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Existence theorems for discrete boundary problems

by F. H. SzZAFRANIEC (Krakéow)

1. In recent years an intensive development of boundary problems
for difference equations may be observed, generally as numerical aids
to problems for differential equations. In this situation it seems to be
natural and useful to give certain theorems on the existence of solutions
of boundary problems for difference equations. It is the aim of this paper
to present such theorems. They will be discrete analogues of the Lasota [5]
and the Lasota-Opial [7], [8] theorems.

In section 2 we establish the notation and introduce the notions.
Section 3 contains two general theorems on the existence of solutions
of boundary difference problems under the assumption that a homogeneous
boundary problem for a certain difference equation with a multi-valued
right-hand side has only a trivial solution. Next, in section 4, as appli-
cations of these theorems we give the existence theorems for the
so-called aperiodic problem. In section 5 we show how the assumption
which gives the possibility of applying Lasota’s existence theorem
(see [3]) to the aperiodic differential problem allows us to prove the exi-
stence of solutions of the approximating difference aperiodic problem and
the convergence of these solutions to a solution of the differential aperiodic
problem. Finally (section 6) we state a theorem on the existence of solutions
for a discrete boundary problem with a multi-valued right-hand side
which corresponds to an analogous Lasota-Opial theorem [8], we discuss
the possibilities of constructing similar theorems and we give as an illustra-
tion two examples: a Nicoletti type problem and a problem of periodic
solutions generalizing Halanay’s result [3].

2. Let R' be the [-dimensional Euclidean space. n(R') (cf(R'))
denotes the family of all non-empty (pnon-empty, closed and convex)
subsets of R'. For p « R™ |p| denotes the usual Euclidean norm of p and
|A| = sup|p| for ACR™. Let N = {0,1,...,n} be a topological space

ved

n+1

with the discrete topology. For u = (ug, ..., #s) € (R™) lu]| = sup |u4
i€N

and Adus= u;y—us for ¢ =0,1,...,n—1, dus= 0, du = (dugy, ..., Auz).
8(p, A) denotes the Euclidean distance of p € R' from A C R'. The mapping
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F: R'—n(R") is called upper semicontinuous if for all sequences {px} C R,

{qx} C R’ the conditions px—po, qk—>qo; gk € F(pi) imply g, ¢ F(p,). The
mapping F: R'cf(R%) is called continuous if it is continuous in the
Hausdorff metric. {z} is a set consiting only of .

3. We make the following assumptions:
(i) the mapping F: N x R™—cf(R™) is continuous, F(i,-) is
homogeneous for every e N, i.e.

F(i,2p)=AF(i,p), 2eR,peR"

and
(3.1) 2, sup|F (i, p)] < +o0;
i=0 PI=
(ii) the mapping f: ¥ xR™—R™ is continuous and
1\ o
(3.2) limy, > sup (£, p), B, p)) = 03
1o (PISE
(iii) the mapping L: (R™)"*'—>R™ is continuous and homogeneous.
We shall consider two boundary problems for u e (R™)"*'.
The first: the difference equation
(3.3) Aui = f(t,ws) (¢1=0,1,..,n—1)
with the boundary condition
(3.4) Lu=7r (reR™).
The second: the difference equation with a multi-valued right-hand
side
(3.5) Aug e (6, u1)  (i=0,1,...,n—1)

with the homogeneous boundary condition
(3.6) Lu=0.

TneoreM 3.1. Suppose that F,f, L satisfy conditions (i), (ii), (iii).
If problem (3.5), (3.6) has only the trivial solutions u = 0, then there
exists at least one solution of problem (3.3), (3.4).

Proof. Put E == (R™)""'x R™ with the norm |(u, p)| = liu|+ |pl,
ue(R""", p e R™. We define two mappings, h: E—E and H: E—cf(E),
in the following way:

i—1
hu,p)= (&, p), @i= D fljyu)+p, p=Lu-+rp—r;
i=0
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i1
vieF(jyu;), = 2, vi+tp, p=Lu+tp.
j=0
We show that

10 lim Q(h(’“’p)’H(u,p))
i, p)li~>o0 il(%, p)il

where p is the distance between a point and a set,

1

2° H is the homogeneous mapping,

3° H and k are completely continuous,

4° (u, p) e H(u, p) implies (u, p) = (0, 0).

Then applying Theorem 1.1 from [5] we find that there exists a fixed
point (u, p) of kh, which means that % is the solution of problem (3.3),
3.4).

( Now we prove 1°-4°, (3.2) implies 1°. 2°is evident. If (v, p) € H (u, p),
then Aw; e F(i, us), p = Lu-+p.

Thus, by our assumptions, we immediately deduce that (u, p)
= (0, 0). By (3.1) and by

n

2 U -F(iy Ug) = L/' ZF(i,m)

i=o Iui=1 =1 {9

we infer that the closure of (| H(u, p) is compact.

uff=1
It is also evident that H is upper semi-continuous. Thereby H is
completely continuous.

On the other hand, by the continuity of f, we find that {J {k(w,p)}
. It p)il=1
is also relatively compact. Then 3° is fulfilled.

We make the following successive assumptions:
(iv) the mapping F: N x R™—s(R™) is upper semi-continuous;
(v) the mapping f: N x R™ —R™ is continuous and

for ie N, p,qe R

(vi) the mapping L: (R™)""'—>R™ is linear.

TREOREM 3.2. Suppose that F,f, L satisfy (iv), (v), (vi) and that
w= 0 is the unique solution of problem (3.5), (3.6). Then there exisis exactly
one solution of problem (3.3), (3.4).

Proof. The uniqueness of the solutions of problem (3.3), (3.4) easily
tollows from the linearly of L, condition (3.7) and the uniqueness of the
solutions of problem (3.5), (3.6). Therefore, we prove only the existence.
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Consider the mapping 7': E—~E (¥ is as in the proof of Theorem 3.1)
such that (v, q) = T(u, p) is given by the formulae

-1
(3.8) vi=w— D flj,u)—p, 9= Lu.
i=0

The mapping T is completely continuous, of course. It is sufficient to show
that T(E)= E. Then the point (0, r) belongs to E, which means that there
exists a solution of (3.3), (3.4). To this end we prove that the mapping 7'
is a so-called e-mapping in the narrow sense (see [2]), i.e. T has the
following property: for some constants ¢ > 0, § > 0 the condition

1T (%, ) =T, p)l <6 =%, p)—(u,p)l <e

is fulfilled. Suppose, on the contrary, that T is not an e-mapping. This
means, by the continuity of f and by the fact that 7T is injective, that
there exist two sequences (u*, z*), (u*, p*) such that

(3.9) ik —uk| =1,
(3.10) 9% — 0¥ + |g* — g*| >0,
where T (@*, p*) = (v*, ¢¥), T (uk,p*) = (0%, q*). Putting k= w*—uk,
vk = pk—7k, ¢k = g»—¢q*, by a straightforward calculation, from (3.5)
we obtain
B11) A —o")s = f(, @) =1, W) e P(i, i)

q¢¥ = Lu* and |uk|=1.
Passing to a suitable subsequence, if necessary, we may assume that the

sequence {u*} converges to u. By the upper semi-continuity of F and
by (3.10), (3.11), we have

Auge Fliyus), Lu=0.

This implies % = 0, which contradicts (3.9). Thus, T is a ¢-mapping in
the narrow sense. The known theorem on e-mappings in the narrow
sense (see [2], p. 62) yields T(E) = E.

4. In the case where equation (3.5) reduces to a difference inequality
(4.1) |[dus] < w(2, |ug]) (¢2=0,1,..,n—1)

we have following two theorems as simple corollaries to the above ones.
Let w: Nx(0, +00)—>(0, +o0) and f: Nx R"—>R™ be continuous
mappings. Put

F(i,p)= {g e R™: |q] < (i, |p])} .

From Theorem 3.1 easily follows
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THEOREM 4.1. Suppose that w(i, -) is homogeneous for every i e N,
L satisfies (iii) and

1f(Z, p)| < (i, [p]) +a¢ (@i € <0, ~|-00)).
If problem (4.1), (3.6) has only the trivial solution w = 0, then there exists
at least one solution of problem (3.3), (3.4).

As an application of theorem 3.2 we obtain
THEOREM 4.2. Suppose that L $atisfies (vi) and

If(¢, Y —=f(i, )| < w(i,|p—ql).

If problem (4.1), (3.6) has only the trivial solution u = 0, then problem (3.3),
(3.4) has exactly one solution.

In order to illustrate the above theorems we consider the aperiodic

problem, i.e. the problem of seeking solutions of equation (3.3) satisfying
the boundary condition

(4.2) Ug+Mun =71 (reR", LeR).
Consider the difference inequality

(4.3) |Aug| < pslug) (=0, ..., n—1)
with the condition

(4.4) U+ AUn = 0 .

Setting 2; = |u;] we obtain

|Azs] < pzy .
Hence, for ¢ = 0,...,n—1 we have the inequalities
(4.5) max (0, (1 —pe2y) < 2oy < (L4 pi)2s .
Hence
(4.6) (14 po)eee (L4 pin-1)2 = 2a

. {(l—yo)...(l—pn_l)zo if 1—ui>0 for ¢=0,..,2—1,
0 in the other case.

We prove that if » satisfies the difference inequality (4.3) and the con-
dition (4.4) and if

A > (L —po)eee(L—pta—n)) ™" if 1—py>0 for i=0,..,0-1
(4.7) or

2l < (L4 o) oo (L4 pn))
then u¢= 0 for all 7 ¢ N.
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In fact, suppose that u; # 0 for some 7 ¢ N. By (4.5) and (4.4) we
have either z; = 0 for all ¢ ¢« N or z; # 0. Hence z, = 0. By (4.6) we have

(14 o) voe (1 + ptn—)) ™" <:—: < (1 —pto) ere (X = pn—n)) 7

the right inequality holds only if 1 —u; >0 for 1= 0,..,n—1. This
contradicts (4.7).

Using Theorems 4.1 and 4.2 for w(¢, p) = uilp|, we obtain from the
preceding considerations

THEOREM 4.3. Suppose that f: N x R™—>R™ is continuous and satisfies
If(6, p)] < palpl+v  (v€ <0, +00)).

If (4.7) is fulfilled, then there exists at least one solution of problem (3.3),
(4.2). If, in addition, f satisfies the Lipschitz inequality

(e, p)—f(4, Ol <mulp—al,
this solution is unique.

8. Now we deal with the approximation problem for the differential
equation

(5.1) z' = g(t, )
and the aperiodic boundary condition
(5.2) z(a)+ix(b)y=7r (reR™),

where g: <a,b) X R™—R™.
It is known (see [5]) that if g satisfies the condition

(5.3) lg(t, p)—g(, @) < o(t)lp—4ql,

where a: (0, +o0)—>{0, 4 c0) is continuous and if
p

(5.4) Al > [o(tat,
then there exists exactly one solution of problem (5.1), (5.2).

Side by side with equation (5.1) we consider the difference equation
(5.5) Au, = hg(ts,y i)
and the boundary condition
(5.6) Ug+ Ay = 7
defining the sequence ({,,...,t;) and the mesh 2 by the formulae

thb=0a0, Ai=tipn—lU=h=((b—a)n, +=0,..,n-1.
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We may write

THEOREM 5.1. Suppose that g is continuous and satisfies inequal-
ity (5.3) and that (5.4) is satisfied. Under the above assumptions 1° for
sufficiently great n there exists exactly one solution u™ of difference problem
(5.8), (5.6), 2° lim |uf — x(t;)| = O wuniformly in i, where x is the solution of
problem (5.1), (5.2). ‘

Proof. We define f*: N x R™—R™ as follows:

i, p) = hg(ts, p)
and put ¢ = o(f;). Thereby

1™, p) —f™(4, @) < hoilp—q| .
It is clear that

—k(Gp+ .+ 0n-1) <In((1+ hoy)...(1+ hon_y))™"
or

h(0p—+ ...+ 0n1) = In((1 —hay) ... (1 —hop_y)) ",

where all 1 —ho; #0 (¢ =0, ..., n—1).
Passing to the limit we have

8
— [ o(yat <limIn((1+ hoy)...(1+ han_1)) "

n-->00
or

n—>00

[
[ o)t > limIn((L —hoy)...(1 —hon-1)) " .

By (5.4) this shows that for sufficiently large =

|4} < ((1 + hoy)... (1 + hgn—l))_l
or

4] > (1 +hop)...(1 —han-1)) .

Hence, in view of Theorem 4.3 using to f*, we find that for sufficiently
large n there exists exactly one solution of (3.5), (5.6), i.e. 1° is fulfilled.

Now put z; = x(f;). There exist points s;e (i, t;+1) such that Az,
= hz'(84). (5.1) for t = s; may be written in the form

A:Ft = hg (8{, {l’(Sz))
or
Axy = hg(h, T1)+7i,
where 7; = h(g(st, x(8:)) —g(te, az(ti))).
We note that
(5.8) lima"/|h| = lima"-n = 0,
where o= max [ry|.
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Putting ©7 = 47 —z; and w; = |v7| we obtain from (5.2), (5.6), (5.5)
and (5.7)

(5.9) Vo +Ap = 0,
1403} < |h(g(te, we) — g(te, z0)}| + 174} < |Roevl| +a",
(5.10) [Aw}| < hayw? +a” .

i-1
On the other hand, we have wi < wj+ ) w} and by (5.10)
i=1

i
Q

w; < wﬁ'—{—z hojwi +na" .
j=1

Applying Gronwall’s Lemma (see [1], p. 455) we obtain

(5.11) wi < (wﬁ'—i—nan)exp(h % O'j);
j=0
in a similar way we get
n
(5.12) wi < (wy +-na")exp (h a,-) .
j=o0

From (5.4) we deduce that for sufficiently large = either

() JAI < exp(—hioz)
or 0
(b) Al > exp (kD) oy) .

=0

In case (a) (5.11) and (5.9) imply

n
narexp(h > oy
wy < =0

1 —[ﬁ.lexp(hié;ai)

and by (5.8) limwg = 0. In view of (5.11) limwj = 0 uniformly in 1.

n—»oo n—00

In case (b), (5.11) and (5.9) imply

na"‘exp(h D ot)
i=0

N

Wﬁ n ’
12| —exp(k E o4)

and consequently limw, = 0 and by (5.12) limw; = 0 uniformly in 4.

n—>oo n—00

This completes the proof of theorem 5.1.
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6. Now we deal with the difference equation
(6.1) Aug e Agug+F (T, %) (t=0,..,n—1)
together with condition (3.6), and with the linear difference equation
(6.2) Auz = Aiui

together with condition (3.4). A = (4,, ..., 4»), A; is a m X m matrix.
We make the following assumption:
(vii) the mapping F: N x R™ —cf(R™) is upper semi-continuous.
THEOREM 6.1. Suppose that F, L satisfy (vii), (vi) and

(6.3) |F'(, P} < as+Bilp| .

If u = 0 is the unique solution of the linear homogeneous problem (6.2), (3.4),
then there exists a number § > 0 (depending only on A and L) such that

for every F satisfying (6.3) with > Bs < B problem (6.1), (3.6) has at least
i—o

one solution on for every r e R™.
Proof. For an arbitrary b e (R™)"*! the unique solution of the linear
problem
Auy= Ayug+by, Lu=r
has the form
w=1I1Ib+Hr,

n+1

where I" maps (R™)"*" into itself, H maps R™ into (R™)**'. The mappings I'"
and H are linear and continuous.

For every u e (R™)""'F (u) denotes the set of all v « (R™)"*" such that
vi € F'(¢, u;). It is sufficient to prove the existence of a % satisfying

uel'F(u)+Hr.

T: w—I'F(u)+Hr is a mapping (R™)"* into cf((R™)"*). For ze T(u),
under our assumptions, we have

n

(6.4) lell < \TU@+Blul) + 1Hrll, @= Y ai.

i=0

Assuming that B|I'| <1 and putting
Ko= {ue(R™)""" Jull < o}, o= @I+ IHrN@—AICN"

we obviously verify that T(X,)C K,.
Moreover, the closure of 7(K,) = I'F (K,) + Hr is compact. We shall
apply the Kakutani fixed point theorem [4] to the mapping T and to

Annales Polonici Mathematici XXI 6
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the convex envelope of T(K,) but we must also prove the upper semi-
continuity of 7. To this end we observe that if
wk—>w®, wF>u®, w*eT(uk)=IF(u*)+Hr,
then there exists a sequence {v’*} such that
wkh=Tv*+Hr, ov*eFu*, v*>0"ecT(u’).

This follows from the fact that the mapping w—F (u) is upper semi-
continuous and from (6.3). Finally,

limw™ = limw® = w’ ¢ F(«°) .

k—o00 k—oo

By way of illustration we take for equation (3.5) the Nicoletti type con-
ditions, i.e. the conditions

(6.5) Uy, = T4 (rieR, kjeN, j=1,..,m),

where u; = (%i1y vy Uim).
Since the corresponding homogeneous problem

Auy =10, Up,y=0

has the unique solution % = 0, applying Theorem 6.1 (for A = 0 and
Lu= (Uray ..., Ur,m)) We obtain the existence of a solution of problem (3.5),
(6.3) for F satisfying (6.3) with g sufficiently small.

Analysing the proof of Theorem 6.1 we see that condition (6.3) may
be replaced by other conditions which give similar results. For example
we consider the difference equation (6.3) with the boundary condition

(6.6) Lu= uy—up=0.

This is a problem of periodic solutions for a difference equation with
a multi-valued right-hand side. We formulate a theorem which is a gen-
eralization of Halanay’s theorem (see [3], Theorem 2).

Let I' be a mapping (R™)"*! into itself defining in the following way

n
I'b = a, a;=2Gi,-b,-,
i=0

B-.'-]_...BO.A,;_]...AOB,'_]...Bj..l +B;’_1...B,’_1 for ¢ >j ’

Gij = .
i { B{—l---BoAn—l -nAan_l ...B)'_l fOI‘ ? < 7 y

B;=1I—A;, I — the unit matrix.



Luwistence theorems f[or discrele boundary problens 83

THEOREM 6.2. Suppose that F satisfies (vii) and |F(¢,p)| < B(|pl),
where B is mon-decreasing and B(g)/oo < 1/||I)| for some gy. If u = 0 is
the unique solution of problem (6.2), (6.6), then there exists at least one solu-
tion of problem (6.1), (6.6).

The proof of the above theorem is similar to the proof of Theorem 6.1.
In particular, evaluation (6.4) has now the form

) <IT1 B < g when i < oo

Observe that for F(z, p) = {f(¢, p)} we get exactly Halanay’s result.
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