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Amenability and equicontinuity

by
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§ 1. PURPOSE

In this paper I sort out, and give simple proofs for, the relationships
between many conditions related to the existence of invariant means
on locally compact groups.

The new idea here is the value, and the presence when needed, of
equicontinuity in L,; this enables the equivalence proofs from the dis-
crete case, especially those in [1] and [2] to be used in the general case.

The new results here are:

(i) A simple proof that amenability is equivalent to “type (R)”
of Godement [7] (which enables us to prove that approximation on finite
sets is adequate to imply the uniform approximation on compact sets
needed by Godement). (See Theorem 4, ((g=) <> (Isarw) > (gu))

(ii ) A simple proof that Dieudonnd’s, Kesten’s, and Reiter’s condi-
tions are equivalent to each other and to amenability. (Theorem 4,
(ldp) & (Ikp) « (I1sau) & (lax).)

(iii ) The existence of a new family of conditions (n labels in Theorems
1 and 4) intermediate between the Kesten and Godement types, which
are also equivalent to the others.

Most of the history of the subject concerns discrete groups. The
first paper in the field was that of von Neumann [15] in 1929, in which
he accounted for the Banach-Tarski paradoxical decomposition of three-
space. More references and, a survey of what was then known for semigroups
can be found in my paper [1] of 1955; also see [9], § 17. Among the many
contributions to the subject arranged here are those of Kesten [11] who
discussed the spectrum of convolutions over countable discrete groups,
Reiter [17] and [18] on strong left invariance uniform over compact
sets, Hulanicki [10] on “topological” left invariance, Dieudonné [4] on
norms of convolution operators in L,, »p >1, and Namioka [14] and
Stegman [19] proving relationships among some of the conditions above.
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§ 2. RESULTS

In the study of invariant means on locally compact groups, the
problem arises as to the proper definition of “strong” amenability (see
[1],8 5 for discrete groups). By analogy with the discrete case we want
a net ¢, of non-negative, continuous functions vanishing outside compact
sets and with integrals all 1 so that (A) such a net can be constructed
converging to left invariance if a left invariant mean exists, and so that
(B) proofs using this net shall go forward in close analogy to the simple
proofs for the discrete case. (See [1] and especially [2].)

The critical property is so obvious in the discrete case that it is
easily overlooked; every set @ of functions in L, of a discrete space is
a left-equicontinuous set in L,; that is, for each ¢ > 0 there is a neighbor-
hood W, of u, the identity element of @, such that |lp— ¢|l;, < ¢ for all
s in W, and all ¢ in @. (In the discrete case simply take all W, = {u}.)
Here and hereafter we use [l,p] (1) = ¢(st) and [7s¢] (t) = @(ts) for all
t in G.

2.1. Notation. G will be a locally compact group. We will always
use left Haar measure H on G, denoting it by ds or dg. (See, for example,
Hewitt and Ross [9] for convolutions and Haar measure.) We will use
the complex spaces L, = L, (@) with respect to Haar measure H (see [9]).
Recall that for 1<p< oo and 1/p+1/p’ =1, 1< p’' < oo, each x in
L, determines a conjugate linear functional #V in Ly by the usual rule

2 (¢) = [a()p()dt,
G

and that the relation of # to #V is a linear isometry between L, and L.

We shall also need the space C, of two-sided uniformly continuous
complex functions on G; that is C, is the set of all bounded continuous
funections # on G such that for each & > 0 there is a neighborhood W, of
w such that ||lx—z|. < & and |ree—2|o < e if s is in W,. Agreeing
with a preference once expressed by Namioka, we call the first of these
conditions left uniform continuity in L, ; this does not agree with the
notation of Hewitt and Ross [9].

Oy is the space of all complex continuous functions vanishing outside
compact sets. Clearly Oy, is a subset of C, and of all the L,.

On any reasonable space E of functions normed with the (essential)
least upper bound of the absolute values, one defines a mean m on K to
be an element m of E* such that the value m(x) is in the closed convex
hull of the (essential) range of values of #. In the case of an AM-space
(3], p-100), such as O, C(G), or L, this is equivalent to (i) ||m| =1,
(i) m(e) = 1 (where ¢ is the function constantly 1 on @), and (iii) m(z) > 0
if >0.
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We let M be the set of means on L, and M the set of means on Oy,
(Hewitt and Ross [9], p. 269). P is the set of non-negative ¢ in L, with

[@dH =1; Py is P ~ Cy.
G

It is well known (and follows from properties (i) and (ii) of means
and the w*-density ([3], p. 41, Theorem 4) of the image under @ of the
unit ball in I, in the unit ball of L%) that Q(P) is w*-dense in M.

We also need the fact (see [9]) that for each u in M and each 2 in L,
1<p< oo, and for L, the convolution uox is defined and is in the
same L, and [juo 2|, < ||ull [|#llp.

We say that a net x, of elements of a space L, is left equicontinuous in
Ly if for each & > 0 there is a neighborhood W, of » such that Psn — 2y lp < €
for all » and for all s in W,; this implies that ts2n —liznll, < € for st=! in
W, lszn— Uz, < & for all n.

For f defined on &, f (9) = f(g~"). For ¢ in Ly, ¢*(z) = p(z 1) A(z""),
where 4 is the modular function of G([9], p. 196). Then ¢eP if and
only if ¢*eP.

_For z complex and p positive define ¥ = |2|” sign #, where sign r¢®
=6 ifr£0,=0if r =0.

2.2, The theorems.

THEOREM 1. Let g, be a net of elements of Py, which are left-equiconti-
nuous in Ly, and for any p >1 define f,(g9) = [pn(g)1'? for all g in G.
Then the f, are left-equicontinuous in L, and the following conditions on
the nets @, and f, are equivalent:

(LSATI) For each s in @,
1171‘11”13%—%”1 = 0.

(This is derived from strong left amenability.)

(LSATU) For each compact K = G, |lypn— @nll, tends to zero uniformly
for s in K.

(“Uniform strong left amenability” is due to Reiter [17].)
(LLSAP) For each a in P,

lim|jao @p— @aull, = 0.
(LSAM) For each u in M,
lim [lu 0 ¢p— gully = 0.

(Hulanicki [10] invented these two conditions and proved them
equivalent to Reiter’s condition.)
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(LKP) For each (or one) p >1, for each a in P,
lim [|@ o fa—fall, = 0.
n

(Kesten [11] for discrete countable @ and p = 2; Day [2] for general
discrete groups. The next seven conditions (except (LKU)) are new; they
help to round out the pattern from amenability to type (R) which we
are constructing.)

(LKM) Like (LKP) with u in M replacing a in P.
(LKII) For each (or one) p >1, for each s in @,

tim (ffy —fullp = 0.
n

(LKU) Like (LKII) with uniform convergence on compact sets in G.
(LNTI) For each (or one) p >1, if F, = fal”, then for each g in G,

lim FY (lf,) = 1.
n

(LNTU) The same with uniform convergence on compact sets in Q.
(LNP) For each (or one) p >1, for each a in P,

limFyY (aof,) = 1.
n

(LNM) Same with u in M replacing a in P.
(LDP) For each (or one) p >1, for each a in P,

lim|la ofully = 1.
n

(LDM) The same with u in M instead of a in P.

((LDP) is a formal strengthening of a condition of Dieudonné [4];
there are no II or U analogues of these because for all @, p,n, and s,
afnllp = Ilfnllp-)

(GII) For p =2, for each g in @G,

li:nl'_f,,of,: ](g) =1.

(GU) Same with uniform convergemce on compact sets in G.

(This is formally stronger than Godement’s type (R); [7], p. 76.
Godement showed that (R) implies that every positive definite function
on G can be approximated uniformly on compact sets by functions
fof ,fin L, Fell [6] showed that this is equivalent to: Every irreducible

unitary representation of G is weakly contained in the regular representa-
tion, 8 - 11( ), in Ly(@).)
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Remark. It is true and often trivial that equicontinuity is not
needed in all these implications. These easy ones are shown in Diagram A.
Equicontinuity becomes vital in passing easily from, say, (LSAII) to
(LSAU) or from (LDP) to (LKII), two implications which are critical
in this pattern of proof.

| i
(LSAU) — (LSAM) — (LSAP) (LSAI)

| i
(LKU) - (LKM) - (LKP) (LKII)

l l
(LNU) - (LNM) — (LNP)  (LNII)

(LDM) - (LDP)
(GT) (GII)
Diagram A

THEOREM 2. Let £, = ¢n; that is,
Ln(8) = @u(871)A(s7)  for all s in @,

and let z, = ()P . If the @, are left equicontinuous in L,, then the , (the
2,) are right equicontinuous in L, (in L,) and all the left-handed conditions
of Theorem 1 are equivalent to corresponding righi-handed conditions on
bn and 2.

THEOREM 3. Let ¢, be as in Theorems 1 and 2, let @, = @, 0 ¢p and
let F,, = ®;/". Then the conditions of the preceding theorems are equivalent
to the corresponding two-sided conditions. (None here to correspond to (GII)
or (GU).)

The next problem is to consider conditions under which there exists
a net ¢, or f, with equicontinuity as well as some (hence all) of the condi-
tions of the kinds A, K, N, D, G. The weakest sufficient conditions known
to me are (lgw), the finite-set weakening of Godement’s type (R), (lar),
“pointwise” left amenability of L., and (la,), “pointwise” left amenability
of C,(@).

THEOREM 4. The following conditions on a locally compact group are
equivalent:

(lax) There exists a mean m on L., such that for each z in L., and each
s in G, m(lyw) = m(x). (This is ordinary left amenability of L.)

(1ay) There exists a mean mg, on C, such that for eack v in C, and each
8 in @, my(lw) = my(v).

(lap,) There exists a mean mqy on C, such thai for each v in C, and each
a in P, my(ao v) = my(v).
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(lap) There exists a mean m on L., such that for each x in L., and each
a in P, m(ao x) = m(x).

(lam) Same with u in M instead of a in P.

(Isaw) For each finite set A in G and each ¢ > 0 there is a ¢ in Py, such
that for each s in A, |l,p— ¢, < €.

(Isau) Same with compact K instead of finite A. (See Reiter [17] and
(18].)

(1sap) There exists a net ¢, in Py, such that for each a in P

]iin”a O @n—@ullL = 0.

(Isam) Same with w in M instead of a in P.

(Ikr) For each (or one) p > 1, for each finite set A in G and each ¢ >0,
there exists f in P"? such that ||lf —fll, < & for each s in A.

(Note that it is not enough to assume that for each s and ¢ there is
f such that ||l,f —fll, < e. All discrete groups have this property because
all cyclic groups are amenable. But the free group on two generators
is not amenable ([1],§ 4, (G)), so the weakened condition is not adequate.
The same comment applies to (lsax), (Inw), and (g=).)

(Iku) Same as (lkn) with compact K instead of finite A.

(Ikp) For each (or one) p >1, for each a in P, left convolution by a
considered as an operator from L, to L,, has 1 in s spectrum. (Kesten
[11] for symmetric a, countable discrete groups, and p = 2; Day [2]
for general discrete groups.)

(1km) Same with u in M replacing a in P.

(Inw) For each (or one) p > 1, for each finite A = G, and each ¢ >0,
there exists f in P" such that if F = fP, for each g in @ we have
1—FY (1,f)| < e.

(Inu) Same with compact K replacing finite A.

(Inp) For each (or one) p > 1, each ¢ > 0, and each a in P there exists
f in L, with ||fll, =1 such that, with F = f"", 1—F (a0 f)| < e.

(Inm) Same with u in M replacing o in P.

(Ldp) For each (or one) p >1, for each a in P, left convolution by a,
as an operation from L, to L,, has norm 1.

(1dm) Same with u in M replacing a in P.

(gu) (= type (R)) For p = 2 there exists for each compact K in G and
each ¢ >0 an f in L, such that 1L—(fof~) (g)| < & for all g in K.

(gm) Same with finite A = G replacing compact K.

Remarks. Hulanicki [10] invented (lax), (lam), and and their s
counterparts, and proved (Isau) « (lap) « (Isap) « (Isam) « (lam) — (lax).
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Dieudonné [4] studied groups with (ldp) and proved (lsau) — (lku) —
— (ldp) for all p > 1. Reiter [18] proved that (lawx) — (Isau); Stegeman
[17] proved that (lsau) <> (lku) for all p > 1. The (In-) conditions are
all new, interpolated for completeness between the k¥ and g types.

The part of this theorem which does not require equicontinuity is
displayed in Diagram B.

(1apo) < (1a,)
t +
(lam) — (lap) (lar)
t

7 |

I +
(Isau) — (lsam) — (Isap) (1sar)

! | 1 |

(lku) - (lkm) — (lkp) (k)
v

! !

| |
(Inu) - (Inm) — (Inp) (InT)

¥ l
I (ldm) — (1dp)
(gu) (gm)
Diagram B

As with Theorems 2 and 3, there are the corresponding resultss
Theorems 5 and 6, for right or two-sided means. It is also too obvioug
to be worth mentioning that everything could have been done startin,
with right Haar measure.

One of my students, Mrs. Truitt, in the paper [20] extended the
results of [2] from I,-spaces to uniformly convex Orlicz spaces [16] on
discrete @. The interested reader can see how to adapt her result to give
lk-like conditions for such uniformly convex Orlicz spaces on locally
compact groups.

§ 3. PROOFS AND COMMENTS

We begin with the proofs for Diagram A. First we show simply that
(LSAII) & (LKII) & (LNTI) « (GII), and the same for the corresponding
U conditions. The SA-to-K step proceeds as in the discrete case, beginning
with a lemma whose proof carries over to the general locally compact
case (See [2], Lemma 2).

LeEMMA 1. If ¢ and peP, if f(g) = (p(9))"® for all g and similarly
r=p"", then |fl, =1 = |Irllp, and |f—7ll, <[lp—elk]”®, and llp—el:
<p 2" [f—1ll.

This shows that the homeomorphism of Mazur [13] is uniformly
continuous between the positive parts of the unit spheres of I, and of
each L,. Noting also that [l,p]"? = I,[¢""], we see that [lspn— @l is
small if and only if |lf,—fall, is small for any particular p > 1. This
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shows that (LKII) for one p > 1 implies (LSAII) implies (LKII) for every
p >1.

If f,ePY?, then F, = f5” PV, and FY is the linear functional
in Ly such that |FY| =1 = [full, = FY (fs). Then

|1_F7\{ (lsfn)l = |F1Y (fn"— sfn)l < Hlsfﬂ_fn”p7

80 (LKII) implies (LNTI).

But L,, p >1, is uniformly rotund (Clarkson; see [3], p. 115) so for
each ¢ > 0 there is a d(e), depending on p also, such that |l,f,—fall < ¢
if the real part of F) (l,fs) >1—0 (¢). ([3], p. 113, (UD) equivalent to
(UR).) Hence (LNII) implies (LKII).

When p = 2, Ly = L, and we see that (LNII) says that <(f,, lf.>
can be made close to 1 on any finite set. ({, ) is the usual inner product
in the Hilbert space L,.) But a quick calculation shows that [f o f~] (¢7)
= <f, l4f>, so when (fp, lfy> is mear 1 on a set A, f,ofy is
near 1 on A~'. Hence (GII) is equivalent to the case p = 2 of (LNII).

If uniformity holds for a compact set K in any one of those conditions,
it can be passed to the others in these proofs, so we see also that (LSAU)
« (LKU) & (LNU) « (GU).

To do the other easy cases next, we observe that any (XU) implies
its (XM) because each ux can be approximated by one with compact
support, and if for all ¢ in the support of u, the l;-12 are near z, then so
is pox. Any (XM) implies its (XP) because each ao is a po. (XM) implies
(XII) because the point measures are in M. (LNX) implies (LDX), for
X = M or P, because the F, and the f, are of norm 1.

All these simple implications were displayed in Diagram A.

We see that to complete the proof of Theorem 1 it suffices to prove

(LSAP) —> (LSAII) -> (LSAU) and (LDP)— (LKII).

(LSAP) — (LSAII). Assume that (LSAII) fails, that is, that for
some s, in G, some ¢ > 0, and some subnet gy, [|ls)@n,— @n;li> 2¢ for all 4.
Then, by equicontinuity, there is a W, such that |l;p,— @,ll, < € if seW,,
80 |lln—loygull, < & if 8ot 'eW,; that is, if ¢ 'es;!W..

Then for any « in P which has support in (s;'W,) ™! we have

lao gn—loy @ah = || [ a(t) (-1, — Ty 9 @t
G

< [ aO)l-1@n,—loypuJhdt < [a(t)edt = e.
(o] G

Therefore, ||a 0 ¢u,— @nll, > & for all 4; hence (LSAP) fails if (LSAII)
does.
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(LSAII) implies (LSAU). If (LSAU) fails then there are ¢ >0, a
compact K in G, a net s; of points of K, and a subnet ¢, of ¢, such that
s, @n,— @n;lh > ¢. Take a convergent subnet 8i; with limit 8,; then by
equicontinuity in I, ||lsij¢p,,ij—-lsotp,.ij”1< ¢ as soon as j gets so large
that si;'es;'W,. Hence

”lao (P"i;_ ‘Pnijlll = “ls,-’. ‘Pnij'_‘ %1-’.”1— ”lsiy. ‘Pn,-f_ lso‘Pni].Hl = 2e—e =¢.

That is (LSAII) fails if (LSAU) fails.

(The same technique would work in the k¥ and » lines of the diagram,
but we do not need them in this pattern of proof.)

(LDP) implies (LKII). If (LKII) fails, there are ¢ >0, 8, in G, and
a subnet f,. of the net f, such that |ls fn,—fn;lln > 3¢ for all 7. By equi-
continuity in Ly, [lsfa,— ls,fnlp < & if 7 esg'W,; hence if a in P has its
support in (sy'W,)™', then |lao f,,—lsfallp < € for all i. If also f in P
has its support in (W,)~', then (o fu,—fallr < & for all i. Hence

lle o fo;— B0 falls>e for all i.
By uniform rotundity of L, ([3], p. 115), if ¥ = (a4 f)/2, then
lly o fagllo<1— 6(e) for all i.

Hence (LDP) fails when (LKII) fails. (This is a simplification of the
discrete version of this proof in [2], Lemma 4, (ii) implies (iii).)

This completes the proof of Theorem 1. Theorem 2 obviously works
in the same way. To illustrate one of the harder cases of Theorem 3, note
that (LDP) transforms into (PDP). For all a, § in P,

lim|lao F,o0 Blp, = 1.

Also (LKII) transforms into (IIKII). For each s,t in @,
tm ||, For,— Follp = 0.

To prove that (PDP) implies (ITKII) it suffices to note that if (IIKII)
fails, then one of (LKII) or (RKII) fails; if the former, then take o in
P as in the corresponding proof of left conditions and take f arbitrary
in P to show that (PDP) fails.

Proof of Theorem 4. In cases where we can not apply the easy
cases of Diagram A, we will need to work to find a net which with its
other properties is left equicontinuous in the appropriate space. The
easy places to achieve this equicontinuity without assuming it in advance
are in conditions (lsap), (lkkp), (Inp), and (ldp).

I know no direct way to get equicontinuity in (Isaw) so I begin this
proof with the drudgery of known special proofs for (lsax) — (lax)
— (lag) — (lapy) — (lap) — (lsap).
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We begin by observing that each condition = or u can be converted
into a condition on a net. Let » be the ordered pair (4, ¢), where A is
a finite (or compact) set in G and & > 0; define n > n' to mean 4 =2 A’
and ¢<¢&'. Then (lsax), for example, becomes (LSAII), there is a net
@n for which

li;n I%s @n— @alli = 0.

(Isax) implies (law). This is just like ‘‘strong amenability implies
amenability’’ in the discrete case ([1], §5, Theorem 1); that is, if ¢,
satisfies (LSAII), the images Q ¢, are in the w*-compact set M, so there
is a w*-convergent subnet, Q ¢, with limit m. It is easily seen that

li"l'n(l,(p,.‘—(p,,i) =0

implies 1 _,xm = m, so (lsax) implies (lax). (The same proof works for
m or p.)

(lam) implies (la,) simply by taking m, to be the restriction of m to C,,.

(1ay) implies (lap,) (see Greenleaf [8]). Given that for every y in C,
and ¢ in @, my(l,y) = my(y), and given any a in P, take § in P, within
¢ of a (in the L,-metric). Then

llaoy—B0 Yo < lla—Blh Yl < &llYlleo-
Now for each ¢ in @,

[Boyl(9) = [BOL_1y1(g)de.
G

Because y is left equicontinuous in L., there exist finitely mahy
small sets E; covering the support of g, and points 7; in E; such that
IIZ,_ly—lﬂ_,yllm< ¢ if teF;.

1

Then
| [ 8@t yat— 3. [ peyr_yat|,
@ E; *

< [ BOIL-19—1 19l < IBlhe = .
E;

If we let
B = [ B(ar,
E;

then we have
flao ?I—Ziﬂil'i_l?lllw < 2e.
But
mo(ztﬂilti—ly) &= Ztﬂimo(l,‘_zy) = DiBimy(y) = my(y).
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Hence |my(aoy)—me(y)|<<2¢ for all &> 0; therefore my(ao y)
= me(y) for all @ in P and y in C,.

(lap,) implies (lap). (Hulanicki [10] gives Ryll-Nardzewski credit
for the basic idea here.) Choose a, § in Pg,; in particular choose g = §~.
Then for each z in L, ao # o fis in C,. Define m(x) to be my(ao x o f).
Then

(i) m is independent of a in Pg,.

Consider my(ao 2z 0o ) and my(yo zo B) with a and y in Pyy: then
(see Hulanicki [10]) given ¢ > 0 there exists g in Py, such that |la o p—al|;
< eand |lyo o—v|L < ¢, because g’s with small support form an approxi-
mate identity in L, ([9], p. 303). Then my(acpoz0 f) = my(eo 20 p),
by (lap,). Therefore

lmo(a o @0 B)—me(powop)| = me(acxo f)—me(aoeoxo f)
< )20 Bl < Il 18 lhe = ellollo-
Similarly, |mo(y o @0 g)—me(eo #0 B)| < ¢|@llw, 80

Imo(ao @ o f)—m,(y oz o B)l < 2é|ollw

for all ¢ > 0.

Hence mq(ao xo B) = me(yo xo f) for all a, y in Py,.

(b) Returning now to our original a and g fixed in Py, we have for
each y in Py,

m(y 0 &) = mo(ao yo f) =me(aocxop) =m(),

so (lap) holds for y in Py,. But Py, is norm dense in the L,-norm in P,
so (lap) holds with all y in P.
(lap) implies (1sap). As we pointed out earlier, QP,, is w*-dense in
M, so there exists a net ¢, in P,, such that w*-im Qg, = m. Then it
n

can be verified directly (as in [1], §5, Lemma 1) that (ao)*(m) = m if
and only if
w-lim (a0 ¢,—¢,) = 0.

But (Day [1], §5, Lemma 4) we have

LEMMA 2. If L 18 a locally convex linear topological space and if (d,)
18 a net of elements of L weakly convergent to an element z of L, then there
18 net (cy,) of finite averages of elements far out in (d,) such that (¢,,) converges
to z in the original topology of L.

Namioka greatly simplified the application of this lemma to the
present problem. We apply the lemma to the net (d,) defined in the topo-
logical product space Lf by d, = d(n,a) == a 0 ¢, — @,. This net converges
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to zero in the product of the weak topologies, so there is a net ¢,, of averages
of elements far out in d, which coverges in the strong topology of LT,
but this topology is the product of the norm topology in the individual
copies of L, so every coordinate of ¢, converges in the norm topology
of L,. But if ¢, is a certain average }' k,d, let 0, = > k,p,; then ¢,
=¢(m,a) = ao 0,—0,. Then

lim ||a o 0 —0y,ll, = 0

for all a in P. That is (lap) — (LSAP). (The same proof works for m or II.)

To continue with the implications where equicontinuity is not impor-
tant, consider (gr). As we pointed out earlier, (gr) implies that there
exists a net f, of elements of L, such that f, o f; converges pointwise
to 1. But (||full2)? = fn o fa'(u) which tends to 1, so we can replace f, by
By = fulllfalle- If ho(t) = |Fu()] for all ¢ in @, then (|[k,,)* = 1 and

12 hnohy' (t) = |Fno Fy ()]

for all ¢ in G. Hence h, is a net satisfying (GII).

The results recently proved and the parts of Theorem 1 shown in
Diagram A which do not require equicontinuity now allow us to fill in
the pattern of implications shown in Diagram B.

To proceed farther we need equicontinuity. From (lsap) we had
a net 0, which satisfied (LSAP). To construct from it a net left equiconti-
nuous in L, we need only take one fixed B from Py, and let ¢, = o 0,.
Then

ls‘Pn—"Pn = ls(ﬁo on) ’”"ﬂO Gn = (ZSﬁ) o on‘“ﬂo on = (lsﬁ—ﬂ) o 07»-

If for an ¢ >0, W, is chosen so that |lsf—pBll, < e, then the same
W, can be used for every ¢, because

(TsB—B) 0 Onlly < llls B— B)IIn 116l -

We must now check that the new ¢, approximate strongly to left-P-
invariance. Because ao 8 is in P if a and B are,

llao On— ¢l = llao (B0 6,)—pob,|, <|(ao B)o 0, —0n||1+ 16, — ﬁ o 0,

which both tend to zero as n increases.

Now that we know that (Isap) implies existence of a net ¢, satisfying
(LSAP) and equicontinuity in L,, Theorem 1 enables us to draw arrows
in Diagram B leading directly to any condition but those in the upper
group of four. The last gap will be closed when we prove that (ldp) implies
(LDP) with equicontinuity.

Take any p >1 and choose¢ f in P,. For each finite set 4 =

{a1y agy..., ar} = Py form y =_Z,,: a;/k. Then yo 8 is in P, so (1dp) implies
i<
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that for ¢ = 1/k, there is an f4 of norm 1 in L, such that ||y o fo fall,
>1—e/k. f4 may be assumed to be non-negative, because for every gin @

| [ (o B Wfalt 9@t < [ (v o B4t g)lde.
G (e
Hence

1—efk < llyo fofalp = a0 Bofaalk <D llaio pofalylk
i T

< (b—1)/k+lla;o o fall/k =1—1/k+|laio fofall/k.
Comparing ends we see that for each 7 <k,
laio o fall, >1—e.

Letting Fy = (Bofa)/lfofall, we have [Ful, =1, but [|Bo fal,
tends to 1 as A increases, so thereis 4ysuch that ||fo fal,=1/2if A 2 A,.
The functions g o f, are left equicontinuous in L,, so the F, 4, A 2 A,
are also left equicontinuous in L,. Hence (ldp) implies the existence
of a left equicontinuous net F, of non-negative elements of norm one
in L, such that ||ao F4|, tends to 1 for each a in P. This is (LDP) and
Theorem 1 says that (ldp) implies all the conditions in the main body
of the Diagram B. This completes the proof of Theorem 4.

§ 4. FALSE HOPES

For the benefit of those who may wonder whether amenability is
equivalent to some other interesting properties of locally compact groups,
we add the following known counterexamples.

(1) Abelian groups and compact groups are unimodular, but amena-
bility does not imply unimodularity.
vy
01
P. 201) but it is an extension of one abelian group by another, so it is ame-
nable even as a discrete group ([1], §4, (E) and (H)).

(2) Abelian groups and compact groups are Type I (see Dixmier [5]
for definition). But Mautner [12] displayed a very simple group, the
restricted direct product of infinitely many finite non-abelian groups,
which is type II,. The group is also amenable ([2], §4, (I) and (F"")).

(3) Although all abelian and compact groups are of finite type, amena-
ble groups are no better than others. Dixmier [5], p. 272, §13.10.4, reports
that (a) the von Neumann algebras generated by left and right shifts
in L,(@) are always semi-finite (which implies no type III part), and (b)
that these algebras are of finite type if and only if there is a fundamental
system of neighborhoods of the identity in G invariant under all inner
automorphisms of @. Godement [7] proved that this last condition implies
that the group is unimodular, and we know from (1) that amenability

The group of real matrices ( ), x # 0, is not unimodular ([9],
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does not imply that. On the other hand, all discrete groups have such
invariant neighborhoods, W = {u}, so all discrete groups, whether they
are amenable or not, have regular representations of finite type.
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Concerning extension of multiplicative linear functionals
in Banach algebras
by

W. ZELAZKO (Warszawa)

A commutative complex Banach algebra A has the ES-property
(Extension from Subalgebras) or belongs to the class ES (written as 4 ¢ES)
if for every its (closed) subalgebra A, = A and every multiplicative
linear functional f defined on A4, there exists a multiplicative linear
functional F' defined on A4 such that its restriction to 4, equals f. In other
words, A ¢ES if and only if every multiplicative linear functional in any
subalgebra of A is extentable to such a functional defined on 4. Clearly,
any subalgebra of a member of ES also belongs to this class. In this paper
we characterize the class ES in terms of spectra of elements of algebras
in this class. Our main result reads as follows:

THEOREM 1. A Banach algebra A belongs to the class ES if and only if
for every element xe A its spectrum o(x) i8 a totally disconnected subset of
the complex plane.

To illustrate this theorem we show that for any compact group G
the group algebra L,(G) belongs to the class ES. (For related results see
also [1] and [3].)

Let A be a commutative complex Banach algebra with unit e. We
shall write M (A4) for the (compact) maximal ideal space of A provided
with the Gelfand topology. The spectral (semi-) norm |z|, is defined as

llells = sup |f(#)| = sup 2" (f)| = sup|(oz)| < l=ll,
feM(4) M(4)

where 2" (f) = f(z) is the Gelfand transform of xeA. If p is any complex
polynomial in one variable, then for any xeA

o(p (@) = p(o(a)),
and so

(1) lp(2)lls = b lp(%)].

€a(Z)
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