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On the space of convolution operators in %
by

Z. ZIELEZNY (Wroclaw)

Convolution operators in the space #; (= 4,) of distributions of
exponentia,l growth in R" were characterized by Hasumi [5]. The space
O,(A'y: A7) of these operators can be identified with a subspace of
Schwartz’s space ¢, of rapidly decreasing distributions. A distribution T
i3 in O(Ay: A7) if and only if, for every aeR", the product exp(a-)T
is bounded on R", i.e. belongs to the space %' ([7], vol. IT, p. 56).

In this paper we prove that ¢,(#: A7), endowed with the topology
induced in (7 : o) by the space £ (A, A7) of all continuous linear
mappings from 2 into #7 with the topology of uniform convergence
on all bounded sets, is nuclear, complete and bornologic, and therefore
a Montel space. We also characterize the space 0p(#7: #7) of O™-fune-
tions, which is the dual of (A7 : 7).

We denote by N, R and O the sets of natural, real and complex
numbers respectively. The sefs of the corresponding n-tuples are denoted
by N", R™ and C"; for the sum, the scalar product, etc. of points in each
of these spaces we use the standard notation (see e.g. [7] or [5]).

A horizontal strip in " around E" of width b > 0 is defined as

Ve = {C = ({15 -0y Zn)EOn: lImij] < b}j =1,2, "'7/”‘}'

We use the funection
n
o () H [exp (bay)+ exp (— bay)],

where © = (%, ..., @) eR" and beR. In particular, a function f on E"
is of expomential growth, if f/o, is bounded for some b.

The spaces 2, D', &', # and &' are those introduced in [7]. In
all spaces of distributions the scalar product of a distribution T and
a test function ¢ (i.e. the value of T' on ¢) is denoted by T'-¢. For any
Te9 and heR", 7,1 is the translation of T by & and T is obtained from
T by symmetry with respect to the origin.
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1. The spaces #; and ;. Convolution operators in ' 1+ For the
sake of completeness we inelude a brief exposition of the main facts
concerning the spaces "y and 'y and the convolution operators in 7.

o, is the space of all C™-functions ¢ on R such that exp (k|»|) D" p(x)
ig bounded in " for each keN and peN™ (D is the partial derivative).
The topology in o, is defined by the system of semi-norms

wulp) = sup exp(kla)|DPp@)l, k=1,2,...
eRM, |pi<lo

Then o, is a Fréchet nuclear space ([B], proposition 1).

The dual A7 of A 1 ig the space of distributions eontaining all tem-
pered distributions. Ay is the space of “distributions of exponential
growth”, which are characterized by the following theorem:

TeEorEM 1. (a) A distribution TeD' is in Ay if and only if T can
be represented in the form ‘

T = D”[exp (& |z]) F (2)],

where peN", keR and F is o bounded, continuous function on R

(b) A distribution TeD' is in A" 1 if and only if each regularization
Tsxa, aeD, is & continuous function of ewponential growth ; in that case
there s a keN such that

(T'xa) (@) = O(exp(k|al))

as |x| = oo, for all aed.
(¢) In order that o distribution T be in A 1 it is mecessary that there

exists a ke N such that the product —% T is bounded in R* (i.e. —;—Teeﬂ )s
k 3

and it is sufficient that, for each function pe oy, the product ¢T' is bounded

in R".

(d) In order that a distribution T be in Ay it is mecessary that there
ewists a ke such that the set of distributions v, T/exp (k(h|), h e R, is bounded
in @, and it is sufficient that, for any function g(h) decreasing more rapidly
than all powers of exp(—-]h}) the set of distributions g(h)vT, heR", is
bounded in 2'.

Part (a) of the theorem was proved by Hasumi ([5], proposition 3).
The proof of the remaining parts is similar to the proof of the corres-
ponding statements for tempered distributions (see [7], vol. IIL, p.
96-97) and we leave it out.

The topology of o is the strong dual topology; it makes 7 into
a complete, locally convex space which has all the properties proved

in [7] for the space &' of tempered distributions. In particular, Ay is
a Montel space.
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For a function @e #y, its Fourier transform
= [exp(—2ni-z)p(z)ds
R‘IL

is defined for all {C™ We denote by K, the space of Fourier transforms
of funetions from ;. K, consists of all entire functions rapidly decreasing
in any horizontal strip. In other words, an entire function v is in K, if
and only if, for every ked,

wy(p) = sup(L+ L) lp ()] < oo.
LeVy

Fourier inversion formula also holds. The topology of K, is defined
by the system of semi-norms wy, k¥ = 1, 2, ... Then the Fourier transform
is a topological isomorphism of %7, onto K.

The dual K, of K, is the space of Fourier transforms of distributions
from 2. For a distribution Te 2 its Fourier transform 7 is defined
by the Parseval-Plancherell formula

Tp="T9.

K is provided with the strong topology. Then the Fourier transform
is a topological isomorphism of o7 onto K.

For Se Ay and Te &', the convolution S* T is well defined as a distri-
bution in #; and T — 8*T is a continuous linear mapping from &’
into 5. We call 8 a convolution operator in A7, if the latter mapping
is contlnuously extendable to a mapping from 7 info 7. We denote
by O,(A'y: A7) the linear space of all convolution operators in Ay.
O,(A 1 : A1) is a space of distributions, which can be characterized as
follows:

THEOREM 2. A distribution S 48 in O, (A 1: A7) if and only if 4t
satisfies ome of the egquivalent conditions:

(a) For every aeR", the product exp(a-)8 is a bounded distribution,
2.e. exp(a-)S belongs to %'

(b) For every keN, S can be represenied as o finite sum of derivatives
of continuous functions Fy,

(1) 8= D> D°Fp,
pi<m
where
) IF (2)] < Myexp(—klal);

M, are constants.

(¢) For every keN, the set of distributions exp(kl|h|)7,8, heR", s
bounded in Z'.

Studia Mathematica XXXI,2 8
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(d) For every ae2, the regularization Sxa is in A'y.

Proof. It was proved by Hasumi ([5], proposition 9) that a distri-
bution § is in OL(A77: A7) if and only if it satisfies condition (b). Thus
for the proof of the theorem it is sufficient to show that conditions (a)-(d)
are equivalent. We proceed successively.

Assume first that S satisfies condition (a). Then, for any keXN, the
product oz S is a bounded distribution and therefore

ol = D DGy,
1PIEm

where meN and G, are continuous functions bounded in R" (see [7],
vol. IT, p. 57). Hence

1

8= — D@
o f 2]

Ipl<m

where to each term we can apply the formula

- S fr-fort]

o o
& oZa=p &

This leads to the desired representation (1) and (2), because the
1
functions G,D? (—a—-) are continuous in R" and
13

G,,(w)l)“( ) = 0 (exp(—Fz]))

or(2)

as |o| = oo.
Now, for every function F, in (1) and every compact set K in R",
the functions
oxp (b |b|) Fp(e+h), heR,
are uniformly bounded in XK. Consequently

exp(kih)mS = D' exp(k[h])D” (vt Fy),

Iplsm

heR",

is a bounded set of distributions, and so condition (¢) follows from (b).

Further, condition (e) implies (d), since for every ae2 the 0% -func-
tions

{exp(h[h))78) ko = exp(k|h))Ta(Sxa), heR”

are uniformly bounded in R

icm
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But each distribution satisfying condition (d) is bounded (and even
rapidly decreasing), by a theorem of Schwartz ([7], vol. II, p. 100). On
the other hand, we have

(exp(a-)8)*a = exp(a-)[Sx(exp(—a-)a)],

and therefore condition (d) holds also if S is replaced by any product
exp(a-)8, a<R". Thus from (d) we conclude that all products exp(a:)S,
aeR", are bounded distributions, which eompletes the proof of theorem 2.

Remark. Condition (d) can be replaced by the stronger condition

(d') For every ge 2, the convolution S*¢ is in #'; and the mapping
@ - Sx¢p of o into o, is continmous. This can be easily derived from
the representations (1) and (2).

We denote by 0 (K, : K;) the space of all 0®-functions extendable
over C" as entire functions slowly increasing in any horizontal strip.
This means that an entire function y is in 03, (K7 : K;) if and only if for
each keN there exists an leN such that

()l
o )

Oy (K : K3) is the space of multiplieation operators in K. If peK,
and ye0y(Ky: K3), then wpyeK,; and the mapping  — yyx of K, into K,
is continuous. The product xF of yeOy(K,: K;) and FeXK; is defined
by equation

(xF)-y = F-(zy), peK,.

THEEOREM 3. The Fourier iransform 8 — 8 maps ,(A: Ay) onto
Oy(EL: K3). Moreover, for SeO(A1: A1) and Te Ay we have

2 S
3) 8T = ST.

The proof of the first part of theorem 3 is contained in [5] (propo-
sition 8 and proposition 9). The interchange formula (3) can be easily
verified.

2. The topological space @,(#7:7) and its dual. We define the
topology 7 of @,(Ay:#73) to be that induced in @,(#7: A7) by the
space 2, (A, ;) of all continuous linear mappings from 27 into o5
endowed with the topology of uniform convergence on all bounded sets.

By the remark following theorem 2; 0,(£; : ;) can also be regarded
as a subspace of the space £ (A, o) of all continuous linear mappings
trom ', into #°,. Denote by 7~ the topology induced in @ (A7 : A7)
by Lp{A 'y, A ;). Then we have- .
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TEEorEM 4. The topologies I and T in Oy(A'y: A1) coincide.
Proof. Let M (B, U) be a set in the 0-neighborhood subbase for the
topology 7, i.e.
M(B,U) = {SeO,(: A1): 8xTeU for all TeB},
where B is a bounded set and U a 0-neighborhood in 27 (*). We prove
that M (B, U) contains a set M'(B’, U’) from the 0-neighborhood base
for the topology 7.
The topology of 7 is the strong dual topology and also U, = U,
implies M (B, Uy) « M (B, U,). Therefore we may assume that
U=U(B,s) = {Ted1:|T-¢| < ¢ for all peB'},
where B’ is a bounded set in &, and & > 0. We also may assume thab
B =B ={T:T<B}
and that the same symmetry condition holds for B’
Since o is barreled, its topology coineides with the strong topology,
and so
U =TU'(B,e) = {pety:|T 9| < e for all TeB}
is a 0-neighborhood in ;.
Now, the seb

M(B, U) = {Se0,(A}: A7)z Sxpe U for all peB’}

belongs to the 0-neighborhood base for the topology . Moreover, if
Se M'(B’, U"), then

IT-(S*p)| <e
for all TeB and @eB’. Hence, by the symmetry of B and B,
(T 8) gl <e

for all TeB and peB’. Consequently, T+«SeU for cach TeB, and so
Se M(B, U). This proves that M'(B', U') « M(B, U).

Similarly, one can show that each set in the 0-neighborhood base
for I contains a set from the 0-neighborhood base for . Thus I~ and I’
coincide, g.e.d.

We denote by &, (A 'y, o) the space &£ (A, ;) under the topology
of simple convergence.

THEBOREM 5. The topology T in G,(A : Ay) coincides with the topology
induced in O,(Ay: A7) by the space Lo(H 1, A).

(*) The 0-neighborhood base in @, (4 : ) congigts of all finite interseotions
of sets of this form.

icm°®
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Let 7~ " be the topology in @ (K;: K}) corresponding to 7 uneer the
Fourier transform. Then theorem 5 ean be stated equivalently as follows:

THEOREM 8. The topology T in Ou(Ki: K} coincides with the
topology induced in Oy (K,: K1) by the space Lo(K,, K,).
Proof. Let B be a bounded set and U a O-neighborhood in K.
Then the set
N(B, U) = {3c0y(E;: E;): ype U for all yeB}

is in the 0-neighborhood base for the topology 7. We detine a finite
system of funetions ..., ymeK; such that the set

Ny eees Py U) = {geOnr(Ky: Ky) : gy U, § =1, ..., m}

is contained in N (B, U).
Suppose that U consists of all functions peK,; such that

A+ @) <&
for some beN, ¢ >0, and all ZeV;. The function

y(£) = suplp(Q)]
yeB

is bounded and rapidly decreasing in V5.

Fix now a »eN such that
(4) 4n (2%-+1)"texp [ — (kv —L1)4-nb® +njd] < %,;
for ¥ =1,2,... It is sufficient to find a » satisfying the inequality for
%k = 1; then one can prove by induetion that it holds for all .

For each integer & > 0 we denote by ¢ = (%, ..., "), 1=1,..., 1,
all points & = (&, ..., £&,)eR", whose coordinates are subject to the
following conditions:

(i) &/v is integral and |&f»] <k for all j =1,...,n;

(ii) |&] = kv for at least one j.

It is easy to see that [, = 1 and that

(5) L <2n@k+1)™Y  k=1,2,...

1,...,%},

)*k = Imax }»k'z.
1<i<ly

We also use the following notation:

1 .
L= {5 R |&—dY < 50 J
deg = sup  y(0),

LV, Regel %4

Note that the sequence {4;} is rapidly deecreasing, i.e. B4, — 0 as
k= oo for every ueN. ’ B '
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We may assume that the function y does mot change too rapidly,
gince otherwise we can replace B by a suitable bounded set B*> B.
Thus we assume thatb

(6) dop = Mexp(—hv), k=1,2,...,

and that analogous conditions are satisfied for all translations of y by
the points ¢*.
By (5) and the rapid decrease of the sequence {Az},
o '

w(0) = D) D 2hexp[—(L— ") +nf4]

k=0 I=1

is a function in K,, the series being convergent uniformly in every hori-
zontal strip on multiplying each term by an arbitrary (but the same
for each term) polynomial of £ (*). Moreover,

(M (0] = y(L)
for all eV, with

co I

RelelJ U Ipy.

Fo=0 I=1

In fact, for (eV, with Relel,;, we have
24,1 16xp(— C+nfd)| = 2294

and, on the other hand,

o
D) D englexpl— (=¥ +n/4]
k=1 1=1
00 1 2
< g; 4n (2 4+1)" A exp [»(lw— 5) +mb?+ 'n/zL]

1 A
<8 Y rexp(—) <hy,
Jemal

on account of (4), (5) and (6). Thus in this case inequality (7) is proved.
For [eVy with Relely;, k >0, the proof is similar.

Translating now the system of points ¢, &k =0,1,...50 =1,..., k,
we construct by the same method »" functions ., ..., ¢,n e K, such that

max |p;(8)] = y(L)
1<f™

(*) For Le0™ we write {2 instead of {-{.

icm
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for all eV,. Hence
N'(p1y..y 905 U) € N(B, U),

which is the desired resulf.

For each pair &, leN we denote by Bj; the space of all functions o
analytic in V; and such that

(DI
Il = sup — = < oo
=R Ay
With || |lzz a8 a norm, Hj; is a Banach space.

For fixed %k, the spaces Hy;, 1 =1,2,..., form an increasing se-
quence and the topology induced in By; by Hyzyy is coarser than the
topology of Fy;. We denote by Ej the inductive limit of the sequence
{Ek,l = 1, 27 .}

Note that By is in duality with the space Hj, of analytic functions y
in Vj such that, for every leXN,

oa(x) = sup(L+ [E) [x (0] < o5
LV

the topology in Hy is defined by the system of semi-norms vz3,1 =1, 2, ...,
and the canonical bilinear form of the duality is

(9 2) = <, 2> = suplp (2D, el xe Bz
U3

The sequence {Hy:% = 1,2,...} is decreasing and we have

THEOREM 6. Oy (K;: Ky) s the projective limil of the sequence
{.Ek: % =1,2, ...}.

Proof. Let E be the projective limit of the sequence {E;:% =1,
2,...}. Tt is clear that both spaces O (K, : K;) and H consist of the same
functions. We prove that their topologies coincide.

Suppose first that N(B, U) is a 0-neighborhood in Oy(K,: K;)
for the topology *'; B is a bounded set in K, formed of functions yeX,
such that

sup(L+[E) (D] < My, 1=1,2,...,
LV,
and U is a O-neighborhood in K.,
U ={ypeky: s;;p(lﬂm)’lw(c)i <& l=1,...,}
'k

We set
Mj = max{My, ..., My}
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and
€
Wk,l = {’(])EE]MZ ”1/)”]6,1 < "—M,,;}, 1= 1, 2,

Then, the convex circled hull W; of the union of fhe sequence
{Wiz:1=1,2,...} is a O-neighborhood in Hy. Thus W =Wy~ B
is a 0-neighborhood in 7 and it iy easy to verify that W < N (B, U).

Conversely, if W = Wy, ~ B, where W; is a O-neighborhood in Iy,
then the polar set Wi of Wy (with respect to the duality between T and
E) is bounded in By, Thus, by the method used in the proof of theorem 5,
one can find a finite (and therefore bounded) set B = {py, ..., Pn} in K,
such that

sup |y ()] < max|y(2)]
Py, 1<i<m

for all £eVy. But, by the bipolar theorem, Wi = Wy. Consequently,
if U is the 0O-neighborhood in K, defined as

U = {peK,: suplyp (Dl <1},
LeVp
then N (B, U) is a 0-neighborhood in Oy (Ky 2 Ky) for the topology 7
and N(B, U) =« W, g.e.d.

The bounded sets in B, are characterized by the following theorem:

THEOREM 7. A subset B of By s bounded in By if and only if, for
some leN, B is o bounded subset of .

Proof. Bach bounded subset of any F,; is obviously bounded
in Ek.

Conversely, if B is bounded in Hy, then B ~ By, is bounded in Hy,,
1=1,2,... Itis thus sufficient to prove that B is contained in some Fy;.
Suppose that this is not true. Then one can find functions B and
points £eVy, 1 =1,2,..., such that

L< [l <ol < oo < il = 00,
and

G| > UL+ BN

Now, for each T<N, we sef
U, = { e Wl < 1
1 Yelipys ||k, 21+1(1_|_ IICI)Z .
Then the convex circled hull U of the union of the Uys ig a 0-neigh-

bf)rhood in By and it is easy to verify that I~ ¢;¢U. This is a confra-
diction, and so B iz contained in some Hyj, q.e.d.

icm
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COROLLARY 1. A subset B of Oy (Ky: K3) is bounded in On (K7 : K7)
if and only if for each keN there is an 1N such that B is a bounded sub-
set of Hy.

This corollary can also be proved directly in an easy way.

COROLLARY 2. A sequence {y;} converges to 0 in O (K1 : Ky) if and
only if for each keN there is an LeN such that {y;} converges to 0 in Hp;.

COROLLARY 3. A sequence {S;} converges to 0 in G,(A1: A7) if and
only if for each k<N there ewists a representation

8= 2 D*F, 7D
i<t
where 1 is independent of j and Fj, are continuous functions satisfying
the following conditions:

(i) sup ox(z) lFi,p(m)] < oo, Ipl <1, i=1,2,..3
TeRM

(ii) for each fived p, the sequence {opF;p:j =1,2,...} converges
to 0 uniformly in R™.

‘We stated in the preceding section that ¢ is a Fréchet space, and
therefore bornologic and complete. This implies that the space £5(# 1, A5)
is complete (see [1], chap. IIT, § 3, exercise 18, or [2],D. 73, proposition 7).
Moreover, 0,(#1: #) is a closed subspace of Ly, Ay). In fact,
it o filter & on O,(A: o}) converges to § in Lp(A 7y, ), then F is
a base of a filter on o converging to 8. Thus Se Ay and also Sxge Ay
for every ge ;. Hence Sed, (A1 : A7) by theorem 3 (d). As a closed
subspace of a complete space, @.(X7: ;) is complete.

Since, in addition, 2", is nuclear, the space LAy, A4) is nueclear
([4], chap. TI, theorem 9, corollary 3). Consequently, O,(Ay: A7) s
nuclear ag a subspace of £y (A5, A1)

‘We thus proved

THEOREM 8. O,(A1: Ay is a complete, nuclear space.

We now proceed to prove that the space Oy (K, : Ky) is bornologie.
‘We need a lemmas:

TevMMA. Let U be a convex circled subset of Oy (K3 : K1) that absorbs
each bounded set in Oy(Ey: Ki). There is a keN and a sequence {M} of
positive numbers such that the sels

Ay = {peOy (7 K3) A Byt lyleg < M3},
1=1,2,..., are contained in U.

Proof. Assume the converse, i.e. that there are numbers lyeN and
functions yreOu (K3 : K1) ~ Brg, b =1, 2, ..., such that

1
el < 7 and U,
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Then the sequence {kw:} is bounded in Oy (K;: Ki). But U absorbs
every bounded setin 0y (K;: Ky), and so thereis a peR such that ky,eul,
k=1,2,... Hence yze U for sufficient large k’s, since U is circled. This
is a contradiction, which proves the lemma.

TeEOREM 9. The space Oy (K, : K;) is bornologic.

Proof. Let U be any convex circled subset of Oy (K;: K;) that
absorbs all bounded sets in 0 (K, : K;). Also, let &, {My} and {41}
De ag in the preceding lemma. If the sets 4, 1 = 1,2, ..., are detined as

Apy = {weBry |yl < Mi},
then the wunion

(=]
* *
Ay = 1U1 Ay

absorbs every bounded set in Hy, by virtue of theorem 7. Moreover, by
the choice of k, {M;} and {4}, we have

4}~ Oy(Ey: Ky = T.

But, being an (LB)-space, Ej, is bornologic. Therefore the convex
circled hull Ujf of the union 4} o U is a 0-neighborhood in Hy. Since,
by theorem 6, Oy (K,:K;) is the projective limit of the sequence
{E]‘:k =1,2,} and

Uy~ Oy(Ey: Ky) =T,

U is a 0-neighborhood in 04 (K, : K7). The proof is thus complete.

Since the spaces O,(47y: A7) and Oy(K;: Ky correspond to each
other under the Fourier transform, from theorems 8 and 9 we can draw
the following corollary:

CoROLLARY 1. The space 0,(Ay: A7) is complete, nuclear and bor-
nologic.

But each quasi-complete bornologic space is barreled ([6], p. 63,
corollary) and each quasi-complete barreled nuelear gpace is a Montel
space ([6], p. 194, exercise 19b). Thus we have

COROLLARY 2. 0,(A'y: A7) is a Montel space.

We now characterize the dual On(A'y: Ay) of O,(Ay: A7), First we
observe that 0,(o#7: #7) is a (linear) subspace of the space O,(% : &)
of convolution operators in &' (see [7], vol. IT, p. 100, or [8]) and the
imbedding @,(X7: A5) — O(F' : #') i continuous.

Suppose now that f is a (°-function such that

(8) D’f(@) = O (exp (ko))

icm
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as |@| — oo for all peN™ and some keN (independent of p). Then flox
is a very slowly increasing O®-function and therefore belongs to the
dual O,(F" : &) of O,(% : &') (see [4], chap. II, p. 131, or [8]). Hence
flowe O(A1: 7), which implies that fed,(#7: ), by the continuiby
of the mapping S — 03,8 from Op(Ay: A7) into O,(H: A7)

On the other hand, from theorem 1 it follows that the convolubion
Txq of any Te 'y and ge Ay is a C®-function satisfying condition (8),
and 5o TwpeO(H7: Ay). Furthermore, it Se@, (A7 : A7), then

(9) (Sq)-T = §-(pxT) = 8- (p+1);

the convolution S#g is in o, by the remark following theorem 2.

THroREM 10. The dual 0,(Ay: A7) of O.(Hy:Hy) is the space of
all C°-functions satisfying condilion (8).

Proof. As said before, each (™-function satisfying condition (8) is
in @,(Ay: A7) A

Conversely, by a well known theorem ([1], chap. IV, §2, proposi-
tion 11, or [6], p., 139, corollary 4) there exists an (algebraic) isomorphism
of the tensor product o, ® A, onto the dual Lg(H y, #1) of Le(H'y, A1)-
Under this isomorphism to each element Yoy ®@Tje £ @A 1 there cor-
responds an Ie%, (A 1, ;) such that

I(w) = Dule) Ty

for all ue &L (A'y, A'y).
But for % = Sed,(A1: A7) we have

u(py) = S*g;.
Hence
1(8) = Y(Sxgn) Ty = D8l Tp)"

by virtue of (9). Thus the restriction of I to O, (A'y: Ay) can be identified
with the finite sum X(p;xT;)V of C*-funefions satisfying condition (8).
This proves the theorem.

TEBOREM 11. The space O(H1: A 1) endowed with the strong topology
is a complete nuclear Montel space.

Proof. 0,(: A;y) is a complete Montel space, by corollary 1
and corollary 2 from theorem 9. Furthermore, O,y : A7) is a closed
subspace of the space &p(A'y, %), which is re,flexive ([4J, ch?@f. 1, §4,
proposition 19, corollary 2). Hence 0,(o1: A7) can be identified with
a quotient space of the dual Ly (A 'y, A1) of Lo(H 1y A7) (B3], P- 102,
covollary 2). Bub &p(Hy, #y) is nuelear ([4], chap. II, § 2, theorem 9,
corollary 3), and o 0,( : A7) is also nuclear,
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1. A gequence {#,} in a Banach space E is called a basic sequence
(respectively, an unconditional basic sequence) if it is a basis (vespectively,
an unconditional basis) of its closed linear span [,] in B (see [1]). It
is well known that {z,} is a basic sequence (respectively, an uncondi-
tional basic sequence) if and only if there exists a constant K >1 (re-
spectively, K, >1) such thab

) I i‘ s

for any scalars ay, ..., Onym (respectively, such thatb

@ |3 ] < ] 3

for any Sealars oy, ..., Ony 01y -cr) On with 64 <1, ..., [8,] <1); some
authors call this the K-condition. The least sueh constant O ({zn})
= minK (respectively, Cu({z,}) = minkK,) is called the comstant (respec-
tively, the unconditional constant) of the basic sequence {z,}; obviously
we have 1 < 0 < 0,. In the particular case whers ¢ = 1 (respectively,

. =1) {m,} is called a monotone (respectively, an orthogonal [5]) basic
sequence.

Tt is well known [4] that if {#,} is & basis (respectively, an uncondi-
tional basis) of a Banach space E, then the sequence of coefficient function-
als {fu} < E*(i.e. for which filz;) = 8y) is a basic sequence (vespectively,
an unconditional basic sequence) in the conjugate space E* (but, in
general, [f,] # B*). Therefore it is natural to ask what are the relations
between the constants of {z,} and {fx}, and the present note is devoted
o this problem. We shall give upper and lower evaluations of C({f.})

n+m
<K H 2 525
=1
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