STUDIA MATHEMATICA, T. XXXI. (1968)

Critical modulars

by

HIDEGORO NAKANO (Detroit, Mich.)

Let m be a modular on a linear space S, defined in [1]. An element $x \in S$ is said to be homogeneous, if $m(\xi x) = \xi m(x)$ for all $\xi > 0$. Every homogeneous element is finite by the definition. A modular m is said to be homogeneous, if every element of S is homogeneous. If m is convex and homogeneous, then m is a norm by the definition.

An element $x \in S$ is said to be *singular*, if $m(\xi x) = 0$ or $+\infty$ for all $\xi > 0$. A modular m is said to be *singular*, if every element of S is singular. It is obvious by the definition that an element $x \in S$ is homogeneous and singular simultaneously if and only if x is *null*, that is, $m(\xi x) = 0$ for all $\xi > 0$.

An element $x \in S$ is said to be *critical*, if x is homogeneous or singular. A modular m is said to be *critical*, if every element of S is critical. In this paper we consider structure and characterization of critical modulars.

If a modular m is homogeneous or singular, then m is critical by the definition. Conversely we have

STRUCTURE THEOREM. If a modular m is critical, then m is homogeneous or singular.

Proof. We suppose that m is critical and χ is a character of m. We have by the definition

(1)
$$m(\xi(x+y)) \leq \chi m(\chi \xi x) + \chi m(\chi \xi y)$$
 for $x, y \in S$ and $\xi > 0$.

If both x and y are homogeneous, then x+y also is homogeneous, because $m(\xi(x+y)) < +\infty$ for all $\xi > 0$ by (1). Thus if x+y is singular, then $m(\xi(x+y)) = 0$ for all $\xi > 0$, that is, x+y is null. If both x and y are singular, then x+y also is singular, because we can find $\xi > 0$ such that $m(\chi \xi x) = m(\chi \xi y) = 0$, and we have $m(\xi(x+y)) = 0$ for such $\xi > 0$ by (1). Thus if x+y is homogeneous, then $m(\xi(x+y)) = 0$ for all $\xi > 0$, that is, x+y is null.

If there is no homogeneous element which is not null, then m is singular by the definition. Now we suppose that there is a homogeneous element $x \in S$, which is not null. For any other element $y \in S$, if y is singular,

then x-y is homogeneous, because if x-y is singular, then x=(x-y)+yis singular, as proved above. Thus y-x also is homogeneous, and y = (y-x)+x is homogeneous, as proved above. Therefore m is homogeneous.

For a modular m we have defined in [1] the first and second modular norms N_1 and N_2 .

CRITICAL THEOREM. For a convex normal modular m we have $N_1(x)$ $= N_2(x)$ if and only if x is critical.

Proof. For a convex normal modular m, the associate of m is mitself by the Reflexivity Theorem in [1], and by (9) and (11) in [1] we have

(2)
$$N_1(x) = \inf_{\xi>0} \frac{1}{\xi} (1 + m(\xi x)),$$

(3)
$$N_2(x) = \inf_{m(\xi x) \leq 1, \xi > 0} \frac{1}{\xi}$$

for all $x \in S$. If x is homogeneous, then by (2) and (3) we have

$$\begin{split} N_1(x) &= \inf_{\xi>0} \left(\frac{1}{\xi} + M(x)\right) = m(x), \\ N_2(x) &= \inf_{m(\xi x) \leqslant 1, \xi>0} \frac{1}{\xi} = m(x). \end{split}$$

If x is singular, then by (2) and (3)

$$N_1(x) = \inf_{m(\xi x)=0, \xi>0} \frac{1}{\xi} = N_2(x).$$

Conversely, we suppose $N_1(x) = N_2(x)$ and set $a = \sup \xi$. Then $N_2(x) = 1/a$ by (3) and $m(ax) \leq 1$, as m is normal. If m(ax) < 1, then $m(\xi x) = +\infty$ for $\xi > \alpha$, because if there is $\beta > \alpha$ such that $m(\beta x)$ $<+\infty$, then $m(\xi x)$ is a continuous function on $0 \leqslant \xi \leqslant \beta$ and $m(\alpha x)=1$. Thus if m(ax) = 0, then x is singular.

Now we suppose m(ax) > 0. It is obvious that

$$\frac{1+m(\xi x)}{\xi} > \frac{1}{a} \quad \text{for } 0 < \xi \leqslant a.$$

If m(ax) < 1, then $m(\xi x) = +\infty$ for $\xi > a$. If m(ax) = 1, then

$$\frac{1+m(\xi x)}{\xi} > \frac{m(\xi x)}{\xi} \geqslant \frac{m(ax)}{a} = \frac{1}{a} \quad \text{for } \xi > a,$$

since $m(\xi x)$ is a convex function of $\xi > 0$. Therefore

$$\frac{1+m(\xi x)}{\xi} > \frac{1}{\alpha} = N_2(x) \quad \text{for all } \xi > 0.$$

Thus if $N_1(x) = N_2(x)$, then

$$\lim_{\xi \to \infty} \frac{m(\xi x)}{\xi} = \frac{1}{a} \quad \text{and} \quad m(ax) = 1.$$

Since

$$\frac{m(\xi x)}{\xi} \geqslant \frac{m(\alpha x)}{a} = \frac{1}{a} \quad \text{for } \xi \geqslant a,$$

we obtain $m(\xi x)/\xi = 1/a$ for $\xi \geqslant a$, that is, $m(\xi x) = \xi/a$ for $\xi \geqslant a$. In addition, we have

$$\frac{1}{a} \leqslant \frac{m(ax) - m(\xi x)}{a - \xi} \leqslant \frac{m(\eta x) - m(ax)}{\eta - a} \quad \text{for } 0 < \xi < a < \eta.$$

Since

$$\lim_{\eta \to \infty} \frac{m(\eta x) - m(ax)}{\eta - a} = \lim_{\eta \to \infty} \frac{m(\eta x)}{\eta} = \frac{1}{a},$$

we obtain

$$\frac{1-m(\xi x)}{a-\xi}=\frac{1}{a}\quad \text{ for } 0<\xi\leqslant\alpha.$$

Thus $m(\xi x) = \xi/\alpha$ for all $\xi > 0$, that is, x is homogeneous. As an immediate consequence of the Critical Theorem we have

CHARACTERIZATION THEOREM. A convex normal modular m is critical if and only if $N_1 = N_2$.

This Characterization Theorem is proved in [2], when S is a linear lattice and m is convex, normal and additive:

$$m(x+y) = m(x) + m(y) \quad \text{for } x \land y = 0.$$

References

[1] H. Nakano, Generalized modular spaces, this fasc., p. 439-449.

[2] S. Yamamuro, On linear modulars, Proc. Japan Acad. 29 (1951), p. 623-624.

WAYNE STATE UNIVERSITY

Reçu par la Rédaction le 20, 11, 1967