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Since vw is an isometrically isomorphic embedding, ¥, is isometrically
isomorphic to C(S,). Hence, by Thecrem 1la, there are a subspace Z,
of Y, such that Z, is isometrically isomorphic to C(S,) and a projection
7, from X, onto Z, such that ||lz|| = 1. Let Z = v~'(Z,) and let # = v~ m, 0.
Clearly = is a projection from X onto Z. Since Y, o Z,, we have Y
= v~ (¥,) 2 v"'(Z,) = Z. Since v is an isomorphism, all spaces Z, Z,,
C(8,), and C(8) are isomorphic each to other. This completes the proof.
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Composition of binary quadratic forms*
by

IRVING KAPLANSKY (Chicago, Ill.)

1. Introduction. Gauss’s complete discussion of the composition of
binary quadratic forms over the integers ([6], sections 235-244 and
several later sections) was a tour de force that makes remarkable reading
to this day.

Several of the great mathematicians of the nineteenth and early
twentieth centuries took up the theme and gave fresh accounts of the
work. This material takes up twenty condensed pages in Dickson’s history
([31, p. 60-79).

The idea of giving still another account of this venerable subject
arose when I attempted to extend the theory to Bézout domains (integral
domains where every finitely generated ideal is principal). Now the modern
view of composition is that it is really just multiplication of suitable
modules. (This idea is attributed by Dickson to Dedekind, quoting the
eleventh supplement in [5]. A recent exposition is [1], p. 212-5.) But
when one proceeds to a detailed execution, there are difficulties. The
correspondence between quadratic forms and modules needs touching up.
There is some trouble disentangling a module from its conjugate, overcome
by “orienting’ the module; there is also a need to use “strict” equivalence
of modules, meaning multiplication by elements of positive norm. Both
of these points seem to require an ordered integral domain, and on closer
inspection one sees further obstacles if the base ring has wunits other
than 4 1.

I might have concluded that ordering was indispensable for compo-
sition, had it not been for the existence of still another method, the
technique of ‘““united forms”, also attributed by Dickson to Dedekind
(tenth supplement in [5]; as late as 1929 Dickson [4], Ch. IX, thought
this to be the best method to put in his book). It is a fact that this discussion
is valid verbatim for any principal ideal domain of characteristic == 2.
But I could not get it to work for Bézout domains (the difficulty comes
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up in the preliminary lemma asserting that forms can represent ele-
ments prime to any given element).

In due course a workable idea presented itself: the technique of
pairs consisting of a module and an element. The use of pairs shrinks
the need for orientation down to the picking of a square root of the
discriminant; it builds strict equivalence harmlessly into the definitions;
and it accommodates units other than 4 1. Even over the ring of integers
the present discussion may have expository merit.

2. Modules. Let K be a field, L a separable quadratic extension of K.
We shall in general use early letters of the alphabet for elements of K,
late letters for L.

We write x for the automorphism of L over K, T for the trace, N for
the norm. N equips L with the structure of a quadratic form over K.
The mapping x preserves N, and multiplication by an element x of L
multiplies all norms by Nz. We shall need the well-known converse

LEMMA 1. Let f be a one-one linear transformation of L onto itself which
multiplies all norms by a fixed factor. Then f is multiplication by a non-zero
element of L, or such a multiplication followed by x.

Let R be an integral domain with quotient field K. We study R-sub-
modules of L. The extra structure on L endows these modules with
additional structure. For instance, if 4 is an R-submodule of L we write
A* for the set of all #* with weA; A* is again an R-module. The elements
Nz, x ranging over A, generate a (possibly fractional) ideal in R which
we call NA, the norm of A. When A and B are R-modules, so is their
product AB (this meaning as usual the set of sums of terms xy, zed,
Yy eB).

When A4 is free of dimension 2, we define DA, the discriminant of A
as follows: take a basis #, y and set DA = (zy* —a*y)*. Note that
DAecK. (More accurately, DA should be called the discriminant relative
to the chosen basis; a change of basis will multiply DA by the square of
a unit in R.)

The expression xy* —z*y will also play a role. We note that if
% = awx+by, v = cx+dy, then uv* —u*v = (ad—bc) (wy* —2*y).

We finally note a natural equivalence relation: A and B are equivalent
f B=xA with z a non-zero element of L.

3. Pairs. A pair [4, a] consists of an R-submodule 4 of L and
a non-zero element a in K. We extend to pairs the various concepts
introduced in Section 2:

[A,a]*:[A"‘,a], N[A,a]:NA/a,
[4,a][B,b] = [AB,ab], D[4,a] = DAja?,

the last being defined when A is free 2-dimensional.
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Equivalence of pairs is defined as follows: [4,a] ~ [B,b] if there
exists a non-zero element x in L with B = 2A, b = (Nz)a. It is an easy
exercise to see that conjugation, norm, product, and discriminant are
all well defined on equivalence classes of pairs.

4. Quadratic forms. A “concrete” binary quadratic form over a com-
mutative ring with unit R is an expression ar?+-bxry+cy?, a,b,ceR.
Abstractly, the structure is that of a quadratic form on a free 2 -dimensional
R-module together with a distinguished basis. When the basis is changed,
we pass to an equivalent form; if the change of basis has determinant 1,
we speak of proper equivalence.

The discriminant is b2*—4ac. Under equivalence it gets multiplied
jt)y tt;he square of a unit, and under proper equivalence it is invar-
iant.

In the setup of Section 2, take a free module A. The norm puts
a quadratic form on 4. When we take a basis of A, we get a concrete form
(with coefficients in K), and it is easily checked that the two discriminants
introduced coincide.

With a pair [4, a] we associate the quadratic form on 4 given by
the norm divided by a. Again the two discriminants coincide.

5. The correspondence. In this section we have to assume charac-
teristic # 2.

With an equivalence class of pairs we wish to associate a proper
equivalence class of binary quadratic forms. Our aim does not extend
beyond doing this for a fixed diseriminant, say 4 (on pairs this is meaning-
ful only up to the square of a unit, of course, but for the concrete forms
we mean discriminant exactly A4).

4 is an element of K having a square root in L. Arbitrarily fix a
square root 4. Let a pair [4, a] of discriminant A be given. We say that
the basis @,y of A is admissible if (2y*—a*y)/a = 6. Admissible bases
exist: with any choice of basis @,y we have (zy*—a*y)/a’ = ut4a,
“ a unit in R, so that (wy*—a*y)/a = +ud. We need only replace
z by +ule.

On A relative to an admissible basis we take the form N [a; the
result is a concrete quadratic form f whose proper equivalence class we
take as the image of the equivalence class of [4, a].

Suppose we pass to a different admissible basis of 4. Then since
the change of basis must have determinant 1, the pi-oper equivalence
class of f is unaffected.

Let the pair [B, b] be equivalent to [4, a] via the element 2z, so
that B =24,b = (N2)a. If the basis 2,y is admissible for 4, we see
at once that 2z, zy is admissible for B. The concrete form thus obtained
for [B, b] is identical with the one for [4, a].
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We have now shown that we have a well defined map from equi-
valence classes of pairs to proper equivalence classes of forms. We proceed
to show that it is one-to-one and onto.

As regards onto, we explicitly exhibit the inverse image. For f =
ax?-+bry 4-cy? of discriminant 4 we invent the pair [4, a], where 4 is
the module spanned by a and (b—4)/2. These elements are in’ fact an
admissible basis for A and we find the image of [4, a] to be f.

Suppose finally that [A4,a] and [B, b] both have discriminant 4
and lead to properly equivalent forms. Now this means that after a change
of basis of determinant 1, say on the first form, the two forms become
identical. We can suppose that this change of admissible basis has already
been done for A. We thus have admissible bases, say «,y for 4 and w,
v for B, giving rise to identical concrete forms. This says that the mapping
(say F) from A to B given by sending x into « and y into v multiplies
norms by b/a. We can extend F to a mapping of L into L and then apply
Lemma 1 to conclude that F is either multiplication by an element z
(necessarily of norm b/a) or such a multiplication followed by *. We can
check which it is by looking at determinants. Multiplication by 2z has
determinant Nz; * has determinant —1; since (zy* —a*y)/a = (wv* —v* u) /b,
the determinant of F is b/a (see Section 2). Hence x does not appear, and
we have proved [4,a] and [B,b] to be equivalent, as required. We
summarize :

THEOREM 1. Let K be a field of characteristic # 2, L a quadratic ex-
tension of K. Let R be an integral domain with quotient field K. Fix
a discriminant A and a square root of A. For a pair [A, a] of discriminant
A, A a free 2-dimensional R-submodule of L, pick an admissible basis
as above, thus getting a binary quadratic form. This implements a one-
to-one correspondence between all equivalence classes of pairs with discri-
minant A and all proper equivalence classes of binary quadratic forms
with discriminant A.

6. Composition. Let us suppose that to the concrete forms f, g of
diseriminant 4 we have associated the pairs [4,a] and [B,b]. The
obvious way to get a product for f and g is to look to the product pair
[AB, ab]. But two difficulties arise. For a general integral domain R,
AB need not be a free module. This difficulty disappears if R is a Bézout
domain, so we assume this henceforth. Secondly, [AB, ab] need not hav.e
discriminant 4, and we have no procedure for meshing different discri-
minants. We shall not give the exact conditions for [AB, ab] again to
have discriminant 4, but pass at once to the best behaved case: primitive
forms. We say that a pair is primitive if its norm is R; a concrete form
is primitive if its coefficients lie in R and generate R. One easily sees that
the two notions correspond when we pass from pairs to forms as above.
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Then the crucial fact is that the primitive pairs of a fized discriminant
form a group under multiplication. This is of course well known and goes
back to Gauss. For the reader’s convenience we state the relevant facts
in a theorem, and sketch the proof.

One definition is needed: in our context an order is a free 2-dimensional
module which is a ring containing 1.

THEOREM 2. Let R be a Bézout domain with quotient field K, L a sep-
arable quadratic ewtension of K. Then

(a) two orders are identical if and only if they have the same discriminant
(up to the square of a unit in R),

(b) a (free 2-dimensional) module A is an invertible ideal over the
unique order P having the same discriminant as the pair [A4, NAT, and
AA* = N(A)P,

(¢) for any modules A and B, N(AB) = N(A) N (B).

Sketch of proof. (a) An order has a basis 1, » with » integral over R.
Tts diseriminant is (r—*)*. Given a second order with basis 1, ¢, suppose
its discriminant (¢—¢*)> = u*(r—*)?, % a unit in R. Then i—t*
= tu(r—r*), t4+ur is invariant under %, hence lies in K, hence in R
(any Bézout domain is integrally closed). So the two orders coincide.

(b) We perform the hrief computation of [2], Prop. 1.4.1. We pick
a basis for 4 of the form a, z with ae K, T2 = b, Nz = ¢. Then NA = (a2,
ab,c) = (e), say, and DA = a®(b®—4¢). Let ¢ = az/e. We find that
the module P spanned by 1 and ¢ is an order whose discriminant a2 (b2—
—4c)/e* coincides with the discriminant of the pair [4,e]. We find
PA = A and AA* = ¢P, showing that A is an invertible ideal over P.
A cannot be an invertible ideal over a different order because quite
generally an object cannot be an invertible ideal over two different
integral domains.

() We have AA* =eP, BB* =fQ, where (f) = NB, and @ is
the order attached to B. One easily sees that PQ is again an order. Then
the equation (AB)(AB)* = e¢f PQ identifies PQ as the order attached
to AB, showing that (¢f) = N(AB).

Consider now the primitive pairs with a given discriminant 4, and
let P be the order with discriminant 4. It is immediate from Theorem 2
that these pairs form a group, with [P, 1] as the unit. The pairs equivalent
to [P, 1] form a subgroup, and so the equivalence classes of primitive
pairs also form a group, which we call the extended class group of P, say
H(P).

By the class group G(P) of P we mean as usual the invertible ideals
of P modulo principal ideals. The map [4, a] — A induces a homomorphism
of H(P) onto G(P), the kernel being isomorphic to units of R modulo
norms of units of P,
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We summarize the situation. Let R be a Bézout domain of charac-
teristic # 2, and let the setup be as above. Fix a discriminant 4, a square
root 6, and let P be the order with discriminant A. The equivalence
classes of primitive pairs of disecriminant 4 are in one-one correspondence
with the proper equivalence classes of binary quadratic forms of diseri-
minant 4. On the former we have the group structure given by the extended
class group H(P). We transfer the group structure to the forms and we
have defined composition.

What happens if we replace 6 by the other square root —d? The
correspondence changes (in a harmless way — each pair is replaced by
its conjugate). However the group structure on the forms is unchanged;
it is entirely intrinsic.

7. Connection with united forms. We verify that Dedekind’s method
of united forms, whenever applicable, gives the same composition as
that obtained above.

In brief, the setup is this: we are given a, b, ¢, d in R with the first
three generating R. We wish to see that ax®4-bxy-t+cdy®? and cax?+
+bxy +ady? compose to yield acw®+bxy-+dy?. All three forms have
the discriminant 4 = b2—4acd. Pick a square root 6 of 4. Then suitable
corresponding pairs are [4,a], [B,c¢] and [C,ac] where A, B,(C are
spanned by a, ¢, ac respectively and z = (b—4)/2. We have 22—bz—+
+acd = 0, so AB is spanned by ac, az, cz, bz — acd. The term acd can
be deleted since it is a multiple of ac. The terms az, bz, cz combine to z.
Hence AB = C and the pair [C, ac] is the product of the pairs [4, a]
and [B,c].

8. The ordered case. Let R be an ordered integral domain. Suppose
as in the discussion above that a fixed square root 4 has been picked for
one discriminant 4. The other discriminants that are pertinent (i.e. that
go with forms ‘‘embeddable’” in our fixed field L) have the form k24,
k non-zero in K. For any such we have a natural choice for a square root:
ké with k> 0.

What we can get out of this is best described by going backwards
from forms to pairs: we get a coherently defined map on all proper equi-
valence classes of binary quadratic forms to all equivalence classes of
pairs. But we are not yet ready for composition, for the mapping is not
necessarily one-one. Indeed, it is one-one if and only if 41 are the only
units in R.

Suppose finally that R is an ordered integral domain, Bézout, and
that its only units are + 1. Then we get composition defined on all binary
quadratic forms with discriminants having ratio a square, just as Gauss
did for the ring of integers. The composition is quite intrinsic, at least
granted the ordering of R. If R has a unique ordering, it is entirely intrinsic.
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We briefly discuss other aspects of the ordered case. It is natural
to distinguish two cases, according to the sign of 4.

(1) 4< 0. All norms are positive. The extended class group divides
into two cosets according to the sign of a in the pair [4,a]. Nothing
essential is lost by insisting that a be positive, i.e. discarding the negative
definite forms.

(2) 4>0. Since there exists elements with negative norm, any
pair is equivalent to one with a positive, and this normalization may
be made if one prefers.

Things become simpler still when the only units are + 1. If 4 < 0,
the positive part of the extended class group coincides with the class
group; the pairs are superfluous. If 4 >0 and —1 is the norm of a unit
in P, the pairs are again superfluous. If 4 > 0 and —1 is not the norm of
a unit in P, the use of pairs amounts to the same thing as to the customary
notion of strict equivalence: B = zA4 with Nz > 0. Even for the ring

of integers, the pairs do have the merit of treating the various cases in
a unified way.

9. Final remarks. (1) All the results in this paper carry over to
the case where L is the direct sum of two copies of K and the involution
is. the mapping interchanging the two summands (the corresponding
binary quadratic forms have discriminants which are perfect squares).
It was solely for expository reasons that this case was not incorporated
in the body of the paper.

(2) Over a general Bézout domain (i.e. with no ordering or with
units other than 4 1) can composition be defined without the restriction
to a fixed discriminant ? I see no natural way to do this. Perhaps impos-
sibility could be proved rigorously by putting the matter in a functorial
setting.

(3) If one is willing to make enough arbitrary choices, a product
can be defined. For instance, this was done by Smith for the ring of
Gaussian integers ([7], p. 423-427 in the pagination of his collected works).

(4) For characteristic 2 it is at present not clear whether composition
is definable under any reasonable conditions.

(5) There is a different point of view on the whole subject, which
has certain advantages, but represents a radical departure from the
Gauss tradition. Allow equivalence of binary quadratic forms to mean
that the determinant of the transformation can be any unit. Modify
equivalence of pairs by identifying each pair [4, a] with its conjugate
(4%, a]. Then: there is a one-one correspondence between equivalence
classes of pairs and equivalence classes of binary quadratic forms. We
can proceed forthwith to define composition, with no worries about diseri-
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minants and no special concern for characteristic 2; the only trouble is
that the “product” is in general two-valued. On primitive pairs with
a fixed discriminant the structure obtained is that of an abelian group
in which every element has been identified with its inverse.
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The existence of the potential operator
associated with an equicontinuous semigroup of class (C,)

by
KOSAKU YOSIDA (Tokyo)

Hunt [2] introduced the notion of potential operators V associated
with transient Markov processes in a separable, locally compact, non-
compact Hausdorff space. The present author gave an operator-theore-
tical treatment of Hunt’s theory of potentials (see [4] and [5]). This
treatment suggests us to give an abstract definition of the potential operator
which may be applied to transient as well as to some recurrent Markov
processes.

Let X be a locally convex, sequentially complete, linear topological
Hausdorff space. Let a family {T};¢> 0} of continuous linear operators
T; on X into X satisfy the following three conditions:

(1) LT, =Ty, Tp=1I=the identity (the semigroup property);

(2) for any continuous seminorm p(x) on X, there exists a continuous
seminorm ¢(#) on X such that »(Tiz) < q(z) for all >0 and veX
(the equicontinuity); '

(3) Um Tio = Ty w for every >0 and weX (the class (C,) property).
Thus {T,;¢> 0} is an equicontinuous semigroup of eclass (C,) in X

(see [3]). We can prove the following existence theorem: '
THEOREM. The infinitesimal generator A of Ty defined through

(4) Az =limh~ (Ty0—a)
Ajo

admits a densely defined inverse A~ if and only if

° (-4}
(5) l;in A Typdt =0  for all weX.
%
Moreover, (5) is a consequence of an apparently weaker condition

-]

(8") weak-li:n A *T @t =0 for all weX.
LN ]
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