(f),

f=1 Iy

where ¢ is a positive constant. Moreover, for every positive number &
there exists a positive constant ¢, such that

(3.12) Hy(r) < ¢ 0u(f)+2¢.

Suppose that a sequence {f,} of Borel simple functions converges
to 0 in .#(M). Then the sequence of random variables X; converges to 0
in probability. Consequently,

ImH; (r) =0

N0

uniformly in every compact interval. Hence, by (3.11), we gefi the formula
Jim gz (fn) = 0,
N—r0G

which shows that the sequence {f.} converges to 0 in Ly, (va).
Suppose now that the sequence {f,} of simple functions converges
to 0 in Lg,(vu), Le.

1imn o3¢(fa) = 0
N—>00

Since the functions H, are non-negative, we have, by (3.12), the
formula

imH; (r) =0
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for every r. Consequently, the sequence {X;,} tends to 0 in probability
which implies the convergence of {f,} to 0 in % (M). The Lemma is thus
proved. g

In this paper two linear metric spaces (¥, I I and (X, | [l will
be treated as identical if the convergence in the norm || |l is equivalent
to the convergence in the norm || [|,. Since the set of Borel simple functions
on I is dense in both spaces (M) and Lg,, (var), We have, by Lemma 3.2,
the following characterization of the space £ (M) of all M-integrable
functions:

THEOREM 3.1. For each compler-valued atomless isotropic ramdom
measure M the space Z(M) is identical with the Musielak-Orlicz space
L{D}u(vﬂ)'

4. Harmonizable sequences. All random measures eonsidered in this

section are assumed to be atomless and complex-valued. The sequence

1

T, () = [ M(ds) (n=0,E1,£2,...)

0
of the Fourier coefficients of a random measure M will be called a harmo-
nizable sequence of random. variables. We say that two sequences {X,} and
{X¥,} of random variables are identically distributed if for every system
Ny Ngy - -, T Of integers the multivariate distributions of Xy, s Xays -y Xy
and Yo, Yoy eens Y,, are identical. Further, we say that two random
measures M, and M, are identically distributed if for every Borel set E the
random variables M, (E) and M,(H) are identically distributed. A sequence
{X,} of random variables is called strictly stationary, or, shortly, stationary,
it for every system m, g, Mg, ...y Nk of integers the multivariate distri-
bution of the random variables Xn imy Xnyimy - X, ym I8 indepen-
dent of m. _

Let J be an arbitrary subinterval of I. Denoting by o,(-, J) the se-
quence of Fejér means of the Fourier series of the indieator x,(-), we
inferthat the functions o,(-,J) are bounded in common and

liman(s, J) = x,(8)

N->00
except of the endpoints of J (see [25], p. 45). Consequently, by dominated
convergence theorem for random integrals ([16], Theorem 2.9), we have

lim j ouls, J)M(ds) = M(J) in probability.
N—>00 I

Since the random variables [ oals, J)M(ds) are linear combinations
I

of the Fourier coefficients Xy (M) (|k| < n), we get, by the last formula,
the following two Lemmas:
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LevMa 4.1. The Fourier coefficients {X,(M)} determine the random
measure M unigquely.

LeMMA 4.2. The random measures My and M, are identically distri-
buted if and only if the sequences {Xn(My)} and {X,(M,)} of their Fourier
coefficients are identically distributed.

Now we shall give a characterization of stationary harmonizable
sequences of random variables.

TaroreEM 4.1. 4 sequence {X,(M
random measure M is isotropic.

Proof. Suppose that the sequence {X,(M)} is stationary. Then,
by Lemma 4.2, for every integer % the random measures

W is stationary if and only if the

My(B) = [ ™M (ds)
E

and M are identically distributed. Further, the characteristic function
o3 (?) (teR?) can be written in the Lévy-Khinchine form

(41)  eum(t) = exp{( E)yt)“‘( (Eyt, 1)+

+ f (ez(t,z)___l___
B\{0)

{vhere a(E) is'an element of %, D(E) is a symmetric non-negative oper-
ator on R? and w(E,-) is a finite non-negative Borel measure on R*\{0}.
More over, a(-) is a vector-valued Borel measure on I and for every Borel
subset A of R\ {0} the set-function x(-,A) is a non-negative Borel
measure on I. Let us denote by u,(-) and p,(:) the scalar variations of the
measures a() and D(-) respectively. Put

ME) = p(B, BNA0}) 4 pa (B) + o (B) -

Sinee the random measure M is atomless, we infer that the measure A
i also atomless. Moreover, all measures a(-), D(-) and u(-, A) are absolu-
tely continuous with respect to the measure A. Consequently, by the
Radon-Nikodym theorem.

a(B) = [b(s)A(ds), D(B
B

6(t, %) ) 14-|o)?

1+ fa2] wl ,(l:}o)’,

(4.2) = [0(s
B

u(l, 4) = fh 8, A)A(ds),

where b is a vector-valued Borel function, ¢ is an operator-valued Borel
funetlon, 0 <h(s,4) <1 and the function (-, 4) is Borel measurable.
Moreover, we may assume that the set-funetion h , ) is a Borel meagure
on B\ {0}. In fact, we can always find a version ¢(-, w,‘, w,) of the Radon-
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Nikodym densities of (-, 4 (wy, w,)), Where w, and w, are rational num-
bers and

A(wy, ws) = {(t1, 1)

such that g(-, w,, w,) is Borel measurable and monotone non-decreasing
with respeet to each variable w, and w,. Furthermore, we may assume
that

Pl << Wy, by < Wy (B, Ge) # (0, 0)],

g('; Wy, ’wz)—g(.'; V1) wg)———g(-, Wy, ”2)'}‘9('7 D1y v) = 0

whenever v, < w, and v, < w, Setting

his, A(uy, u,)) _].'ung(s Wy, W)

for every pair u,, u, of real numbers we get a distribution function which
uniquely determines the measure h(s, -).
Put

E(s,t) = (b(s), t)—(C(s), 8+

+ f (ei(t”;)—l— h(s, dz).
BN}

It is clear that the function K (-,i) is Borel measurable and the fune-
tion K (s, ') is continuous on R®. Moreover, by (4.1) and (4.2),

(4.3) P (1) = exp [ E(s, 1)4(ds).
E

i(t, ) ) 14 |af*
1+laf) ol

Hence it follows that for any Borel simple function f the character-
istic function of the integral [ f(s)M(ds) is given by the expression
E

exp fK(s,‘ﬁsqjt)/‘l(ds),‘
B

where Z denotes the complex conjugate of 2. Taking a bounded sequence
of Borel simple functions convergent to &% gverywhere on I, we infer,
by the dominated convergence theorem for random integrals ({163, Theo-
rem 2.9) that the corresponding sequence of integrals over the set B
converges in probability to Mk( ). Consequently, by the continuity of
K(s,*), we have
Pam () = exp [ K (s, e ™ 1) A(ds).
E

Hence and from (4.3) it follows that for every integer ky,ieR? and

for i-almost all s the equation

(4.4) K(s, e %) = K(s,t)

Studia Mathematica XXXI,1 6
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holds. Given ¢ = [{|¢*™, we denote by B the subset of I consisting of
all irrational numbers s for which equation (4.4) holds for all integers F.
Since the measure is atomless, we have the formula A(I\ B) = 0. Since
for every seB the sequence of multiples s, 2s,3s,... (mod 1) is dense
in I (see for instance [23]), we can take a sequence {k,} of integers for
which

2k, i 2mir .

lime
N0

= €

Consequently, by (4.4) and the continuity of K (s, '), we have the
tormula K (s, t) = K (s, |t|), seB. Thus, by (4.3), the characteristic function
@) (t) depends only upon the modulus of ¢ which implies that the random
measure M is isotropie.

Sinee for isotropic random measures M the characteristic function
of the integral If f(s)M (ds) depends only upon the absolute value of f,

the converse implication is obvious. The theorem is thus proved.

Given a stationary sequence {X,}, by [X,] and [X, : n < k] we shall
denote the linear spaces closed with respect to the convergence in prob-
ability spanned by all random variables X, and by random variables X,
with # < k respectively. To each stationary sequence {X,} there corres-
ponds a shift transformation TX, = X, (n = 0, +1, 42, ...), which
can be extended to an invertible linear transformation 7 on [X,]. Of
course, the transformation T preserves the probability distribution.

The concept of stationary sequences admitting a prediction was
introduced and discussed in [19]. We say that a stationary sequence
{X,} admits a prediction, if there exists a continuous linear operator 4,
from [X,] onto [X,:n < 0] such that

(i) 4pX = X whenever Xe[X,, :n < 0];

(ii) if for every Y e[X,:m < 0] the random variables X and ¥
are independent, then A4,X = 0;

(iil) for every Xe[X,] and Ye[X,:n < 0] the random variables
X—A4,X and .Y are independent.

The random, variable 4,X can be regarded as a linear prediction
of X based on the full past of the sequence {X,} up to the time n == 0.
An optimality criterion is given by (iil). In what follows the operator 4,
will be called a predictor based on the past of the sequence {X,} up to
the time = = 0.

It should be noted' that Gaussian stationary sequences with zero
mean, always admit a prediction. This follows from the fact that in this
case the concepts of independence and orthogonality are equivalent and,
moreover, the square-mean convergence and the convergence in prob-
ability are equivalent. Therefore the predictor 4, is simply the best
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linear least squares predictor, i.e. the orthogonal projector from [X,]
onto [X,:n < 0] (see [3], Chapter XII, §1).

The predictor 4, and the shift T induced by {X,} determine the
predictor 4y, based on the full past of {X,} up to the time » = k by means
of the formula A = T*AT.

A stationary sequence {X,} admitting a prediction is called deter-
manistic, if 4,X = X for every X ¢[X,]. Further, a stationary sequence
{X,} admitting a prediction is called completely non-deferministic, if
k]im 4, X =0 for every Xe[X,]

e OO

Consider a stationary harmonizable sequence {X,(M)}. By Theorem
4.1, the random measure M is isotropic. Further, by Theorem 3.1, L(M)
is a Musielak-Orlicz space. It is clear that the mapping X, (M) - &™
(n =0, +£1, +2,...) can be extended in a natural way to an isomorphism

of [X,(M)] and #(M). Moreover,
(XA ()] ={ [F(5) M (ds) : fe ()]
I

and .
T [fls)M(ds) = [ €F(s)M (ds).
i i

TamoreM 4.2. Let {X,(M)} be a stationary harmonizable sequence
admitting a prediction. There emisis then & Borel subset @ of I such that
(Xn(My)} and {X, (M)}, where M\(E)= M(E~Q) and M,(E)=
M (E ~ (INQ)), are stationary sequences admitting & prediction. Moreover,
the sequence {X,(M,)} 4s completely non-deterministic and the sequence
{Xo (M)} is determimistic. Consequently, each stationary harmonizable
sequence admitting a prediction is the sum of two independent stationary
harmonizable sequences admitting a prediction, ome completely non-de-
terministic and the other deterministic.

Proof. By Theorem 1 in [19], X, (M) = X;+ X, where the sequen-
ces {X,} and {X,} are independent, stationary and admit a prediction.
Moreover, the sequence {X,} is completely non-deterministic, the sequence
{X,} is deterministic and the space [X,(M)] is a divect sum of the sub-
spaces [X,] and [ X, ]. Further, TX, = X,,, and TX, = Xs,1, where T
is the shift transformation induced by {X,(M)} in" [X(M)]. Put
X, = [ h(s)M(ds). Consequently,

T

"X, = X, = [ h(s)M(ds) (n =0, 41, 42,0,
I ‘ - N
Let us introduce the notation @ = {s: h(s)  0}. Tt is evident that

(4.5) [X.,] < {ff(s)M(ds) ;fez’(M)}.
: Q
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Since for every trigonometric polynomial w the relation

[ w(s)h(s)(s) M (ds) e[ Xn]
Q

holds and, by dominated convergence theorem for random integrals
(see [16], Theorem 2,9), for every feZ (M) there exists a sequence {w,}
of trigonometric polynomials such that

lim [ (s)h(s) M (ds) = [ 1) (ds)
Q

00 ()

in probability, we have, by (4.5), the formula

(4.6) [X,]= {jf(s)M(ds) :fe,Sf(M)}.
Q

Sinee X = X,(M)—X;, we have

(4.7) Xy = MINQ)+ [(1—h(s)) M (ds).
Q

Obviously, the random variables M(INQ) and Qf (1 R(s)) M (ds)

are independent. Since the sequences {X,} and {X,} are independent,
we infer, by (4.6) and (4.7), that the random variables

MINQ)+ [(1—h(s)M (ds) and [ (11— n(s)) M (ds)
Q Q

are independent. Flence it follows that d{ (L—h(s))M(ds) is a constant

random variable. Finally, taking into account that the measure M i§
igsotropic, we infer that
[{1—nh(s)M(ds) = 0.
Q
Congequently, by (4.7), X, = M(INQ) and X;= M(Q). Setting
M, (B) = M(E ~Q) and M,(B) = M({B ~(INQ)), we have

Xp=1"X, = [e™ M (ds)= [&™"M,(ds),
Q i
X, =T"X = [ ™ M(ds) = [ My(ds).
nNe I
The theorem is thus proved. )

. We proceed now to a deseription of stationary harmonizable deter-
mmistic sequences {X,(M)} in terms of probabilistic characteristics of
the random measure M. We remind that to every isotropic random meas-
ure M there corresponds a Borel measure vy on I and a function Py
on Ix R, (see (3.4)). Moreover, by Theoren 3.1, the space £ (M) is iden-
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tical with the Musielak-Oxlicz space Lg,, (va). Further, the measure v
and the function @, determine, by formula (1.4), a sequence of functions
Qg yroyrm 00 I. Tt is evident that the sequence {X, (M)} is deterministic
if and only if X, (M)e[X,(M):n < —1]. Since

(XL (D)] ={ [ f(5) M (ds): fe£ (M)},
I

we infer, by virtue of Theorem 3.1, that {X,(M)} is deterministic if and
only if

it 1 STope-+] o,
k=1

where the infimum is taken over all complex numbers a;, @s,...; 0n
and n =1,2,..., | | being the norm in Ly, (var). Since [f] = IIfll, we
have, by Theorem 1.1, the following characterization of deterministic
stationary harmonizable sequences:

THoorREM 4.3. A stationary sequence {X,(M)} is deterministic if
and only if no function 10g Doy vy (B =1,2, ...} is Lebesgue imtegrable
over I.

We say that M is a Poisson random measure if there exigt a proba-
pility distribution P on E* and a non-negative Borel measure 1 on I such
that for every Borel subset B of I the probability distribution of M(E)
is given by the expression

©
i 3 (@
l ’
"
n=0

where the power of P is taken in the sense of convolution and P*® denotes
the probability measure concentrated at the origin. It is clear that the
Poisson measure M is isotropic if and only if the probability measure r
is isotropic. In this ease the measure ux (¥, ) appearing in (3.1) is given
by the formula

t2
B, 4) = 4B) [T P,

where P,(A) = P({z: |z|<A}). Hence, by simple computations, it follows
that the funetion @y is bounded. Consequently, by definitions (1.3) and
(1.4), the functions Qg ., are infinite almost everywhere. Thus from
Theorem 4.3 we get the following

CoRrOLTARY. For every isotropic Poisson random measure M the sequence
{X, (M)} is deterministic.

T.et M be a Gaussian isotropie random measure. We have already
mentioned that for Gaussian stationary sequences the coneepts of predie-
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tion presented in this paper and the best linear least squares prediction
coincide. Tt is easy to verify that for Gaussian isotropic measures M
the formula Py (f, z) = $a* is true. Consequently, P(M) = LF(vy).
The eclassical characterization of completely non-deterministic wide
sense stationary sequences (see [3], Chapter XIT, § 4) implies the following
lemmas:

LeMMA 4.3. Let M be a Gaussian isotropic random measure. The sequence
(X, (M)} is completely non-deterministic if and only if either M =20 or
the measure vy is absolutely continuous with respect to the Lebesgue measure
and log(dvy [dt) is Lebesgue integrable over I.

Now we shall give a description of stationary harmonizable com-
pletely non-deterministic sequences.

THEOREM 4.4. A stationary sequence {X, (M)} is completely non-de-
terministic if and only if either M = 0 or M is a Gaussian random measure, vy
is absolutely continuous with respect to the Lebesgue measure and 1og (dvy, [dt)
is Lebesgque integrable over I.

Proof. By Lemma 4.3, to prove the Theorem it suffices to prove
that M is a Gaussian random measure provided {X, (M)} is stationary
completely non-deterministic.

Let Ay be the predictor based on the full past of {X,(
time k. Setting

M)} up to

ARXo(M) = [ fils)M(ds),
I
where fre# (M), and .
= {s :fu(s) # 1},
we have
A Xy (M f Fi(8) M (ds) + DM (IN By).

Of course, the mndom va.rla.bles M(INFy) and mf fu(8) M (ds) are
mdependent and symmetrically distributed. Oonsequently, the relation
lim A X, (M) =0

Ty 00 .
implies the relation

(4.8) Tim M (IN Hy) = 0
Je—r—c0

By the definition of predictors, the random variables Xo(M)y—
— A Xy (M) and X (M) are independent. In other words, the integrals
f(l—"fk(S))M(ds) and feﬂnkisM,(ds)

! i

are independent: Since both integrands are different from 0 on Ej, we
infer; by Theorem 2.1, that the random variable M (B,) is Gaussian.
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Hence and from (4.8) it follows that M(I), being the limit in probability
of Gaussian random variables M (Hy), is Gaussian too. By Cramér’s
Theorem ([10], p. 271), M is a Gaussian random measure which com-
pletes the proof.
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MeTo 5KBHBAJICHTHBIX HOPM
B TeopHH aGCTPaKTHLIX NOYTH NEPHONHHEECKHX GYHKEH

M. I. HAJOEI] (XapbKoB)

Oyurmma #(f), —oo << oo, CO 3HAYCHUAME B GAHAXOBOM IIPOCTPAH-
cTBe F masbiBaeTcd noumu nepuoduyeckoti (m. m. QyERuumeii), ecnim oHa
CHIIbHO HENPEPHBHA I ecIi A KAMIOro & > 0 MOKHO YKA3aTh TaKoe

= [(¢), uTo B M06GOM MHTEPBAlle NJIMHEI | HaiigeTcAa XoTA Obl OFMH &-TIOYTH
nepuoy (e-n. nepmof) GyHRUMA % (1), to-ecTh IUCIO T TAKOe, ITO

supflo(t+o)—a(ill <o (—eo<i< oo).

Jnsa 4YUCHOBBIX II II. QYHKIMI CopaBeAamBa CIeAyommasd TeopeMa
06 nnTerpupoBanuu (cM. [6], crp. 29):

Trorema Bons-Bora. Ecau unmezpan
i
(1) (1) = [olndn (~co<t< o)
0

n. n. gyuryuu () oepanuver, mo o makrdsce ecmdv n. n. Pynryua. Hoaee
mouno: 0as kancdozo & > 0 cywyecmeyem makoe s, = & (%, &), YMO KaA4cObiil
&£,-n. nepuod Pynryuu x(t) ecmv e-n. nepuod Pymwyuu X ().

JI. Amepmo [1], [2] morasam, uro Teopema Bona-Bopa pacnpocrpa-
uAercsa ma aGerpaxTHele M. O. QYHRUINM, eclE B Kadecrse K B3ATH pas-
HOMEPHO BHIUIYKIOe GaHaxoBO mpocTpancTBo. Hpome TOro, OH IPHBEI
npumep O. U. PYHRUMH O SHAYEHHAME B HPOCTPAHCTBE ¢ BCEX CXONAMMX-
CA YHCIOBHX TOCIEHOBaTENbLHOCTEH

2(t) = {Ancos A, tln .

HHIEIPAT 0T KOTOPOi

(An ¥ 0),

X (1) = {sindnt}n’,

€CTh OTDAHMYEHHAS, HO He IOYTH ImepuopuuecKas, QYHKIHA.

EcTecTBeHHO, BOBHUKAET 3afa4a BEIeIeHNs TexX mpocTpancrs banaxa,
KOTOpHE, NOoJ06HO DPAaBHOMEPHO BHITYKIEIM IIPOCTPAHCTBAM, JOUNYCKAIOT
06o6menne Tteopembl Boma-Bopa.
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