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Smooth operators and commutators *
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1. Introduction. In a previous paper [4] we introduced, in connection
with the problem of wave operators in scattering theory, the notion of
T-smooth operators when T is a linear operator of a certain type in a Hilbert
space $. In the present paper we propose to study further properties of
T-smooth operators when T is selfadjoint and bounded. In particular,
we shall determine all T-smooth operators when § is separable. Roughly
speaking, 4 is T-smooth if and only if A*4 is an integral operator with
L>®-kernel in a representation in which 7' is diagonal.

The results are applied to the commutators of two bounded selfadjoint
operators H, K. In particular, we are able to determine all systems {H, K}
in a separable space § such that i(HK — KH ) = L > 0. Moreover, we
shall show that L is necessarily in the trace class if H or K has finite
spectral multiplicity. The problem is also related to seminormal operators.
In this way we supplement and improve some of the results due to Putnam
and others, for which we refer to a recent book [5].

We collect here some definitions and notations used in the paper
(for details see [3] or [5]). Let T be a selfadjoint operator in 9. We denote
by {Er(4)} the spectral family for 7. We denote also by Ep: 8 - En(S)
the corresponding spectral measure defined for Borel sets S on the real
line R. we$ is absolutely continuous [singular] with respect to T, or T-abso-
lutely continuous [T-singular] for short, if the measure Mg 8 — my(8)
= (BEr(8)w, x) is absolutely continuous [singular] with respect to the
Lebesgue measure, which we denote by |8|. The set of all T-absolutely
continuous [T-singular] vectors is the subspace of T-absolute continuity
[T-singularity] and is denoted by $g(T) [$s(T)]. These two subspaces
are orthogonal complements to each other. The associated projections
are denoted by P (T) and Ps(T) = 1—P,(T), and the parts of T in
them by T, and T,, respectively. T is (spectrally) absolutely continuous
[singular] if $,(T) = {0} [Hao(T) = {0}1.

We denote by sp(7T) the spectrum of 7T and by int(T) the smallest
closed interval containing sp (7). When 7T is absolutely continuous, we
define the support of T, denoted by supp(T), as a Borel set 8; with
Er(8,) =1 and with the smallest possible 18415 8, is uniquely determined
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by T up to a null set. To construct 8;, consider the set of measures m,
introduced above for all xe$. Since all m, are absolutely continuous,
{m} has a supremum m in the sense of order relation for measures (see
[2]). Since m is absolutely continuous too, its support S, can be defined
as a Borel set such that m is equivalent to the Lebesgue measure restricted
on 8;. 8, is the desired support of 7.

Clearly we have the inclusions supp(Z) < sp(T) < int(T).

We denote by #(H, H') the set of all bounded linear operators from
$ to § with domain §, where §' is another Hilbert space which may
coincide with §. We write #($) for 2($, ). If A<Z(H,$) and if H,
is any subspace of §, the part of A on §, is an operator Aq,e%($Ho, H')
such that A,z = Az for all xe$,.

We also need some notions related to the measurability of complex-
valued, $-valued or #($, $')-valued functions on R or on a Borel set
S on R. Here $ and $’ are assumed to be separable and the measurability
always refers to Borel sets. An $-valued function (1) is measurable if
(u(A), ) is measurable for each we$; we need not distinguish between
strong and weak measurability. A %#(H, H')-valued function B(4) is
measurable if B(A)x is measurable for each z¢$, i.e. if (B(d)x, ) is
measurable for each z¢$ and «'¢$. B(A) is measurable if and only if
B(A)* is measurable. If u(1) and v(4) are measurable, then (u(2), v(2))
is measurable. If u (1) and B(A) are measurable, then B(4) «(4)is measurable.

2. Smooth operators and absolute continuity. Let $ and $' be Hil-
bert spaces. In [4] we defined 7-smooth operators when T' is a densely
defined, closed operator in § with spectrum on the real axis. In the fol-
lowing theorem we reproduce the basic properties of a 7-smooth operator
A in the special case that T is bounded and selfadjoint. (For the proof
see [4], Definition 1.2, Lemma 3.6, and Theorem 5.1. It should be remarked
that in [4]  and $ are assumed to be separable, but this is not necessary.
It is easy to see this at least in the special case considered here.)

(2.1) THEOREM. Let TeB($H) be selfadjoint and AeB(H,D). Then
we have, with R(¢) = (T—¢)77,

: S
(2.2) ||A||‘f}=sup2— J 1 altaor
x T

f (IAR (A+ie)z|2+ | AR (A—ie)a|?) 44/l

——sup—— f IAR(A+ ie) o — AR(A— is) al*dA/|lw]|2

= SI}PIIAET I)H’/III,
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where the suprema are taken over all 0 + xe$, ¢ > 0, and all finite intervals
I on R. A is said to be T-smooth if ||A|p < oco.

The following theorem is a simple consequence of the definition

of [ 4|lz:
. (2.3) THEOREM. Let T, A be as in Theorem 2.1. Let T, be the part of

T in a reducing subspace $, of . If AgeB(H,, H') is the part of A on $,,
then (| Aollr, < [[4llp. A, s Ty-smooth if A is T-smooth.

The following theorem shows that 7-smoothness is essentially related
to T, only:

(2.4) THEOREM. Let TeB($H) be selfadjoint and let A<B(SH,$H') be

T-smooth. Then A annihilates $,(T) (i.e. Ax =0 for zes(T)). For any
bounded measurable function @ on R, we have

(2.5) 14D(D)| < 1412 1Pllz2sy, 81 = supp(Tar)-

In particular
(2.6) 4Bz ()| < 14llzl8 ~ 81", Al < [|Allp |8,

Proof. Thelast equality in (2.2) implies that |A By (I) A*|| = |AEp(I)|?
< || 4llzz|I], so that AEp(4)A* is Lipschitz continuous in A. It follows
that

(2.7) 14 Er(8)|* = |Er(8)A*|" = 4B (8)4*|| < [|A]718]

for any Borel set 8. (2.7) implies that Az = 0 if z ¢ $,(T), for then = Ep(8)z
for some null set § (see [3], p. 517). Consequently, we may assume 7' to
be absolutely continuous in the remainder of the proof. Let 8; = supp (Zs)
= supp(7).
Now Er(8) = Er(8 ~ 8,) so that (2.6) follows from (2.7). Similarly
we obtain for each 2’ ¢’

I6(T)* A%/ |* = [ |®(2)[2d(Ep()A*a’, A*w)
< Azl (12 Sf P(A)1PdL = AT 12 1DlZ2s,-
This proves (2.5). l
3. The I' -operation. Let T, Xe#($) with T selfadjoint. The
following notation was introduced in [3], p. 552:

400
(3.1) I'EX =i f T Xe~ "t
0

o I'# X is defined if and only if the integral in (3.1) exists as a strong
%1m1t. As was shown in [3], I} are inverse to the commutator operation
in the sense that ¥Y* = I' X implies that ¥* T—TY* = X.
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(3.2) THEOREM. Let T and X be as above. In order that both I'§ X
exist, it is sufficient that X = A,* A,, where A, and A, belong to B($H, ')
for some &' and are T-smooth; then |I'F X|| < 2x||4,|lzl|dsllr. If, in parti-
cular, X is selfadjoint and X > 0, then the stated condition is also necessary.

Proof. We first consider the case X > 0. Then ¢ Xe T >0 so
that the two integrals in (3.1) exist in the strong sense if and only if the
integral taken on any finite interval is uniformly bounded (see [6], p. 263).
In view of the first expression for ||4 |z in (2.2), this is exactly the condition
that X' be T-smooth. Setting 4, — 4, = X** and $ =, we see
that the condition of the theorem is necessary for the existence of both
Irf{ Xx.

To prove the sufficiency of the condition, we note that for every
T, YeH

p , ¢
| [ €At 40", y)at| < [fs nAle-"”‘wnzdt]‘”[f 4 e~ y|far] ™
8 8 8

1/2

<@m) eyl [ 146 ol @],
;
Hence for X = A7 A,

1/2

“j-"ei‘TXe‘M'mdtH < (2n)1/2||A2l[T[j" l‘Ale—UT"‘vll2dt] .
g £y

Since 4, is T-smooth, the right member tends to zero as s’, s’" both
tend to oo or to —oo. Hence I' X exist. It follows also from the last
inequality that ||I'F X[l < 2= |4,z |14,

4. Representation as integral operators. We now determine the struc-
ture of all T-smooth operators when T eZ (%) is selfadjoint and § is sepa-
rable. We shall show that 4 is T-smooth if and only if B = 4*4 is an
integral operator with bounded kernel in a representation in which T is
“diagonal”. Thus we determine B = A* 4 rather than A itself. But this also
determines A completely, for the polar decomposition of A shows that
A = WB'"  where W is a partial isometry on § to £ with initial set
equal to the closure of the range of B.

We first consider the diagonalization of 7. Since we are interested
in the T-smoothness of 4, we may assume that 7' is absolutely continuous
(see Theorem 2.4). Thus the system {§, 7} may be identified with the
following canonical system (see [2] or [7]). § is the direct sum of function
spaces §; = L*(M;; B;), j =1,2,..., and oo, where the M; are disjoint
Borel sets on a finite interval of R and the P; are separable Hilbert spaces
with dim P; = j. L*(M; PB) denotes the L>-space (with respect to the
Lebesgue measure) of P-valued funections on M. 7' is the multiplication
by the coordinate in each of the $;: Tw(i) = Au(4) for ue$,; for all j.
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We find it convenient to assume further that B, = P, = ... P, = B,

so that all §; and § itself may be regarded as subspaces of sf) = L2(8;; P),
where 8; = | M; = supp(T) is a bounded Borel set. Thus § is the
7

subspace of 5 consisting of all functions « such that w(1)eP; = P
whenever 1eM;,j =1,2,...,00. T is the part in § of T defined by
i’u(}.) = Au(2) for all ue§.

Now we can define exactly the integral operator in § with bounded
kernel. Let B(4, u) be a Z(P)-valued measurable function on 8, x S,
and assume that ess sup |B(4, p)|| = b << co. Then

Au

(4.1) Bu(l) = [B(2, mu(wdp
1

obviously defines an operator 1§e$’($5~) such that
(4.2) IBI<b18,.

We shall call B the integral operator in Sf) with kernel B(4, u).

Suppose now that the kernel B(4, x) is adapted to the subspace § of 53
in the sense that AeM; and ueM; imply that B(2, u) annihilates P © B
and has range in B; (so that B(4, u) is essentially in & (Py, PB;)). Then
it is easy to see that B is reduced by §. The part B of Bin $ will be called
the integral operator in § with kernel B(A, u).

In what follows §’ is also assumed to be separable.

(4.3) THEOREM. Let § and T be as above. AeB($H,$H’) is T-smooth
if and only if B = A*A is an integral operator in § with kernel B(4, )
which 18 adapted to § and for which es§ sup ||B(A, u)|| = b < oco. In this

B

case we have ||A|p» = b.

(4.4) THEOREM. Let § and T be as in Theorem 4.3. If A,, AeB(9H,9)
are T-smooth, then B = Aj A, is an integral operator in § with kernel
B(4, u) such that ess sup [B(4, p)l| < [|4,llz || 4zlz.

(4.5) THEOREM. Let $ and T be as in Theorem 4.3 and let A<B($H,$H)
be T-smooth. Then

(4.6) s(4) <Al Y 1M1,
j=1

where $(A) denotes the Schmidt norm of A. A is in the Schmidt class, and
B = A* A4 is in the trace class, if the right member of (4.6) is finite. In
particular, this is true if T has finite spectral multiplicity.

(4.7) THEOREM. In Theorem 4.5 assume that T has simple spectrum,
so that § may be identified with L2(S,) of scalar functions. Then |A| =
I4llz18," is true if and only if A is of the form A = ( ,f)g where ge$’



540 T. Kato

and fe$ = L2(8,) is represented by a function f(A) with |f(1)| = const.
(Note thatin general ||A| < ||Allz |8, 1"* by (2.6)).

(4.8) REMARKS. 1. Theorem 4.3 shows that there are many smooth
operators. In fact for any bounded selfadjoint operator 7' in a separable
space $ with T,, # 0, there exist many mnon-trivial T-smooth operators.
The boundedness of T' and separability of § are not essential, for one
can always consider a bounded part in a separable subspace of an arbitrary
selfadjoint operator.

2. An example of operators satisfying the condition of Theorem
4.7 is given in [5], p. 137.

3. For the B of Theorem 4.4, I'F B exist by Theorem 3.2. It is
easily seen that formally I't B are ‘“‘integral operators” with kernels

+ind(A—p) B(A, )+(u—A""B(1, u).

The first term represents a multiplication operator in §. The second
term is a singular kernel. Here we do not discuss the meaning of this
kernel (cf. [1] and [5]).

Theorems 4.3 and 4.4 will be proved in the following section. Here
we deduce Theorems 4.5 and 4.7 from Theorem 4.3.

To prove Theorem 4.5, we first prove (4.6) in the special case that T
has simple spectrum, so that |M,| = |S,| and |M;| = 0 for j > 2. According
to Theorem 4.3, B = A*A is then an integral operator with a scalar
kernel bounded by b = ||[A|>. Since B >0, we have §(4)%* = trace
B < bI8,| = [|4[5 13,

In the general case, we note that s(4)2 = ' [ 4e,/? for any complete
orthonormal family {e,} in §. Choosing {e,} adapted to the decomposition

=)@ $H;, we see that s(4)2 = ) s(A;)?, where A; is the part of 4
on $;. Since §; is in turn the direct sum of j copies Hy, of L?(M;) each
reducing 7, we have

i
45t = Y s(An),
k=1

where Aj, is the part of A on $;;.. Since the part Tj; of T in $j. has simple
spectrum with supp(Zj;) = M;, we have

8 (A)? < Al | M1

by what was proved above. Since |[A,k||Tk |A4]lz by Theorem 2.3, we
obtain (4.6) by adding up these results.

To prove Theorem 4.7, we note that s(4)* <||A|% |S,| by (4.6). Since
|4] < 8(4), we have ||A| = ||A|lr|8,"* only if ||A| = 8(4). This occurs
only if 4 has rank one or zero so that it can be written A = ( , f)g. Then
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A*A = ||g|2( ,f)f is an integral operator with kernel ||g||2f(l)m. It
follows from Theorem 4.3 that

4l = ess sup llgli* If (A)f (w)] = llgll® [IfIE,

where | |, denotes the L*-norm. On the other hand, (4| = |/f] ligll.
Thus [|4] = ||4|l¢|S,|"* is true only if ||f|* = ||f|%|8,], which is the case
only if |f(1)] = const almost everywhere on 8,. Conversely, it is easily
seen that this condition is also sufficient for the equality.

3. Proof of the representation theorem. Define fie.@(sS $') by Az
= Az for z¢$ and Az = 0 for wegesj It is easy to see that it suffices
to prove Theorem 4.3 for the system {Sj T A} instead of {§,T, A}.
Thus we may omit ~ and assume that § = Lz(Sl, PB). We use the notatlon
u = {u(A)} to indicate that we$ is represented by the function u(1).

(5.1) LeMMA. Let § = L3(8,; PB), T the multiplication operator by
Ain §, and let AeB(9H,D') be T-smooth. Then there is a B(H , P)-valued
measurable function F (1) defined on 8, such that |F(A)|| < ||A|lr and A*z’
= {F(A)a'} for every a’'$%’.

Proof. Set

A' =y = {y(N)}<H
and
a(I) = [y(dreP
VA
for every interval I on R. Then

(3.2)  e@I<IM] [ ly(lda]"™ = 11M"1Be(I ~ 8,y

NN
= " Br (DA% || < A1z 1T ||l

by (2.2) (note that ||Er(I)A*| = || AEr(I)]).

Since 2(I) is an indefinite Bochner integral of y(1) (extended by
y(A) =0 to A¢8,), it is strongly differentiable almost everywhere (see
[8], p. 134), in the sense that

¢'(A) = lim 2(I)/|] <%

exists and equals (1) for almost all A when I = (1—e, A+¢) and
€40 (which we shall express by saying that I shrinks to {A}).

Let {x,} be a countable set everywhere dense in §’, and define the
corresponding ¥, #,(I), and 2,(A) as above. There exists a null set N
such that z, (1) exists for all n if 1¢N.

Let 2'¢$ and A¢ N. For any & > 0 choose a, such that ||o' — z|| < &.
Since the dependence of z(I) on ' is linear,

Il (I) —2a (D)l < | Allr [
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.

by (5.2) and hence
lim sup || |I|7"2(1) =2, ()| < |4 lre
I shrinks to {A}. Thus
lim sup || 1I[7'2(1)— |7 2()]| < 24|l

as I and J both shrink to {i}. Since ¢ > 0 was arbitrary, the left-hand
member of this inequality must vanish. This means that 2’ (1) exists for
¢ N for all 2’ ¢$’.

Obviously 2'(1) depends linearly on ', and ||’ (A)|| < |4l ||| by
(5.2). Thus setting F(A)a’ = 2'(1) defines F(1)eZ($ , P) for A¢ N, with
IF(A)] < ||Allz. We set F(A) =0 for 1eN. Since F(N)a =2 (1) = y(4)
almost everywhere, ¥(1)«’ is measurable in 1 and A*2’ =y = {F(4)2'}.

(5.3) LEMMA. Under the assumptions of Lemma 5.1, we have

(5.4) Az = f F)*z(Aar  for z = {w(A)}eH.

Proof. Note that F(1)*«Z (P, H') so that F(1)*z(1)eH for each A
F(2)*»(4) is measurable in 1, for F(1) and (1) are measurable (see the
end of Section 1). Since

IF (3)*2 ()] < | Allz o ()]

by Lemma 5.1, F(A)*#(4) is Bochner integrable on 8. Then (5.4) follows
from the equality

[(F)*z(2), 2 ')d2=f(m(l),lf’(l)w')dl=(m,A*m') = (4x, '),

where use is made of A*2 = {F(1)a'}.
(5.5) LEMMA. Under the asswmptions of Lemma 5.1, B = A*A is

an integral operator in § with kernel B(A, u) such that ||B(4, u)|| < |4|%
almost everywhere.

Proof. It follows from the two preceding lemmas that if y = A* A,
then y = {y(4)} with

y(2) = F()dz = F(2) [ F(w)'o(wdp = [ B2, po(wdu,
A 8

where B(1, u) = F(1) F(u)*. Since

IF () F (w)*| < |F Q) |1F ()| < |41z,
the lemma is proved.

(5.6) LEMMA. Let B(A, u) be a 2 (P)-valued measurable function defined
on 8;% 8, and bounded: ||B(2, u)|| <b< co. Then it defines an integral
operator B in § = L2(8,; P). If B* = B> 0 in addition, then B"* is
T-smooth with ||B"?||z2 < b.
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Proof. We have already seen that B is well-defined (see (4.1) and
(4.2)). If zeEr(I)$ so that x(2) has support on I ~ S;, we have

(B, )l =| [ [ (B2, wa(2), (w)drdu| <b([ lo@)d) <bII| .

If B* = B> 0, it follows that || BY*x|? < b|I| |la|f for each zeEp(I)$.
Hence || B Ep(I )n2 < b|I|. By (2.2) this means that ||BY2||2 <b.

Combining the lemmas proved above, we obtain Theorem 4.3 in the
case § = L2(8,; PB). According to the remark given in the beginning of
this section, this completes the proof of Theorem 4.3. To prove Theorem
4.4, it suffices to replace the B(A, u) of Lemma 5.5 by B(i, u)
= Fy(2) Fy(p)* with an obvious notation.

6. Commutators. As an application of the results obtained above,
we consider systems {H, K, L} of bounded selfadjoint operators in &
such that

(6.1) i(HE—KH) =L>0.

(6.2) THEOREM. Let H, Le&(9) be selfadjoint with L > 0. In order
that there ewist a selfadjoint K <% ($) satisfying (6.1), it i8 necessary and
sufficient that L'* be H-smooth. If this condition is satisfied and if K is
any such operator, then $Hu(H), Ha.(K) and their intersection $, all reduce
the system {H,K,L}, and L is zero on $OH,. Furthermore,

1L < lint (Kg)l/27
and

(6.3) IE B ()} <518 ~ Supp (Ho)| limt (L)
for all Borel sets 8 on R. In particular,

1
(6.4) LI < o7 1SUPP (Hao) it (o)

These inequalities are optimal in the following sense: for any H and L,
there is K for which (6.3) is optimal. For any H with simple spectrum, there
are L and K for which (6.4) is optimal.

(6.5) REMARKS. 1. There is no restriction on the spectrum of H.
For any H with H,, # 0, there exists non-trivial L > 0 for which (6.1)
has a solution. It follows that any H with H,, = 0 is the real part of
some semi-normal (but non-normal) operator. This answers affirmatively
a question raised in [5], p. 43.

2. The reducibility of the system {H,K,L} by the subspace $,
somewhat strengthens the result of [5], p. 20. A similar remark applies
to the optimality of the inequalities (6.3), (6.4).
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Proof. Suppose that H, K, L satisfy (6.1). Then
(d)dt)y e T Ke " — i (HK —KH)e "2 = ¢ L1

and so
8
f e’LtHLe—’LlHdt — o HKe—’LS ’H_ew'HKe-—’iB H.
8

The right-hand member is uniformly bounded with norm < 2| K]||.
Since L > 0, it follows that L'* is H-smooth with

(6.6) 1LY < K/
(seg the proof of Theorem 3.2), and letting ' = 0, s’ — 4 co we obtain
(6.7) —iI§L=K,—K, K, = s-lim eH [re—H .

t—4-00

We note that K, commute with H, for ¢*"K ¢ " = K, for all
real s.

(6.1) is not changed when K is replaced by K—a for any real a.
Thus (6.6) implies

(6.8) TV, < Zi jint (K)].
T

We shall now show that $.(H) and &, (H) reduce not only H but
K too. To this end it suffices to show that K sends $,(H) into itself. Let
reHy(H). Then e “Hre$,(H) and so Le g =0, for L annihilates
$Hs(H) (see Theorem 2.4). Thus (I'f#L)x =0 by (3.1), and Ko = K &
by (6.7). But since # = Ey(S)x with some null set S (see the proof of
Theorem 2.4) and since K, commutes with H as noted above, it follows
that K = K o = K  Eg(S)a = Eg(S)K xe$H,(H).

That $,.(H) reduces K implies that P, (H) and P, (K) commute
(see [3], p. 517). Hence P, = P, (H)P,(K) is a projection, with range
Ho = Dac(H) ~ Hao(K).

Since $,. (H) reduces K , P,,(H) commutes with K. Hence P, commutes
with K. By symmetry P, commutes also with H, hence with L too. Thus
$o reduces the system {H,K,L}. On the other hand, L annihilates
$Hs(H) as noted above, and by symmetry L annihilates $,(K) too. Since
HO9Ho = Hs(H)+$Hs(K), L annihilates HOH,-

Thus we may without loss of generality consider everything within
the subspace §,, in which both H and K are absolutely continuous. In
particular, we obtain

L7 < lint (Kg)| /27
from (6.8). Then (6.3) and (6.4) follow from (2.6).
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Suppose now that H and L are given with L > 0 and with L'? H-
smooth. We shall show that there exists a selfadjoint K satisfying (6.1).
One such K is given by K, = iI'z L, which exists by Theorem 3.2. All
other possible K must have the form K = K,+K,, where K, is an
arbitrary selfadjoint operator commuting with H.

Theorem 3.2 shows that K,>0 and |K,|<2=|L"|%. Hence

lint (K,)| < 2= || LY.

In view of the opposite inequality (6.8), we must have equality here.
In particular, K, is optimal in this sense, and the optimality prevails
also for (6.3) in virtue of (2.2).

It remains to prove the assertion about the optimality of (6.4).
Again we may assume that H is absolutely continuous. If H has simple
spectrum, there exists L >0 such that L'? is H-smooth and

Ll = NZM2)F = |22 | supp (H)|

(see Theorem 4.7; L is necessarily of rank <1). If we take the above-
mentioned K, for this L, we have

L = |int(K,)| | supp (H)|/2=.
This completes the proof of Theorem 6.2.

7. U-smooth operators. When U is a unitary operator in §, we can
introduce the notion of U-smooth operators A<#($,$’) by requiring
that

Iy =sup D |4T"|2/|z]|2 < oo.
N=—00
It can be shown, however, that A is U-smooth if and only if A is

T-smooth, where T is a bounded selfadjoint operator related to U by the
spectral formulas

2n 2n
U= [¢"am6) and T = [0aB(0)
0 0

so that U = ¢'*. Furthermore, we have || 4|y = ||4|jz. Thus U-smoothness
is a special case of 7-smoothness.

The results can be applied to commutators of the form D — U~'J U —J ;
where U is unitary and J, D are bounded selfadjoint. Given a pair U,
D with D > 0, there exists J if and only if D'* is U-smooth, and ||D"?|3,
< |int(J)|/27. Hqe(U) reduces both U and J. But there is no symmetry
between U and J, and | int(J)| in the above-mentioned inequality cannot
be replaced by |int(Jg)|. (But it can be replaced by | int (J )| where
Jess 18 the “‘essential part” of J, which is obtained from J after removing
the part related to isolated eigenvalues with finite multiplicities; ecf.
[6], pp. 16, 22.)
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Metrics on an are
by

M. KATETOV (Prague)

Consider the following two questions:

(A) Does there exist a “smallest” continuous metric on a given arc
4, i.e. a metric g such that, for any continuous metric o on A, there exist
a homeomorphism ¢ : 4 -~ A and a number a > 0 such that ad{pz, py>
> o{x,y) for every z, ye A? If not, does there exist a “minimal” metric
with respect to the order just described?

(B) If p is a continuous metric on an arec 4, does there exist a normed
linear space E and a distance-preserving mapping f: <4, ¢) — F such
that the arc f[4] admits of a “coordinatization”? (We say that an arc
B < F admits of a “coordinatization” if there are a point a<F and a con-
tinuous mapping f of [0, 1] into a closed hyperplane L < E, a¢ L,
such that B consists of all ta+ft, 0 <<t < 1.)

Both questions seem to be rather elementary. However, I have not
found any answer in the literature. So the present note appears though
the results may be already known.

In §1 some definitions and lemmas are given; § 2 contains some
auxiliary concepts and propositions. In § 3 the main results are stated
and proved.

1.

1.1. The terminology and notation of [1] is used. Since it does not
differ substantially from current terms and symbols, only two points
of difference should be mentioned: an ordered pair a, b is denoted by
{a, b); the value of a mapping f at an element z is usually denoted simply
by fx. As usual we often denote, e.g., a space and the set of its points by
the same symbol. The letters ./ and % respectively stand for the set of
all natural numbers 0,1, 2, ... and the set of all reals.

1.2. Definition. If X is a set, we denote by M (X) the set of all
bounded pseudometrics on Y. If X is a topological (or uniform) space,
we denote by M,(X) (or M (X)) the set of all continuous (or uniformly
continuous) bounded pseudometrics on X.
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