

On the space of convolution operators in \mathcal{K}'_1

bу

Z. ZIELEŹNY (Wrocław)

Convolution operators in the space \mathscr{K}'_1 (= Λ_{∞}) of distributions of exponential growth in R^n were characterized by Hasumi [5]. The space $\mathscr{O}'_c(\mathscr{K}'_1:\mathscr{K}'_1)$ of these operators can be identified with a subspace of Schwartz's space \mathscr{O}'_c of rapidly decreasing distributions. A distribution T is in $\mathscr{O}'_c(\mathscr{K}'_1:\mathscr{K}'_1)$ if and only if, for every $a \in R^n$, the product $\exp(a \cdot) T$ is bounded on R^n , i.e. belongs to the space \mathscr{B}' ([7], vol. Π , p. 56).

In this paper we prove that $\mathcal{O}_c(\mathscr{K}_1^c:\mathscr{K}_1^c)$, endowed with the topology induced in $\mathcal{O}_c(\mathscr{K}_1^c:\mathscr{K}_1^c)$ by the space $\mathscr{L}_b(\mathscr{K}_1^c,\mathscr{K}_1^c)$ of all continuous linear mappings from \mathscr{K}_1^c into \mathscr{K}_1^c with the topology of uniform convergence on all bounded sets, is nuclear, complete and bornologic, and therefore a Montel space. We also characterize the space $\mathscr{O}_c(\mathscr{K}_1^c:\mathscr{K}_1^c)$ of C^{∞} -functions, which is the dual of $\mathscr{O}_c(\mathscr{K}_1^c:\mathscr{K}_1^c)$.

We denote by N, R and C the sets of natural, real and complex numbers respectively. The sets of the corresponding n-tuples are denoted by N^n , R^n and C^n ; for the sum, the scalar product, etc. of points in each of these spaces we use the standard notation (see e.g. [7] or [5]).

A horizontal strip in C^n around R^n of width b>0 is defined as

$$V_b = \{\zeta = (\zeta_1, ..., \zeta_n) \in C^n : |\text{Im } \zeta_j| \leq b, j = 1, 2, ..., n\}.$$

We use the function

$$\sigma_b(x) = \prod_{j=1}^n \left[\exp(bx_j) + \exp(-bx_j) \right],$$

where $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and $b \in \mathbb{R}$. In particular, a function f on \mathbb{R}^n is of exponential growth, if f/σ_b is bounded for some b.

The spaces \mathscr{D} , \mathscr{D}' , \mathscr{D}' , \mathscr{D}' and \mathscr{E}' are those introduced in [7]. In all spaces of distributions the scalar product of a distribution T and a test function φ (i.e. the value of T on φ) is denoted by $T \cdot \varphi$. For any $T \in \mathscr{D}'$ and $h \in \mathbb{R}^n$, $\tau_h T$ is the translation of T by h and \check{T} is obtained from T by symmetry with respect to the origin.

1. The spaces \mathscr{K}_1 and \mathscr{K}_1' . Convolution operators in \mathscr{K}_1' . For the sake of completeness we include a brief exposition of the main facts concerning the spaces \mathscr{K}_1 and \mathscr{K}_1' and the convolution operators in \mathscr{K}_1' .

 \mathscr{K}_1 is the space of all C^{∞} -functions φ on R^n such that $\exp\left(k\left|x\right|\right)D^p\varphi\left(x\right)$ is bounded in R^n for each $k \in N$ and $p \in N^n$ (D^p) is the partial derivative). The topology in \mathscr{K}_1 is defined by the system of semi-norms

$$v_k(\varphi) = \sup_{x \in \mathbb{R}^{n}, |\varphi| \leq k} \exp(k|x|) |D^p \varphi(x)|, \quad k = 1, 2, \dots$$

Then \mathcal{K}_1 is a Fréchet nuclear space ([5], proposition 1).

The dual \mathscr{K}_1' of \mathscr{K}_1 is the space of distributions containing all tempered distributions. \mathscr{K}_1' is the space of "distributions of exponential growth", which are characterized by the following theorem:

THEOREM 1. (a) A distribution $T \in \mathcal{D}'$ is in \mathcal{H}'_1 if and only if T can be represented in the form

$$T = D^{p}[\exp(k|x|)F(x)],$$

where $p \in \mathbb{N}^n$, $k \in \mathbb{R}$ and F is a bounded, continuous function on \mathbb{R}^n .

(b) A distribution $T \in \mathcal{D}'$ is in \mathcal{H}'_1 if and only if each regularization $T * \alpha$, $\alpha \in \mathcal{D}$, is a continuous function of exponential growth; in that case there is a $k \in \mathbb{N}$ such that

$$(T*a)(x) = O(\exp(k|x|))$$

as $|x| \to \infty$, for all $\alpha \in \mathcal{D}$.

- (c) In order that a distribution T be in \mathcal{K}_1' it is necessary that there exists a $k \in \mathbb{N}$ such that the product $\frac{1}{\sigma_k}$ T is bounded in \mathbb{R}^n (i.e. $\frac{1}{\sigma_k}$ $T \in \mathscr{S}'$), and it is sufficient that, for each function $\varphi \in \mathcal{K}_1$, the product φT is bounded in \mathbb{R}^n .
- (d) In order that a distribution T be in \mathscr{K}'_1 it is necessary that there exists a $k \in N$ such that the set of distributions $\tau_h T | \exp(k |h|)$, $h \in \mathbb{R}^n$, is bounded in \mathscr{D}' , and it is sufficient that, for any function g(h) decreasing more rapidly than all powers of $\exp(-|h|)$, the set of distributions $g(h)\tau_h T$, $h \in \mathbb{R}^n$, is bounded in \mathscr{D}' .
- Part (a) of the theorem was proved by Hasumi ([5], proposition 3). The proof of the remaining parts is similar to the proof of the corresponding statements for tempered distributions (see [7], vol. II, p. 96-97) and we leave it out.

The topology of \mathscr{K}_1' is the strong dual topology; it makes \mathscr{K}_1' into a complete, locally convex space which has all the properties proved in [7] for the space \mathscr{S}' of tempered distributions. In particular, \mathscr{K}_1' is a Montel space.

For a function $\varphi \in \mathcal{K}_1$, its Fourier transform

$$\hat{\varphi}(\zeta) = \int_{R^n} \exp(-2\pi i \zeta \cdot x) \varphi(x) dx$$

is defined for all $\zeta \in C^n$. We denote by K_1 the space of Fourier transforms of functions from \mathcal{X}_1 . K_1 consists of all entire functions rapidly decreasing in any horizontal strip. In other words, an entire function ψ is in K_1 if and only if, for every $k \in N$,

$$w_k(\psi) = \sup_{\zeta \in \mathcal{V}_k} (1 + |\zeta|)^k |\psi(\zeta)| < \infty.$$

Fourier inversion formula also holds. The topology of K_1 is defined by the system of semi-norms w_k , k = 1, 2, ... Then the Fourier transform is a topological isomorphism of \mathcal{X}_1 onto K_1 .

The dual K_1' of K_1 is the space of Fourier transforms of distributions from \mathcal{K}_1' . For a distribution $T \in \mathcal{K}_1'$ its Fourier transform \hat{T} is defined by the Parseval-Plancherell formula

$$\hat{T}\cdot\hat{\varphi}=T\cdot\check{\varphi}$$
.

 K'_1 is provided with the strong topology. Then the Fourier transform is a topological isomorphism of \mathcal{K}'_1 onto K'_1 .

For $S \in \mathcal{K}_1'$ and $T \in \mathcal{E}'$, the convolution S*T is well defined as a distribution in \mathcal{K}_1' and $T \to S*T$ is a continuous linear mapping from \mathcal{E}' into \mathcal{K}_1' . We call S a convolution operator in \mathcal{K}_1' , if the latter mapping is continuously extendable to a mapping from \mathcal{K}_1' into \mathcal{K}_1' . We denote by $\mathcal{O}_c'(\mathcal{K}_1':\mathcal{K}_1')$ the linear space of all convolution operators in \mathcal{K}_1' . $\mathcal{O}_c'(\mathcal{K}_1':\mathcal{K}_1')$ is a space of distributions, which can be characterized as follows:

THEOREM 2. A distribution S is in $C'_c(\mathcal{K}'_1:\mathcal{K}'_1)$ if and only if it satisfies one of the equivalent conditions:

- (a) For every $a \in \mathbb{R}^n$, the product $\exp(a \cdot) S$ is a bounded distribution, i.e. $\exp(a \cdot) S$ belongs to \mathscr{B}' .
- (b) For every $k \in N$, S can be represented as a finite sum of derivatives of continuous functions F_n ,

$$S = \sum_{|p| \le m} D^p F_p,$$

where

$$|F_{p}(x)| \leqslant M_{p} \exp\left(-k|x|\right);$$

 M_n are constants.

(c) For every $k \in \mathbb{N}$, the set of distributions $\exp(k|h|)\tau_h S$, $h \in \mathbb{R}^n$, is bounded in \mathscr{D}' .

(d) For every $a \in \mathcal{D}$, the regularization S * a is in \mathcal{K}_1 .

Proof. It was proved by Hasumi ([5], proposition 9) that a distribution S is in $\mathcal{O}'_c(\mathscr{K}'_1:\mathscr{K}'_1)$ if and only if it satisfies condition (b). Thus for the proof of the theorem it is sufficient to show that conditions (a)-(d) are equivalent. We proceed successively.

Assume first that S satisfies condition (a). Then, for any $k \in N$, the product $\sigma_k S$ is a bounded distribution and therefore

$$\sigma_k S = \sum_{|p| \leq m} D^p G_p,$$

where $m \in N$ and G_p are continuous functions bounded in \mathbb{R}^n (see [7], vol. II, p. 57). Hence

$$S = \sum_{|p| \le m} \frac{1}{\sigma_k} D^p G_p,$$

where to each term we can apply the formula

$$\frac{1}{\sigma_k} D^p G_p = \sum_{q \leqslant q \leqslant p} (-1)^{|p-q|} \binom{p}{q} D^{p-q} \left[G_p D^q \left(\frac{1}{\sigma_k} \right) \right].$$

This leads to the desired representation (1) and (2), because the functions $G_p D^q \left(\frac{1}{\sigma_k}\right)$ are continuous in E^n and

$$G_p(x)D^q\left(\frac{1}{\sigma_k(x)}\right) = O\left(\exp\left(-k|x|\right)\right)$$

as $|x| \to \infty$.

Now, for every function F_p in (1) and every compact set K in \mathbb{R}^n , the functions

$$\exp(k|h|)F_p(x+h), \quad h \in \mathbb{R}^n,$$

are uniformly bounded in K. Consequently

$$\exp(k|h|)\tau_hS=\sum_{|p|\leqslant m}\exp(k|h|)D^p(\tau_hF_p),\quad h\,\epsilon R^n,$$

is a bounded set of distributions, and so condition (c) follows from (b). Further, condition (c) implies (d), since for every $a \in \mathcal{D}$ the C^{∞} -func-

Further, condition (c) implies (d), since for every $\alpha \in \mathscr{D}$ the C^{∞} -functions

$$(\exp(k|h|)\tau_h S) * \alpha = \exp(k|h|)\tau_h(S*\alpha), \quad h \in \mathbb{R}^n,$$

are uniformly bounded in \mathbb{R}^n .

But each distribution satisfying condition (d) is bounded (and even rapidly decreasing), by a theorem of Schwartz ([7], vol. II, p. 100). On the other hand, we have

$$(\exp(a\cdot)S)*a = \exp(a\cdot)[S*(\exp(-a\cdot)a)],$$

and therefore condition (d) holds also if S is replaced by any product $\exp(\alpha \cdot)S$, $a \in \mathbb{R}^n$. Thus from (d) we conclude that all products $\exp(\alpha \cdot)S$, $a \in \mathbb{R}^n$, are bounded distributions, which completes the proof of theorem 2.

Remark. Condition (d) can be replaced by the stronger condition (d') For every $\varphi \in \mathcal{X}_1$, the convolution $S*\varphi$ is in \mathcal{X}_1 and the mapping $\varphi \to S*\varphi$ of \mathcal{X}_1 into \mathcal{X}_1 is continuous. This can be easily derived from the representations (1) and (2).

We denote by $\mathcal{O}_M(K_1':K_1')$ the space of all C^{∞} -functions extendable over C^n as entire functions slowly increasing in any horizontal strip. This means that an entire function χ is in $\mathcal{O}_M(K_1':K_1')$ if and only if for each $k \in N$ there exists an $l \in N$ such that

$$\sup_{\zeta \in V_k} \frac{|\chi(\zeta)|}{(1+|\zeta|)^l} < \infty.$$

 $\mathcal{O}_{M}(K_{1}':K_{1}')$ is the space of multiplication operators in K_{1}' . If $\psi \in K_{1}$ and $\chi \in \mathcal{O}_{M}(K_{1}':K_{1}')$, then $\psi \chi \in K_{1}$ and the mapping $\psi \to \psi \chi$ of K_{1} into K_{1} is continuous. The product χF of $\chi \in \mathcal{O}_{M}(K_{1}':K_{1}')$ and $F \in K_{1}'$ is defined by equation

$$(\chi F) \cdot \psi = F \cdot (\chi \psi), \quad \psi \in K_1.$$

THEOREM 3. The Fourier transform $S \to \hat{S}$ maps $\mathcal{O}'_{\mathbf{c}}(\mathscr{K}'_1:\mathscr{K}'_1)$ onto $\mathcal{O}_M(K'_1:K'_1)$. Moreover, for $S \in \mathcal{O}'_{\mathbf{c}}(\mathscr{K}'_1:\mathscr{K}'_1)$ and $T \in \mathscr{K}'_1$ we have

$$\widehat{S*T} = \hat{S}\hat{T}.$$

The proof of the first part of theorem 3 is contained in [5] (proposition 8 and proposition 9). The interchange formula (3) can be easily verified.

2. The topological space $\mathcal{O}'_{c}(\mathscr{K}'_{1}:\mathscr{K}'_{1})$ and its dual. We define the topology \mathscr{F} of $\mathcal{O}'_{c}(\mathscr{K}'_{1}:\mathscr{K}'_{1})$ to be that induced in $\mathcal{O}'_{c}(\mathscr{K}'_{1}:\mathscr{K}'_{1})$ by the space $\mathscr{L}_{b}(\mathscr{K}'_{1},\mathscr{K}'_{1})$ of all continuous linear mappings from \mathscr{K}'_{1} into \mathscr{K}'_{1} endowed with the topology of uniform convergence on all bounded sets.

By the remark following theorem 2, $\mathcal{O}'_{c}(\mathscr{K}'_{1}:\mathscr{K}'_{1})$ can also be regarded as a subspace of the space $\mathscr{L}(\mathscr{K}_{1},\mathscr{K}_{1})$ of all continuous linear mappings from \mathscr{K}_{1} into \mathscr{K}_{1} . Denote by \mathscr{F}' the topology induced in $\mathcal{O}'_{c}(\mathscr{K}'_{1}:\mathscr{K}'_{1})$ by $\mathscr{L}_{b}(\mathscr{K}_{1},\mathscr{K}_{1})$. Then we have

THEOREM 4. The topologies $\mathscr T$ and $\mathscr T'$ in $\mathscr O_c'(\mathscr K_1':\mathscr K_1')$ coincide.

Proof. Let M(B, U) be a set in the 0-neighborhood subbase for the topology \mathscr{T} , i.e.

$$M(B, U) = \{ S \in \mathcal{O}'_c(\mathcal{X}'_1 : \mathcal{X}'_1) : S * T \in U \text{ for all } T \in B \},$$

where B is a bounded set and U a 0-neighborhood in \mathcal{X}'_1 (1). We prove that M(B, U) contains a set M'(B', U') from the 0-neighborhood base for the topology \mathcal{F}' .

The topology of \mathscr{X}_1' is the strong dual topology and also $U_1 \subset U_2$ implies $M(B, U_1) \subset M(B, U_2)$. Therefore we may assume that

$$U = U(B', \varepsilon) = \{ T \in \mathscr{K}'_1 : |T \cdot \varphi| < \varepsilon \text{ for all } \varphi \in B' \},$$

where B' is a bounded set in \mathcal{K}_1 and $\varepsilon > 0$. We also may assume that

$$B = \check{B} = \{\check{T} \colon T \in B\}$$

and that the same symmetry condition holds for B'.

Since \mathscr{K}_1 is barreled, its topology coincides with the strong topology, and so

$$U' = U'(B, \varepsilon) = \{ \varphi \in \mathcal{K}_1 : |T \cdot \varphi| < \varepsilon \text{ for all } T \in B \}$$

is a 0-neighborhood in \mathcal{K}_1 .

Now, the set

$$M'(B', U') = \{S \in \mathcal{O}_{\epsilon}'(\mathcal{K}'_1 : \mathcal{K}'_1) : S * \varphi \in U' \text{ for all } \varphi \in B'\}$$

belongs to the 0-neighborhood base for the topology \mathcal{F}' . Moreover, if $S \in M'(B', U')$, then

$$|T \cdot (S * \varphi)| < \varepsilon$$

for all $T \in B$ and $\varphi \in B'$. Hence, by the symmetry of B and B',

$$|(T*S)\cdot\varphi|<\varepsilon$$

for all $T \in B$ and $\varphi \in B'$. Consequently, $T * S \in U$ for each $T \in B$, and so $S \in M(B, U)$. This proves that $M'(B', U') \subset M(B, U)$.

Similarly, one can show that each set in the 0-neighborhood base for \mathscr{F}' contains a set from the 0-neighborhood base for \mathscr{F} . Thus \mathscr{F} and \mathscr{F}' coincide, q.e.d.

We denote by $\mathscr{L}_s(\mathscr{K}_1,\,\mathscr{K}_1)$ the space $\mathscr{L}(\mathscr{K}_1,\,\mathscr{K}_1)$ under the topology of simple convergence.

THEOREM 5. The topology \mathscr{F}' in $\mathscr{O}'_c(\mathscr{K}'_1:\mathscr{K}'_1)$ coincides with the topology induced in $\mathscr{O}'_c(\mathscr{K}'_1:\mathscr{K}'_1)$ by the space $\mathscr{L}_s(\mathscr{K}_1,\mathscr{K}_1)$.

Let \mathscr{F}'' be the topology in \mathscr{O}_M $(K_1':K_1')$ corresponding to \mathscr{F}' uneer the Fourier transform. Then theorem 5 can be stated equivalently as follows:

THEOREM 5'. The topology \mathscr{T}'' in $\mathscr{O}_M(K_1':K_1')$ coincides with the topology induced in $\mathscr{O}_M(K_1:K_1')$ by the space $\mathscr{L}_s(K_1,K_1)$.

Proof. Let B be a bounded set and U a 0-neighborhood in K_1 . Then the set

$$N(B, U) = \{ \chi \in \mathcal{O}_M(K'_1 : K'_1) : \chi \psi \in U \text{ for all } \psi \in B \}$$

is in the 0-neighborhood base for the topology \mathcal{F}'' . We define a finite system of functions $\psi_1, \ldots, \psi_m \in K_1$ such that the set

$$N'(\psi_1, ..., \psi_m; U) = \{ \chi \in \mathcal{O}_M(K'_1 : K'_1) : \chi \psi_j \in U, j = 1, ..., m \}$$

is contained in N(B, U).

Suppose that U consists of all functions $\psi \in K_1$ such that

$$(1+|\zeta|)^b|\psi(\zeta)|<\varepsilon$$

for some $b \in N$, $\varepsilon > 0$, and all $\zeta \in V_b$. The function

$$\gamma(\zeta) = \sup_{\psi \in B} |\psi(\zeta)|$$

is bounded and rapidly decreasing in V_h .

Fix now a $\nu \in N$ such that

(4)
$$4n(2k+1)^{n-1}\exp\left[-(k\nu-1)^2+nb^2+n/4\right] \leqslant \frac{1}{4^k}$$

for k = 1, 2, ... It is sufficient to find a ν satisfying the inequality for k = 1; then one can prove by induction that it holds for all k.

For each integer $k \ge 0$ we denote by $c^{k,l} = (c_1^{k,l}, \dots, c_n^{k,l}), l = 1, \dots, l_k$, all points $\xi = (\xi_1, \dots, \xi_n) \in \mathbb{R}^n$, whose coordinates are subject to the following conditions:

- (i) ξ_j/ν is integral and $|\xi_j/\nu| \leqslant k$ for all j = 1, ..., n;
- (ii) $|\xi_j| = k\nu$ for at least one j.

It is easy to see that $l_0 = 1$ and that

(5)
$$l_k \leq 2n(2k+1)^{n-1}, \quad k=1,2,\ldots$$

We also use the following notation:

$$egin{aligned} I_{k,l} &= \Big\{ \xi \, \epsilon R^n : |\xi_j - c_j^{k,l}| \leqslant rac{1}{2} \,, \quad j = 1, \ldots, n \Big\}, \ \lambda_{k,l} &= \sup_{\xi \in \mathcal{V}_b, \operatorname{Rec}_t I_{k,l}} \gamma(\xi), \quad \lambda_k &= \max_{1 \leqslant l \leqslant l_k} \lambda_{k,l}. \end{aligned}$$

Note that the sequence $\{\lambda_k\}$ is rapidly decreasing, i.e. $k^{\mu}\lambda_k \to 0$ as $k \to \infty$ for every $\mu \in N$.

⁽¹⁾ The 0-neighborhood base in $\mathscr{O}'_c(\mathscr{K}'_1:\mathscr{K}'_1)$ consists of all finite intersections of sets of this form.

We may assume that the function γ does not change too rapidly, since otherwise we can replace B by a suitable bounded set $B^* \supset B$. Thus we assume that

(6)
$$\lambda_{0,1} \geqslant \lambda_k \exp(-k\nu), \quad k = 1, 2, \dots,$$

and that analogous conditions are satisfied for all translations of γ by the points $o^{k,l}$.

By (5) and the rapid decrease of the sequence $\{\lambda_k\}$,

$$\psi_1(\zeta) = \sum_{k=0}^{\infty} \sum_{l=1}^{l_k} 2\lambda_{k,l} \exp\left[-(\zeta - e^{k,l})^2 + n/4\right]$$

is a function in K_1 , the series being convergent uniformly in every horizontal strip on multiplying each term by an arbitrary (but the same for each term) polynomial of ζ (2). Moreover,

$$|\psi(\zeta)| \geqslant \gamma(\zeta)$$

for all $\zeta \in V_b$ with

$$\operatorname{Re} \zeta \in \bigcup_{k=0}^{\infty} \bigcup_{l=1}^{l_k} I_{k,l}.$$

In fact, for $\zeta \in V_b$ with $\text{Re } \zeta \in I_{0,1}$, we have

$$2\lambda_{0,1} |\exp(-\zeta^2 + n/4)| \ge 2\lambda_{0,1}$$

and, on the other hand,

$$\begin{split} \sum_{k=1}^{\infty} \sum_{l=1}^{l_k} 2\lambda_{k,l} | \exp\left[-(\zeta - c^{k,l})^2 + n/4\right] | \\ & \leq \sum_{k=1}^{\infty} 4n (2k+1)^{n-1} \lambda_k \exp\left[-\left(k\nu - \frac{1}{2}\right)^2 + nb^2 + n/4\right] \\ & \leq 3 \sum_{k=1}^{\infty} \frac{\lambda_k}{4^k} \exp\left(-k\nu\right) \leq \lambda_{0,1}, \end{split}$$

on account of (4), (5) and (6). Thus in this case inequality (7) is proved. For $\zeta \in V_b$ with $\text{Re } \zeta \in I_{k,l}, \ k > 0$, the proof is similar.

Translating now the system of points $e^{k,l}$, $k = 0, 1, ...; l = 1, ..., l_k$, we construct by the same method ν^n functions $\psi_1, ..., \psi_n \in K_1$ such that

$$\max_{1 \leqslant j \leqslant \nu^n} |\psi_j(\zeta)| \geqslant \gamma(\zeta)$$

$$N'(\psi_1,\ldots,\psi_n;\ U)\subset N(B,\ U),$$

which is the desired result.

For each pair k, $l \in N$ we denote by $E_{k,l}$ the space of all functions ψ analytic in V_k and such that

$$\|\psi\|_{k,l} = \sup_{\zeta \in \mathcal{V}_k} \frac{|\psi(\zeta)|}{(1+|\zeta|)^l} < \infty.$$

With $|| ||_{k,l}$ as a norm, $E_{k,l}$ is a Banach space.

For fixed k, the spaces $E_{k,l}$, $l=1,2,\ldots$, form an increasing sequence and the topology induced in $E_{k,l}$ by $E_{k,l+1}$ is coarser than the topology of $E_{k,l}$. We denote by E_k the inductive limit of the sequence $\{E_{k,l}: l=1,2,\ldots\}$.

Note that E_k is in duality with the space \tilde{E}_k of analytic functions χ in V_k such that, for every $l \in N$,

$$v_{k,l}(\chi) = \sup_{\zeta \in \mathcal{V}_k} (1 + |\zeta|)^l |\chi(\zeta)| < \infty;$$

the topology in \tilde{B}_k is defined by the system of semi-norms $v_{k,l}$, $l=1,2,\ldots$, and the canonical bilinear form of the duality is

$$\langle \psi, \chi \rangle o \langle \psi, \chi
angle = \sup_{\zeta \in \widetilde{\mathcal{F}}_k} \lvert \psi(\zeta) \chi(\zeta)
vert, \quad \psi \in E_k, \, \chi \in \widetilde{E}_k.$$

The sequence $\{E_k: k=1,2,\ldots\}$ is decreasing and we have

THEOREM 6. $\mathcal{O}_{M}(K'_{1}:K'_{1})$ is the projective limit of the sequence $\{E_{k}:k=1,2,\ldots\}$.

Proof. Let E be the projective limit of the sequence $\{E_k : k = 1, 2, \ldots\}$. It is clear that both spaces $\mathcal{O}_M(K_1' : K_1')$ and E consist of the same functions. We prove that their topologies coincide.

Suppose first that N(B, U) is a 0-neighborhood in $\mathcal{O}_M(K_1': K_1')$ for the topology \mathscr{T}'' ; B is a bounded set in K_1 formed of functions $\psi \in K_1$ such that

$$\sup_{\zeta \in \mathcal{V}_k} (1+|\zeta|)^l |\psi(\zeta)| < M_l, \quad l = 1, 2, \ldots,$$

and U is a 0-neighborhood in K_1 ,

$$U = \{ \psi \, \epsilon K_1 : \sup_{\zeta \in \mathcal{V}_k} (1 + |\zeta|)^l |\psi(\zeta)| < \varepsilon, \ l = 1, \dots, l' \}.$$

We set

$$M_l^* = \max\{M_1, \ldots, M_{l+l'}\}$$

⁽²⁾ For $\zeta \in C^n$ we write ζ^2 instead of $\zeta \cdot \zeta$.

and

$$W_{k,l} = \left\{ \psi \, \epsilon \, E_{k,l} \colon \|\psi\|_{k,l} < rac{arepsilon}{M_l^*}
ight\}, \hspace{0.5cm} l = 1,2,\ldots$$

Then, the convex circled hull W_k of the union of the sequence $\{W_{k,l}\colon l=1,2,\ldots\}$ is a 0-neighborhood in E_k . Thus $W=W_k \cap E$ is a 0-neighborhood in E and it is easy to verify that $W\subset N(B,U)$.

Conversely, if $W=W_k \cap E$, where W_k is a 0-neighborhood in E_k , then the polar set W_k^0 of W_k (with respect to the duality between E_k and \tilde{E}_k) is bounded in \tilde{E}_k . Thus, by the method used in the proof of theorem 5, one can find a finite (and therefore bounded) set $B=\{\psi_1,\ldots,\psi_m\}$ in K_1 such that

$$\sup_{\psi \in \mathcal{W}_k^0} |\psi(\zeta)| \leq \max_{1 \leq j \leq m} |\psi_j(\zeta)|$$

for all $\zeta \in V_k$. But, by the bipolar theorem, $W_k^{00} = W_k$. Consequently, if U is the 0-neighborhood in K_1 defined as

$$U = \{ \psi \, \epsilon K_1 : \sup_{\zeta \in V_L} |\psi(\zeta)| < 1 \},$$

then N(B, U) is a 0-neighborhood in $\mathcal{O}_M(K_1': K_1')$ for the topology \mathscr{T}'' and $N(B, U) \subset W$, q.e.d.

The bounded sets in E_k are characterized by the following theorem:

THEOREM 7. A subset B of E_k is bounded in E_k if and only if, for some $l \in \mathbb{N}$, B is a bounded subset of $E_{k,l}$.

Proof. Each bounded subset of any $E_{k,l}$ is obviously bounded in E_k .

Conversely, if B is bounded in E_k , then $B \cap E_{k,l}$ is bounded in $E_{k,l}$, l=1,2,... It is thus sufficient to prove that B is contained in some $E_{k,l}$. Suppose that this is not true. Then one can find functions $\psi_l \in B$ and points ${}_{l}\zeta \in V_k$, l=1,2,..., such that

$$1<|_1\zeta|<|_2\zeta|<\ldots<|_l\zeta|\to\infty,$$

and

$$|\psi_l(\iota\zeta)| > l(1+|\iota\zeta|)^l$$
.

Now, for each $l \in N$, we set

$$U_{l} = \left\{ \psi \, \epsilon E_{k,l} \colon \|\psi\|_{k,l} < \frac{1}{2^{l+1} (1 + |_{l}\zeta|)^{l}} \right\}.$$

Then the convex circled hull U of the union of the U_l 's is a 0-neighborhood in E_k and it is easy to verify that $l^{-1}\psi_l \notin U$. This is a contradiction, and so B is contained in some $E_{k,l}$, q.e.d.

COROLLARY 1. A subset B of $\mathcal{O}_M(K_1':K_1')$ is bounded in $\mathcal{O}_M(K_1':K_1')$ if and only if for each $k \in \mathbb{N}$ there is an $l \in \mathbb{N}$ such that B is a bounded subset of $E_{k,l}$.

This corollary can also be proved directly in an easy way.

COROLLARY 2. A sequence $\{\psi_i\}$ converges to 0 in $\mathcal{O}_M(K_1':K_1')$ if and only if for each $k \in \mathbb{N}$ there is an $l \in \mathbb{N}$ such that $\{\psi_i\}$ converges to 0 in $E_{k,l}$.

COROLLARY 3. A sequence $\{S_i\}$ converges to 0 in $\mathcal{O}'_c(\mathscr{K}'_1:\mathscr{K}'_1)$ if and only if for each $k \in \mathbb{N}$ there exists a representation

$$S_j = \sum_{|p| \leqslant l} D^p F_{j,p},$$

where l is independent of j and $F_{j,p}$ are continuous functions satisfying the following conditions:

(i)
$$\sup_{x \in \mathbb{R}^n} \sigma_k(x) |F_{j,p}(x)| < \infty, |p| \leqslant l, j = 1, 2, ...;$$

(ii) for each fixed p, the sequence $\{\sigma_k F_{j,p}: j=1,2,\ldots\}$ converges to 0 uniformly in \mathbb{R}^n .

We stated in the preceding section that \mathcal{K}_1 is a Fréchet space, and therefore bornologic and complete. This implies that the space $\mathcal{L}_b(\mathcal{K}_1, \mathcal{K}_1)$ is complete (see [1], chap. III, § 3, exercise 18, or [2], p. 73, proposition 7). Moreover, $\mathcal{C}_c(\mathcal{K}_1':\mathcal{K}_1')$ is a closed subspace of $\mathcal{L}_b(\mathcal{K}_1, \mathcal{K}_1)$. In fact, if a filter \mathscr{F} on $\mathcal{O}_c'(\mathcal{K}_1':\mathcal{K}_1')$ converges to S in $\mathcal{L}_b(\mathcal{K}_1, \mathcal{K}_1)$, then \mathscr{F} is a base of a filter on \mathcal{K}_1' converging to S. Thus $S \in \mathcal{K}_1'$ and also $S * \varphi \in \mathcal{K}_1$ for every $\varphi \in \mathcal{K}_1$. Hence $S \in \mathcal{O}_c'(\mathcal{K}_1':\mathcal{K}_1')$ by theorem 3 (d). As a closed subspace of a complete space, $\mathcal{O}_c'(\mathcal{K}_1':\mathcal{K}_1')$ is complete.

Since, in addition, \mathscr{X}_1 is nuclear, the space $\mathscr{L}_b(\mathscr{K}_1, \mathscr{K}_1)$ is nuclear ([4], chap. II, theorem 9, corollary 3). Consequently, $\mathscr{O}_c(\mathscr{K}_1': \mathscr{K}_1')$ is nuclear as a subspace of $\mathscr{L}_b(\mathscr{K}_1, \mathscr{K}_1)$.

We thus proved

THEOREM 8. $\mathcal{O}'_{c}(\mathcal{X}'_{1}:\mathcal{X}'_{1})$ is a complete, nuclear space.

We now proceed to prove that the space $\mathcal{O}_M(K_1':K_1')$ is bornologic. We need a lemma:

Lemma. Let U be a convex circled subset of $\mathcal{O}_M(K_1':K_1')$ that absorbs each bounded set in $\mathcal{O}_M(K_1':K_1')$. There is a $k \in \mathbb{N}$ and a sequence $\{M_l\}$ of positive numbers such that the sets

$$A_{k,l} = \{ \psi \in \mathcal{O}_M(K_1' : K_1') \cap E_{k,l} : ||\psi||_{k,l} \leqslant M_l \},$$

l=1,2,..., are contained in U.

Proof. Assume the converse, i.e. that there are numbers $l_k \in \mathbb{N}$ and functions $\psi_k \in \mathcal{O}_M(K_1': K_1') \cap E_{k,l_k}, k = 1, 2, \ldots$, such that

$$\|\psi_k\|_{k,l_k} < rac{1}{k} \quad ext{ and } \quad \psi_k
otin U,$$

Then the sequence $\{k\psi_k\}$ is bounded in $\mathcal{O}_M(K_1':K_1')$. But U absorbs every bounded set in $\mathcal{O}_M(K_1':K_1')$, and so there is a $\mu \in R$ such that $k\psi_k \in \mu U$, $k=1,2,\ldots$ Hence $\psi_k \in U$ for sufficient large k's, since U is circled. This is a contradiction, which proves the lemma.

THEOREM 9. The space $\mathcal{O}_M(K_1':K_1')$ is bornologic.

Proof. Let U be any convex circled subset of $\mathcal{O}_{\mathcal{M}}(K_1':K_1')$ that absorbs all bounded sets in $\mathcal{O}_{\mathcal{M}}(K_1':K_1')$. Also, let k, $\{M_l\}$ and $\{A_{k,l}\}$ be as in the preceding lemma. If the sets $A_{k,l}^*$, $l=1,2,\ldots$, are defined as

$$A_{k,l}^* = \{ \psi \in E_{k,l} \colon ||\psi||_{k,l} \leqslant M_l \},$$

then the union

$$A_k^* = \bigcup_{l=1}^{\infty} A_{k,l}^*$$

absorbs every bounded set in E_k , by virtue of theorem 7. Moreover, by the choice of k, $\{M_i\}$ and $\{A_{k,l}\}$, we have

$$A_k^* \cap \mathcal{O}_M(K_1':K_1') \subset U.$$

But, being an (LB)-space, E_k is bornologic. Therefore the convex circled hull U_k^* of the union $A_k^* \cup U$ is a 0-neighborhood in E_k . Since, by theorem 6, $\mathcal{O}_M(K_1':K_1')$ is the projective limit of the sequence $\{E_k:k=1,2,\ldots\}$ and

$$U_k^* \cap \mathscr{O}_M(K_1':K_1') = U,$$

U is a 0-neighborhood in $\mathcal{O}_M(K_1':K_1')$. The proof is thus complete.

Since the spaces $\mathcal{O}'_c(\mathcal{X}'_1:\mathcal{X}'_1)$ and $\mathcal{O}_M(K'_1:K'_1)$ correspond to each other under the Fourier transform, from theorems 8 and 9 we can draw the following corollary:

COROLLARY 1. The space $\mathscr{O}'_{c}(\mathscr{K}'_{1}:\mathscr{K}'_{1})$ is complete, nuclear and bornologic.

But each quasi-complete bornologic space is barreled ([6], p. 63, corollary) and each quasi-complete barreled nuclear space is a Montel space ([6], p. 194, exercise 19b). Thus we have

COROLLARY 2. $\mathcal{O}'_{c}(\mathscr{K}'_{1}:\mathscr{K}'_{1})$ is a Montel space.

We now characterize the dual $\mathcal{O}_{c}(\mathscr{K}_{1}':\mathscr{K}_{1}')$ of $\mathcal{O}_{c}'(\mathscr{K}_{1}':\mathscr{K}_{1}')$. First we observe that $\mathcal{O}_{c}'(\mathscr{K}_{1}':\mathscr{K}_{1}')$ is a (linear) subspace of the space $\mathcal{O}_{c}'(\mathscr{S}':\mathscr{S}')$ of convolution operators in \mathscr{S}' (see [7], vol. II, p. 100, or [8]) and the imbedding $\mathcal{O}_{c}'(\mathscr{K}_{1}':\mathscr{K}_{1}') \to \mathcal{O}_{c}'(\mathscr{S}':\mathscr{S}')$ is continuous.

Suppose now that f is a C^{∞} -function such that

(8)
$$D^{p}f(x) = O\left(\exp\left(k|x|\right)\right)$$

as $|x| \to \infty$ for all $p \in N^n$ and some $k \in N$ (independent of p). Then f/σ_k is a very slowly increasing O^{∞} -function and therefore belongs to the dual $\mathcal{O}_c(\mathscr{S}':\mathscr{S}')$ of $\mathcal{O}'_c(\mathscr{S}':\mathscr{S}')$ (see [4], chap. II, p. 131, or [8]). Hence $f/\sigma_k \in \mathcal{O}_c(\mathscr{K}'_1:\mathscr{K}'_1)$, which implies that $f \in \mathcal{O}_c(\mathscr{K}'_1:\mathscr{K}'_1)$, by the continuity of the mapping $S \to \sigma_k S$ from $\mathcal{O}'_c(\mathscr{K}'_1:\mathscr{K}'_1)$ into $\mathcal{O}'_c(\mathscr{K}'_1:\mathscr{K}'_1)$.

On the other hand, from theorem 1 it follows that the convolution $T*\varphi$ of any $T \in \mathcal{H}'_1$ and $\varphi \in \mathcal{H}_1$ is a C^{∞} -function satisfying condition (8), and so $T*\varphi \in \mathcal{O}_{c}(\mathcal{H}'_1:\mathcal{H}'_1)$. Furthermore, if $S \in \mathcal{O}'_{c}(\mathcal{H}'_1:\mathcal{H}'_1)$, then

(9)
$$(S*\varphi) \cdot T = \check{S} \cdot (\varphi * \check{T}) = S \cdot (\varphi * \check{T})^{\vee};$$

the convolution $S*\varphi$ is in \mathcal{X}_1 , by the remark following theorem 2.

THEOREM 10. The dual $\mathcal{O}_{c}(\mathcal{K}_{1}':\mathcal{K}_{1}')$ of $\mathcal{O}_{c}'(\mathcal{K}_{1}':\mathcal{K}_{1}')$ is the space of all C^{∞} -functions satisfying condition (8).

Proof. As said before, each C^{∞} -function satisfying condition (8) is in $\mathcal{O}_c(\mathcal{K}_1':\mathcal{K}_1')$.

Conversely, by a well known theorem ([1], chap. IV, § 2, proposition 11, or [6], p. 139, corollary 4) there exists an (algebraic) isomorphism of the tensor product $\mathcal{K}_1 \otimes \mathcal{K}_1'$ onto the dual $\mathcal{L}_s'(\mathcal{K}_1, \mathcal{K}_1)$ of $\mathcal{L}_s(\mathcal{K}_1, \mathcal{K}_1)$. Under this isomorphism to each element $\sum \varphi_i \otimes T_i \in \mathcal{K}_1 \otimes \mathcal{K}_1'$ there corresponds an $I \in \mathcal{L}_s'(\mathcal{K}_1, \mathcal{K}_1)$ such that

$$I(u) = \sum u(\varphi_i) \cdot T_i$$

for all $u \in \mathcal{L}(\mathcal{K}_1, \mathcal{K}_1)$.

But for $u = S \in \mathcal{O}'_{c}(\mathscr{K}'_{1} : \mathscr{K}'_{1})$ we have

$$u(\varphi_j) = S * \varphi_j.$$

Hence

$$I(S) = \sum_{i} (S * \varphi_{i}) \cdot T_{i} = \sum_{i} S \cdot (\varphi_{i} * \tilde{T}_{i})^{\vee}$$

by virtue of (9). Thus the restriction of I to $\mathscr{O}_{\sigma}'(\mathscr{X}_{1}':\mathscr{X}_{1}')$ can be identified with the finite sum $\sum (\varphi_{i}*\check{T}_{i})^{\vee}$ of C^{∞} -functions satisfying condition (8). This proves the theorem.

THEOREM 11. The space $\mathcal{O}_c(\mathscr{K}_1':\mathscr{K}_1')$ endowed with the strong topology is a complete nuclear Montel space.

Proof. $\mathcal{O}_o(\mathcal{K}_1':\mathcal{K}_1')$ is a complete Montel space, by corollary 1 and corollary 2 from theorem 9. Furthermore, $\mathcal{O}_c(\mathcal{K}_1':\mathcal{K}_1')$ is a closed subspace of the space $\mathcal{L}_b(\mathcal{K}_1,\mathcal{K}_1)$, which is reflexive ([4], chap. I, § 4, proposition 19, corollary 2). Hence $\mathcal{O}_c(\mathcal{K}_1':\mathcal{K}_1')$ can be identified with a quotient space of the dual $\mathcal{L}_b'(\mathcal{K}_1,\mathcal{K}_1)$ of $\mathcal{L}_b(\mathcal{K}_1,\mathcal{K}_1)$ ([3], p. 102, corollary 2). But $\mathcal{L}_b'(\mathcal{K}_1,\mathcal{K}_1)$ is nuclear ([4], chap. II, § 2, theorem 9, corollary 3), and so $\mathcal{O}_c(\mathcal{K}_1':\mathcal{K}_1')$ is also nuclear.

STUDIA MATHEMATICA, T. XXXI. (1968)

References

- [1] N. Bourbaki, Espaces vectoriels topologiques, Acta Sci. Ind. 1229, Paris 1955.
- [2] J. Dieudonné et L. Schwartz, La dualité dans les espaces (F) et (LF), Ann. Inst. Fourier (Grenoble) 1 (1949), p. 61-101.
- [3] A. Grothendieck, Espaces vectoriels topologiques, third ed., São Paulo 1964.
- [4] Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- [5] M. Hasumi, Note on the n-dimensional tempered ultra-distributions, Tôhoku Math. J. 13 (1961), p. 94-104.
 - [6] H. H. Schaefer, Topological vector spaces, New York 1966.
 - [7] L. Schwartz, Théorie des distributions I/II, Paris 1957/1959.
- [8] Z. Zieleźny, Hypoelliptic and entire elliptic convolution equations in subspaces of the space of distributions (I), Studia Math. 28 (1967), p. 317-332.

Reçu par la Rédaction le 30. 12. 1967

On the constants of basic sequences in Banach spaces $_{
m by}$

I. SINGER (Bucharest)

Dedicated to Professors
S. Mazur and W. Orlicz
in honour of the fortieth anniversary
of their scientific activity

1. A sequence $\{x_n\}$ in a Banach space E is called a basic sequence (respectively, an unconditional basic sequence) if it is a basis (respectively, an unconditional basis) of its closed linear span $[x_n]$ in E (see [1]). It is well known that $\{x_n\}$ is a basic sequence (respectively, an unconditional basic sequence) if and only if there exists a constant $K \ge 1$ (respectively, $K_n \ge 1$) such that

(1)
$$\left\| \sum_{i=1}^{n} a_{i} x_{i} \right\| \leqslant K \left\| \sum_{i=1}^{n+m} a_{i} x_{i} \right\|$$

for any scalars a_1, \ldots, a_{n+m} (respectively, such that

(2)
$$\left\| \sum_{i=1}^{n} \delta_{i} \alpha_{i} x_{i} \right\| \leqslant K_{u} \left\| \sum_{i=1}^{n} \alpha_{i} x_{i} \right\|$$

for any scalars $a_1, \ldots, a_n, \delta_1, \ldots, \delta_n$ with $|\delta_1| \leq 1, \ldots, |\delta_n| \leq 1$); some authors call this the K-condition. The least such constant $C(\{x_n\}) = \min K$ (respectively, $C_u(\{x_n\}) = \min K_u$) is called the constant (respectively, the unconditional constant) of the basic sequence $\{x_n\}$; obviously we have $1 \leq C \leq C_u$. In the particular case where C = 1 (respectively, $C_u = 1$) $\{x_n\}$ is called a monotone (respectively, an orthogonal [5]) basic sequence.

It is well known [4] that if $\{x_n\}$ is a basis (respectively, an unconditional basis) of a Banach space E, then the sequence of coefficient functionals $\{f_n\} \subset E^*$ (i.e. for which $f_i(x_j) = \delta_{ij}$) is a basic sequence (respectively, an unconditional basic sequence) in the conjugate space E^* (but, in general, $[f_n] \neq E^*$). Therefore it is natural to ask what are the relations between the constants of $\{x_n\}$ and $\{f_n\}$, and the present note is devoted to this problem. We shall give upper and lower evaluations of $C(\{f_n\})$