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On the arithmetic structure of Galois Domains*
by
T. SToRER (Ann' Arbor, Mieh.)

1. Introduction. The purpose of this paper is to show that the dis-
tributive law for classes in certain Galois Domains is completely contained
in the distributive laws for the classes in the summand fields of these
domains; in particular, we show that once the problem has been solved
for the field, it has also been solved for the corresponding domains.
We further show that the Jacobi and Lagrange functions can be extended
in a natural way to these domains, and that these functions are decom-
posable into the corresponding functions for fields. Finally, we prove
an analogue of Jacobi’s Lemma for a subcollection of the above domains.

The setting for the results in this paper is Zy,, Z,,, ete.; the extension
to GF(p®), GD(p"¢"), ete. follows from the methods developed in [2],
and is straightforward. The principal tool is the theory of cyclotomy,
and we shall assume the results of this theory for finite fields and derive
the corresponding results for domains, At present, the theory of cyclotomy
for domains is almost completely independent of the corresponding
theory for fields (although the two are formally very similar in appe-
arance), each depending on a careful analysis of the individual structure
involved. The novelty of the present approach is that no reference is
made to the structure of the domain, the analysis being carried out entirely
in the summand fields.

The paper is divided into five sections: Section 2 recalls those results
from the theory of cyclotomy for the finite field necessary for the sub-
sequent proofs. Sections 3 and 4 develop the (known) theory of eyclotomy
for the domain Z,, from the corresponding theories for the summand
fields, Z, and Z,. The main theorem (Theorem 1) of Section 3 gives an
explicit formula for the eyclotomic numbers for Z,, in terms of the cor-
responding cyclotomic numbers for Z, and Z,; the principal step in the
proof of Theorem 1 is Lemma 4, which gives a direct decomposition of
the cyclotomic classes for Z,, in terms of the corresponding classes for Z,
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and Z,. In Section 4 the functions of Jacobi and Lagrange for Z,, are
shown to decompose into the corresponding functions for Z, and Z,,
and an analogue of Jacobi’s Lemma for fields is proved. The latter result
is of importance in discussing the existence of finite difference sets in Z,,.
Section 5 devotes itself to the general situation Z,, where an extension
of Theorem 1 is proved and the class structure discussed. The paper
concludes with a new derivation of the only clags-structure result known
for domains whose order is a product of more than two distinet odd
primes.

ATl results referenced in this paper (with the single exception of
Lemma 12) will be found, with proofs, in [2], where the original sources
are indicated.

2. Notation and preliminaries. Let p, = ¢fp+-1 be an odd prime,
and let g, be a fixed primitive root of p, (i.e. g, is a fixed generator of
the finite field Z, ). Define the cyclotomic classes

Opyi = {gﬁs”(mOdPu)i §=0,1,...,fo—1}; i=0,1,...,e~1

so that O o is the (multiplicative) subgroup of eth powers modulo p,,
and the Gy 1,% #* 0, are the cosets of C,,O oy ordered on ¢,. Further, define
the matrix €, = [aw], where a;; i3 the number of solutions in 2,
of the equation

Z,;+ 1= Z]' (mod _pu), ZQ:EOQ;W;, Zj 607)0’7‘;

i.e., a;; is the number of ordered pairs (s, ¢), with 0 <s,?< f,—1, such
that
g 1 = g5 (mod py).

Then Gy, is called the eyclotomic matriz of Z, with respect to e for the
fixed generator g,, and the entries a;; = (G 5)pyy 04,5 < e—1, of
Gy, are called the cyclotomic numbers for Z,, and ¢, with respect to g,.
Note that, since Z,,o is unique up to 1501n01p111hm, replacement of g, by
% new generator gy of Z,, leaves Cp o fixed, and at most permutes the
Copis @ # 0.

The cyclotomic numbers for Z,,e, and g, satisty the following
relations (see [2], p. 25):

Lemma 1.

(@) (i, 9)p, = (i+me, j+ne)y, for all m,neZ,
(b)  (¢,] po“_“(e_ivj“'i)*poa
(7 O, if fo is even,

(O) ('La])l?n (j+6/2,i+6/2)1‘)0 zf fD 8 Odd,

I

i=m®
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e—1
(d) 2( )]zq,“fo ]-7017
i=o
where
1 if fy is even and i = 0,
Opgi =11 if f, is odd and i — e[2,
0 otherwise.
Note that

1 if —1e 0770:" ,
apg,i = .
0  otherwise.

Now let ¥ be an arbitrary natural number, and define
.Z.N = exp(%:i/N).
We then define the periods

fo—1

cs—rh
Mo = D, Moy = Z By k=0,1,...,e—1,
asto
and note that
e~1
2 pgk = —1.
k=0

Further, we have the following lemma (see [2], p. 38) relating the products
of the periods to the cyclotomic numbers.

LEMMA 2.
e—1
N0 Mg, ke = 2 <k7j)])g Tpgi+Jo Oppc  for E=0,1,..,e~1.
j=0
Finally, we define the Jacobi function

Py—2

e—1
m mk mk
Ty (e Z A }‘ 27'6 Mg s
k=0

and, for natural numbers m and n such that e divides none of My N, nor
m-+n, the Lagrange function

e—1 e—1
Bpymym) = D' 2% 312, B,
k=0 h=0

The properties of these funections are well known (see [2], pp. 41-47 and
62-64); we list below those properties of interest to us.


Pem


149 T, Storer

LeMmMaA 3.
By (33 By ()
(a) Rpo(m, n) = '-—T{—%—(Zynﬁ)‘ —

(d) If 1, is the natural number defined by
90" = 2 (mod p,),
then
Py (—1) Fpy (2F) = 210 By (38) Py (— 24).
Part (b) of Lemma 3 is Jacobi’s Lemma for finite fields.

3. Galois Domains, L. Now let p, = ¢f,+1 and p, = ¢f, 1 be distinct
odd primes such that g.c.d. (fy, fi) = 1 [i.e.,, ¢ = g.c.d. (p,—1, p,—1)];
let d = lem. (pe—1,p,—1) = eff:, and suppose that ¢ is a fixed com-
mon primitive root of both p, and p,. If wyeZy;, is defined by

Ty = g(mod p,) and x, =1 (mod p,),
we define, as in the case of the finite field, the cyclotomic classes
Cpppri = {gsﬁg (mod pypy); § = 0,1,...,d—1}, i=0,1,...,e—1;

it is easily verified that the Cyp, ; are pairwise disjoint and that their
union is My , the (multiplicative) subgroup of units of Z,, . There
are, of course, other choiees for z, [e.g.,#; = 1 (mod p,), #; = g (mod p,)],
but replacement of z, by an #* leaves Cpepro fixed, and at most per-
mutes the cosets Cpy sy ¢ # 0, of Cpypo. With z, (alternatively, @)
chosen as above, we say that the cosets of Cpy o are ordered on p,
(alternatively, ordered on p,).

We now define the cyclotomic matrix CW,I,E = [a;;] for the fixed
generator g of Z, , by requiring a;; to be the number of solutions in Zyy,
of the equation

Zi+1 = Z; (mod pyp,), Zifopmv],h Zlfoﬂom,d;
i.e., the number of ordered pairs (s, ?), with 0 <s,t < d—1, such that
g t+1 = ¢'af (mod pyp,).

Again, the entries a;; = (@) fogwy, OF Cppe are called the cyclotomic
numbers for Z,, with respect to ¢ (*). Now, in this ease, replacement
of g by a new generator g* of Z,,p, may no longer leave 0'1’07'1.,0 , 10T hence
any Opp i, fixed, and so in general there exist several distinet cyclo-
tomic matrices Cy . corresponding to p, and p, which cannot be obtained

() We suppress the e now, since ¢ is uniquely determined by py and p,.
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one from the other by permutations. Since P(Po—1) ¢(p1—1) = p(e)p(d),
it is easy to show that there are at most ®(e) such matrices (where @ I8
the Euler function).

We now state the main theorem relating Gy, . to Cope 20d Gy .

THEOREM 1. Let py = ef,+1 and Py = efi+1 be distinet odd primes,
and ¢ = g.e.d. (py—1, p,—1). Burther, let g, and g, be generators of zZ,,
and Zy , respectively, and g the common primitive oot of p, and p, corre-
sponding to g, and g,. Let Cyi (N =y, py, or PoDy) be the cyclotomic
classes, with Cpypy,i Ordered on p,, and Cy,. the corresponding cyclotomic
mairices. Then, if P and Q are the permutation mairices

€

— (ogLH

P = Cire(0,1,0,...,0) = o

J 0= o000 = (¢
) = Cire(0,0,...,0, )—(I%IIO),
we have
Cponl,e = [(P‘CDOVGQJ)‘CDM],
where - indicates the inmer product of the two mairices.
COROLLARY,
(07 O)pﬂp1 = Cpu,c'Cyl,e‘ .

We remark that Theorem 1 extends the knowledge of the class
structure of the domains Z,,, to those e for which the corresponding
problem in Z o has been solved; namely, e < 20 (e even). In particular,
if one wished to determine, for a fixed even e < 20 those primes p, and p,,
with p, = (e—1)p,+2 for which all the cyclotomic numbers (i, 0)pgn s
©=0,1,...,e—1, had the same value (as in the construction of finite
difference sets modulo pgp, (cf. [2], p. 89)), he would have only to examine
the set (PiCpo,g)- Cy,. under the above condition. The problem is thus
reduced to a straightforward, albeit lengthy, computation.

The proof of Theorem 1 is accomplished with the aid of the definition
of a new class product, and two facts concerning this product. We give
the definition and develope the necessary material in two rather lengthy
lemmas.

Let 4y = Z, and 4, < Z,,, and detine the class product

Ao d; = {pia,+ pya, (mod PoP1); tpedy, ared )
As an elementary remark, we note that

e—-1
‘Mpgp,-, = 2 Cpu,iCPI,h
=0
where 4,4+ .4, and Y 4; denote strong union. Let my and m, be integers
£

such that m,p,+m,p, = 1, and define the natural numhers ay and a; by
Mo € Oppagy Mye0p o, 50 that
1e0ppoyC oy & My,

ez La
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Finally, define Cpy.,¢ =0,1,...,6—1 in Z,, to be the sets

0?1

e—1
'
012 i = Oﬁ +(a +'i)+k0pl,u1+7f'
oPL 0:(%
k=0

LeMMA 4.
Cpyort = Cpgor i B =0,1,...,6e—1.
Proof. We must show that
Cogopte = {g° @5 (mod pop1): s = 0,1,...,d—1}
for t=0,1,...,e—1. Clearly C,',O,,l,k consists of d distinet elements
modulo p,p; and, since
Cpot = {05+ (mod py): s = 0,1,...,f—1},
Opyy = {61+ (mod py): 1 =0,1,...,,—1}

the ge;leral term of Oy, may be written in the form

OpyiCpyi = {6577 Do+ g5+ D1} (mod pop,).

In particular, in the case of Upy o, We know that there exist matural
numbers s and # such that

1= gierpy+g¢°*t*0p, (mod pyp,),
whence

g =g pot gt p, (mod popy),
and 50 geCy a0 110p 041 S Opgpyo, Dy definition. It therefore follows
that every power of g modulo p,p, is an element of O,’,o,,l,u, and hence
0’;01,1,0 consists solely of the d distinet powers of ¢ modulo p,p,.
Further,
o = g:clh-alpo‘i' ge et p, (mod PoD1)
is an element of Oy 110p,q < Oj’,opl,l. This completes the proof of the
lemma.
We remark that C’,Qo,gl,i may equivalently be written

e—1

!
gyt = 2 Opgaﬂg-l-k0271.(0.1_1:)4.10

k=0
sinee all subseripts are reduced modulo e. Further, had the cosets of Cognyo
been ordered on p,, we would have defined

e—1

!
Copwyi = Z Ongiaq % Oy ey 419 4

k=0

or, alternatively

e-—1

U
Oﬂopl.k = Z Opo,(ao—'ﬁ).}_kc'pl,al-(_ka
k=0
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in which case Lemma 4 (with a, replaced by #,) remains true. The corre-
sponding form of Theorem 1 for an ordering on p, is

Cpopl,e = [CDD,Q' (Picpl,cQj)]:
and the same proof obtains.

We now return to the case in which the cosets of Cpgopo are ordered
on p,, and define the periods

- .
771}01}1',{:1,0 2 Apg; kB =0,1,...,e—1.
oy 1o
PgD1sk

Note that, in terms of the ', Lemma 4 says no more than that

d—1 3
Sk

e—1
¢
— . = 0. P —
Mpgoy ke = 2 Nogu(ag+R)+iMpyay 1 = 2 Iy kK=0,1,...,e—~1.
=0 8

=0
Also, we clearly have
e—1

Z Hpgpy ke = 1.
=0

We now show that the products of the periods are related to the
cyclotomic numbers for Z,», in very much the same way as in the case Z, D
(cf. Lemma 2). The proof below, which is done entirely in the summand
fields, is new, but the result is not (see [2], p. 98). The present proof
offers a combinatorial interpretation of

s _ 1 if —-IEOpopl.k,
PE o otherwise.
LemyA 3.
e—1 1
. PoPr—
Npgpy:0 Mooy == 2 (%, .7)170771 77110771,7"“2f of1t+ 5p0111,k (”L‘;_—) i
7=0
Jor k=0,1,...,e—1.
Proof. By definition

a—1 -1 gk

a b _ 48 L)

Nngpye Mogpp e = ( Z Zuon])( 2 2110111) = ( 2 }"1’0?71) ( 2 ;~170p1)
8=0 =0

@Cpyn),0 beCpgny ke

d-1 sk -1 k

ST g e
T Ly Mropy T L TR ’

S0 Pord)

Note that
ik 0;;0,t+k < Zpo;
g g€
Cp1.¢ < Zpl:
Acta Arithmetica XV, 2
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and that if gaf = aeOyiix, then for each u in the set
{{+n(p—1): n =0,1,..., fi—1},
we have that g*af = a0y e A similar statement holds for p,.

Now let M = g'wj-+1eZyy. Clearly, as o ranges over Coptsiy
a+1 = ()eZp0 exactly 02,0,, 1 times; while as @ ranges over 0/,1,“ a1
=0¢Z, exactly 0, times. Hence M = gay-+1 = OeZy,, exactly

1 if fof; is odd and % = 0,
e—1
‘spapl,k = Z 01)0,[1.15 0271,i =141 if fofl is even and % == 6/2,
i=
! 0  otherwise
times with #. For each such ¢,

d-1

5.0
2 ;vpozzl = da
5=0

whence the total contribution to the sum in question for M = 0eZ,

is da?’npl’k‘ ;
Suppose now that p,|M # 0¢Z,p,, and that M/p, = gi(mod p,).

Then, if pon,,l,ﬂchl, there exists a natural number » such that

gag+1 = gt (mod p,),

00}

ie., such that some element of Op,e Is immediately followed by an element
of Oy usn- Conversely, each of the {t, u+h),, elements corresponding
to a fixed & modulo e gives rise to f, distinet elements of Opyp,,» With the
above property. In the present case

S FFlaf 1y PHGER)
}“7'07)1 = Z-pl = }*171 ’
so the contribution for fixed ¢ is
-2 o 71-2 P1-2
01(@1+1) syer n Al "f
fOZ lpl =fu2 ZIJIL E =f02 2'111 = —fy.
8==() §=0 8=0
Henge, the total contribution is
e—1 e—1 &1
AN (ty D)y, = Mo Op2) = —Fofi--f, 6
0 Dotk s BT i)y = “fu‘_, gt {f1— pt) = —fofi-4-1i o0yt e
i=0 h=0 £=0

Similarly, if p,|M = 0¢Zy, , the contribution is — foli+ 1o O -
Finally, if neither p, nor P, divides M, then there exist matural
numbers % and j such that g'af41 = g“wf,eC’w,b,-, 80 that

d-1 ; d—1 ;
N Ans(a“‘ma) e
2 Tty = } ;*1101'1 = Npgp1i s
§=0 fomry}
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and the total contribution is

e-1

2 (&, j)nopl Mooy -

. i=o
Upon noting that A+fot+fi = (Pep1—1)/e and combining the above
results, the lemma is proved.
We now prove Theorem 1 by using Lemma 4 (and Lemma 2) to
give an alternate evaluation of Tipgy,0 Mgy -
Proof of Theorem 1. By Lemma 4,

e—1 e—1
Noypy.0 Npgoy ke = ( 2 NMogeg+iMpga+ i} ( § Nogag+k+i ’Ipl,a1+.i)
) =0
e—=1
= Z (77130,00+i 77170.00+75+J') (777’1,'114' % "\7?71 54y +7')
i7=0
e—1
= 2 ("ipa,ao+i"]pu,(a(,+i)+(k+f))(77111,a1+i’791,(al+i)+7‘)-
=0

By Lemma 2 (with Ap, replaced by l;‘,g”), this expression is equal to

e—1 e

1 e—1

Z ( B+, 7")po”71>o,ao+i+r+f0 Hpn,kw‘) ( (4, 8)p, Mo,y +ivs +f161)1.7')
1f=0 0

r 8=

I
53

e

e—1
(X st Py (s Sy Mgy siso+
S=10

=0 1,
e-1 e—1

+fi 0171,7' 2 (+7, T)po Npg.ag+i+r +fo epo,k+j E (4, 3)1)177p1,a1+i+ st
=0 s=0

+fofiOng410y5)
We evaluate this sum in four parts:

e—1
%
1) Z Soba 6110,k+7‘ Opys = ABpypy 5

i,7=0

1

e~1 é—1
) 2 Jo 6110,k+7‘ Z (7, S)py Mpaivs
1,7=0 8=0
1

.
D) Ongii (Fi— Opy.)

7=0

e—1 e—1 e—1

=f > 6, gt 2, (0 8oy D, Mopaysivs = —Jo
Ld 0
=0 8=0 i=0

= —fifi+fo 57)0231,k§

e—1 e—1
3) Z fl 91)1,7' Z (7‘7 +]7 7')170 777)0,a0-|.1'+r = _‘fofl +f1 6110771,1-:;
1,i=0 r=0
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iy
|
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!

(k475 7)g(d 5 8)py Moguag4itrTpyar+its

-“.‘M\

i,j=0 r8=0
-1 e-1
= Z (47, 74)110(‘7.7 )y, L Npg,ag+r—8)+i Moy 41
Jr8=0 =0

-3 (2 (b5, 74 8y (1 8)o) gy
= 5

Hence we find that

-1
Popr—1
Npgp 1.0 Mogny o = 2 ( Z E+7,7r +3)170 (G, )101) Nogwyr —2fof1+ buovl,k (“Lé—‘*)

J8=0

for k1 =0,1,...,e—1. Equating this expression with that obtained in
Lemma 5 we find, upon comparing coefficients, that
e—1

(& P)pgp, = Z B+, 748)p, (G5 )y s
7,8=0

the elementwise formulation of the product defined in the theorem.

Note that the entire statement of Lemma 5 and the complete alter-
native evalnation of the product 7, 0%, x DY Lemma 4 are not needed
for the proof of Theorem 1; for if M is a nonunit in Z,,, its contribution
0 #pgpy 0 Mgy i 18 either a constant or a polynomial in 4, or 1, . Conversely,
if M is a unit in Zyp, 1ts contribution to Tpgr,0 oo,k 18 & polynomial
in Ay, With no terms in 2, or 4 . Similarly, the sum 4) in the evaluation
Of Npeny 0pgpyx PY Lemma 4 is a polynomial in Apyp, With no terms in A,
or 7p,, and no other sum in that evaluation contributes a A,y . Hence
the theorem is proved upon equating

e—1 e—1 e—1

2 (k7j)270271 Nogw1,d = Z Z (B+37, P)py(d s 3)1)177p0,ao+i+r771)1,n1-|-i+s
i=o

1,7=0 7,8=0
and comparing coefficients of iy n;m =0,1,...,e—~1. The precise
statement of Lemma b5, however, is of independent interest, and the
proof is included for completeness.
Motivated by the conclusion of Theorem 1, we define a product » for
(e X e)-matrices

A" = {[a: 1,j=0,1,...,e—1}, =n=0,1
ag follows:
A A0 = B

where B = [b;;] is defined by

e-1

— (0 1

bm = Z a’iir,i+sa£,g
7,8=0

i=m®
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Cpowl,e = Cpo e ® Cpl,e'

The conclusion of Theorem 1 may then be more compactly written

149

We now use Theorem 1 to derive the elementary cyclotomic relations

for domains.

LeMMA 6.
(a) (i+ne, j+me)p = (2, Nogs, for all m,neZ,
(B) G oy = (e—1,j—

)1)07.71 s

{4, ©gpy
(J+ef2,i+ 3/2)7)07)1

if fofy is odd,

(c) (i’j)popl = . .
if foft s even,

e—-1
(@) (0 fagny, = H+ Sy, where el = (p,—2) (p;—2)
j=0
Proof. (a) Trivial.
e—1
(0)  {e—1,j— 1o, = D' (e—itk,j—its)y,(k, s),,
k,8=0
e—1
= k‘z;(i—k,j—l—s- E)py(e—k, s—k)p,
€—1
= kgn(wk,ﬂs)po(k, 8, = (5, )y, -
(¢)  If fofy is odd, then
(ja’i)p,,pl Z (j+%,i+s) Yoo (B 3)
k=0
e—~1
:’ (l+37]+k)170(3 k) = (.:j)pozrly
6,6=0
while if f, is even, f; odd, we have
! e~1
(J4e2,i4e/2)pp, = 3 (j+e/2+T, i+e/248)p, (K, 8,
Ks=0
e-1
kE (F+E, i+ 8)py (k+e/2,5+ €[2),,
,8=0
e—1
= (7:+31j+k)p0(87 k)pl = (7:7 j)ﬂam'

S
[
1

)

—1.
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The analysis for f, odd, f; even is identical.

e

e—1 -1 e-1
(@) D iy = D, D) (itTo, b )y (65, 8)p,
F=0 J=0 F8=0
e—1
= D (fi— Oy ) (fo— Ongisr) = M+ Oy, 1

Ie=

=

The next rather specialized result is of importance in the application
of the theory of cyclotomy for domains to the existence of finite difference
sets in these structures (see [2], p. 110).

LeMMa 7. When e = 4 there are exactly two inequivalent cyclotomic
matrices Cpop 4 and Gy 4 for Zygw,y and these differ in their first entry;
1.0.,

(05 0)pgw, # (0, )y, -

Proof. Let ¢ = 4f+1 be a prime; then the form of C,, is given
by Lemma 1 to Dbe

fodd feven
AlBl0|D 4|Blo D
E!E|D|B B|D|E | T
4|74 | B 0| B |0 B
| D|B|E D E|EB|B

and it is known (see [2], p. 48) that, for f odd

16B = a—8t, 16D = a-8t,
while, for f even

16B = b+-8t, 16D = bh—8t
where ¢ = ¢+4-1+2s and b = ¢—34 25, and

g = 82441, s = 1(mod 4),

the sign of ¢ depending upon the choice of generator for Z,. Further
if g is a generator of Z, then so is ¢, and replacement of g by ¢° inter-
changes Oy, and (y,, and hence reverses the sign of t.

Now let g = g, (mod p,) and g = g, (mod P1) be a generator of Z,, .
Then ¢* = g (mod p,) and ¢g* = g, (mod p,) is also a generator of Z,, .
Suppose that g generates the cyclotomic numbers {¢; §)pgm, and the cyelo-
tomic matrix C,, ., while g* generates (4 §)pgn, and Cogpa- We now
show that (0, 0)y, # (0, 0)5y,, and hence that Cppps and Gy, 4 ave
inequivalent; since there are at most ®(4) = 2 inequivalent eyclotomic
maitrices for Z,y , the lemma will be proved.
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By the Corollary to Theorem 1 and the above discussion, we imme-
diately find that

162 [(07 0)1701)1— (0) 0)301;1]

_ | 3U(ByBy+DyDy)—(By By + D; DY)
[(BoB1+ Dy Dy)—(B; By + D; D)1

Hence it remains to show that (ByB,--D,D;)—(BsB:+DiD?) 0.
To that end, we let p, = s34+ 473, s, = 1 (mod 4) and p, = &> 482,

$; =1 (mod 4), so that, for f, odd
168, = a,—8t,,

16Dy = a,+8t,,

it fof: is odd,
if  fof: is even.

16B; = a,+8%,
16D7 = a,—8t,,
while, for f, even

16B, = by+8i,,

16D, = by—8t,,

16Bf = b,—8t,,

16D; = by+-8t,,

where a, = po+1+42s, and b, = p,—3-+2s,. Similarly, if fi is odd
16B, = 16B;y = a,—8t;, 16D, = 16D} = a,+ 84,

while, if f; is even
16B, = 16B} = b;+8t,, 16D, = 16D} = b,—8¢,,

where a; = p,+1+42s, and b, = p,—3+2s,. Hence, if fofr is odd,

(ByBy+ Dy Dy)— (B} By + Dy D}) = (By— B}) By+ (D~ D§) D,

= —16t,(B,— D;) = 162¢,t,;
if f, is even,

(Bo—B:)k)B1+(Do”“D:)D1 = 16t,(B;—D;) = —16%t,t;
and, if f, is even,
(Bo—B}) B, + (Dy— D;) D, = —16t4(B;— D;) = —162t,1,.
Hence
3tyt,

_tO tl

and ,¢; # 0 since p, and p, have no improper representations as the sum
of two squares.

if  fofy is odd,

0,0),, — (0,0 1=
[(0; 0)ugz, — (0, 0y ] it fof, is even,

4. Arithmetic functions on domains. When ¢ divides none of m,n,
nor m~#, we define the functions of Jacobi and Lagrange for the domains

Z:,,O,,1 as follows:

e~1
m mk
Fp(ﬂ)l(ﬁe) = § 2 Nvgvyk
k=0
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and

ke +n)h
Ry, (12, ) 2&" 2//1 O oy By,

=0 h=0
The following theorem relates the functions Ry, to the oridinary Lagrange
functions R, and R, .
THEOREM 2.

Ry, (my m) = Rzzo(ma 1) By (—m, —n).
Proof.
Rm)m (m’ 72 Z an 2 l (m4-n)h L h)l)olll
k=0
e—1 e—1 . e—1
=y V A5 N Tty het 8y (5, $)y

k=0 IL 7,8= 0

e—1 ~1 e—1 e—1

( ﬂ."k 2 A (m+- n)h(k h)p )( Z—m Z /1(111; n)s‘ ] S) )
=0 =0 7=0

= Ry (m, n) By (—m, —mn).

The well known properties of the functions By (m, m) (see [2],
D. 100) are immediate corollaries of Theorem 2 and the corresponding
properties of the functions R, (m,n) and By (my n).

We now prove a correspondmw result for the functions I’,,o,,l( o).

THEOREM 3.

Fpip (A7) = 2ga=) By, (2) Py (25™).
Proof.

m
770171 (4¢)

777-] 7"/7
Zle Nngord = § A 2’1@0,«0+7+1%1 ag+i
e-1

= Jgt1=) (Z }Jznj 77170,7‘) (_)_7 chm"]vl.i)
=0

F=0
= JM—a) oy ( M F

7)1 .—m)

COROLLARY 1.

Fﬁoﬂl(_l) =
COROLLARY 2.

(=10 Fy (—1) By, (—1).

Fpgoy(—2) = (—1y = 0gi= o B, (447, (—ach.

Other immediate corollaries to Theorem 3 are the usual properties
of the functions F, (%) (see [2], pp. 99-100); in particular, the s
and R’s are related as in Z, , (see Lemma 3(a)) as we now show.

bm@
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COROLLARY 3.

l’popl (26" Fpgny (%)
Fpopl (}m~n> .

Ii’popl (m,n) =
Proof.
By, (m, n) = By, n) By (—m, —n)

- F,,o(i"‘)Fp,,u“)) (Fplu;’”)Fpl(z;") )
Ty (277) Fy, (37)

}_771(a1—a0)_pp » ( m) 72— n(ag—ap) F]loﬁl u’?)

._(:u_,zz,)(rz —ag) mi
17 FPo”l(;"’ )

Fpoy (4") Fpgp, (72)
'FPOIJJ ()1]14— n,)

‘We now use Theorem 3 and its Corollaries 1 and 2 to prove an analogue

of Jacobi’s Lemma 3 (b) for the domains Z,Jo,,l.

LeMMA 8. Define the natural numbers 1, and 1, by

1

g =2 (modp,) and ¢ =2 (modp,).

Then

Fpgy(—1) Fpp, (22°) = 10070 T, o (3) P (— 25

Proof. From Theorem 3 and its first corollary, we have
Fpgpy (—1) By (22°) '
= (

But, by Lemma 3 (b) this expression is equal to

— L) HAT 0 0) By (1) iy (7) i, (—1) B, (35°9).

RO (2510870 By (7) P (26 ) (1) P01 20 250170 By (— 1) By, (— 757F)
which, by Theorem 3 and its second corollary is equal to
B B (26) Fg, (— 26).
The conclusion of Lemma 8, for an ordering on p,, becomes
By (—1) P, (1) = BT By (32) P, (— 20),
and the dorresponding statement of Theorem 2 is
Bpp, (m, n)

= Ry (—m, —n) By (m, n).
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5. Galois Domains, II. We conclude with an indication of the results

ef;+1 are (n+1)

distinet primes such that the f; are pairwise relatively prime; let g be
a common primitive root of the p;, and define

n
for the general case. Let N = []p;, where the p; =
=0

g (modp;),
1 (mod [] pj).

j#T

@y =

Further, if m,, my, ..., m, are integers such that

n

Birpsym=1,

1=0 J51

define the natural numbers ag, oy, ..., 0 by

mieCyp 1=0,1,...,n

1951

Levma 9. If d = e”f% and Tt = (kq, by ..n,
we define

Ten_1y ky), where &, = 0,

e—~1 n
k= 2 I Iopi,amriwi

=0 2=0
then
n—1

Onz ={ r[ mk7 (mod N): s =0,

for all k; =0,1,...,e—1.

Proof. We have,

le CN,uo‘al ..... )
by definition,
and @€

g EON,uo-(. Lap+ Loy _1+19 Naguttgsenspo it Levotty 1 9

whence the proof follows from the method of the proof of Lemma 4.

The cyclotomic number (§®, EV)y is defined to be the number of
solutions of the equation

Zro+1 =Zzgw (mod N);  ZimeOnio, ZiweCuin;

i=m®
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i.e., the number of ordered pairs (s, ), with 0 <s,¢< d—1, such that
Nn—1 (0) n—1 )
g xl +1 = 'Hw]’ (mod N).
j=0

We then have the following generalization of Theorem 1.
TaEOREM 4. If P and @ are the permutation matrices

e

0

0|Ie_1) P S
3 Q == C]_T.’C‘.(0,0,...,O,l) =('—“~

' ¢
P = (Cire(0,1,0,...,0) = ﬂ()

Ic—l

1
B ’

then
70 130

1.20 (Pi C'pi,cQ ! )7

where k' =k =0, P* = Q" = I,, and @ denotes the inner product of
the (n-+1) matrices.
Proof. We define the periods for Zy by

INE = 2, b

vy g

(E®, B0)y =

and then use the direct method of Lemma 5 and the implicit method in
the proof of Theorem 1 to give two expressions for the coefficients of
the primitive N throots of unity in the evaluation of the product 7 ;7
Equating coefficients of like terms yields

Z (H (O)Tl‘ 7"(1)+7')p)

for all ordered n-tuples B, E® with 0 < k2, k) <

.., n—1; always, k) = k) = 0. This is the

of the matrix product defined in the theorem.
COROLLARY.

N”—C(U) .

(B9, EW)y

<e—1l,and s =0,1,
elementwise formulamon

—_—— n
0,0)y = igo Cpi,a-
For the ordered (n--1)-tuples 2® and EY, we define &®+%¥ and
ak® coordinatewise, and we let &7/2 be the (n+ 1)-tuple whose 4th

coordinate is e/2 and whose remaining n coordinates are all 0. The cyclo-
tomie structure of Zy will be given in Lemma 10, below. First note that,

since
[[etni—1) =
=0

there are at most [p(e)]" distinet cyclotomic matrices definable for Zy.

lp(e)]"(d),
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LreMMA 10.
(a)  (B94a2, B+ ba)y = (B, EW)y for all a,b <Z,
(d) (B, B)y = (2= k0, 2D =)y,

(E(l)’ E(“))N

n
if  [lf; is odd,
i=0
(BO+20)2, FO+29)2)y  if f; is even, i < n,
(94212, BO+22)y if fnis cven,

e—-1 n

e—1
() > (B0, By = [T (fi— Ongal® +1)), where the sum over

() —o f==0 7=0
means “as B runs over all (n--1)-tuples whose entrics lie bo-
tween 0 and e—1, inclusive”.

Proof. (a) Obvious.

(@ (&, M)y =

yio]

e~—1 n
(b)  (e—F9, B —F0)y = ( (6~ kD 1, KO — 5O+ ), )
1,7=0 1=0
e—1 k3
= ( (K1, 1 - r— 1))

() If f; is even, then

(B0 45 12, BO4g® 12)x
n

V ([T¢ (B9 41, 1+ 1)y, ) (RO /241, KD e 24 r)y,
tr—- 7=0
bED

e—1

—_ n
= D[]0 47, 40, < (B, B),.

=0 j=0

The remaining cases are entirely similar.

e—1 By 7
@ D E, BNy = Sj{; (n KO0, B4, )}
M=o Wy 0 Vi
—~1 n—1
t;;(ﬂ '*017 7.() )(i 7‘)
e—1

'—' Gﬁb k,L +t )

bm©
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" We conclude with a few brief remarks concerning arithmetice functions

on Zy. If
ko= (ko Eoy,y ...y kn_1y kn = 0),

then we define
IZ’,’] = 2 ki.
i

Further, if n 52 1 (mod ¢), and if none of the natural numbers Mgy My,
nor mo-+m, is divisible by e, we define the functions

N (A7) = Z mekl -
and
e—1 e~1
7(0 *(L - =
Ry (mg, my) = Z Pl ) Z I g+ E)y (B9, 50),
0 =0 D=0

and prove, as in Theorems 2 and 3, that

—’"0[2 a;—(n—1)ay]

Fx(2) = 2

.::

By, (270) Fp, (25"~ 0™0)

s
[
o

and
Fx (20 Fx (257
By (mq, my) = “FN(;TIO.:—?W)—

n—1

[ [ Boitmo, n) Ry [ (n—1ym4, — (n—1)m,].

Analogues of the usual properties for the F’s and the R’s in z,,
and Z,, may easily be developed for the structure Zy from the a.bove
In particular, if # = 0 (mod 2), the method of Lemma 8 can be used
to prove a direct analogue of Jacobi’s Lemma for Zy.

Limnna 11, Let g% = 2 (mod p;) for i = 0, 1,...,n. Then

v z RS ,
Fy(—1)Fx (%) “l Fy () Fr(—Z).
Finally, a$ ‘an application of the general theory, we derive the sole
class structure theorem known for Galois domains whose order is a product
of more than two distinet primes (see [1]).
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For ¢ = 2, the cyclotomic matrices Gy, for f even or odd are given

directly by Lemma 1:

p=51p—1 p—3 | p+1
T | e 4 4
Cps:
D2 p—1]|p—1 pi __’[9—3
4 4 4 4
J even fodd

and, if p'o, Py, and p, are distinet odd primes with

¢ = Leam.{g.c.d.(p,—1, p,—1), g.c.d.(p,—1, p,—1),

g.c.d.(p—1,p.—1)> = 2,
then, by the Corollary to Theorem 7,
(07 O; 0’ 0)1’10171712 = Cﬁo,f 271:2.("‘172:2‘

We proceed to an explicit evaluation.
LemuA 12. Let

e=2 and M = (p,—2)(p—2)(pa—2) P+ Py +P2—8;
then

MA2(po+pi+p)—4  if  fofufa 8 0dd,

M~|~2p0 if  fo is even,
16(0, 05 0, 0)pynyn, = Htop, if  f, is even,
i +2p, if  fy 15 even.

Proof. Here there is exactly [¢(2)]? =1 distinet cyclotomic matrix
for Z,y,p,; and the entry (0, 0; 0, 0)pgnyp, OF this matrix is given by the
Corollary to Theorem 7.

Hence we find that

(0,050, 0)720171172 = 170,2'01)1,2'07:2,2
takes the following values.
Case I. fyf.f, odd. Then

Do—3\(11—3\(p.—3 ot 1 1\ pot1
C”°'2'C"I'2'9”é~2,;4=3( 1 )( g )( I )+(p4 )(pli )(p I )

= 5 [(Po—2) (11—2) (P2—2)+8 (Do + P+ ;) —12]
= LM+ 2(py+py+ py)—4].
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Case II. One of f,f.f, even. Suppose f, is even; then

Po—5\(P1—3\[p.—3 —1\[pi+1\[pat1
0«2'Cp1’2‘Cp2,2 =( 04 )( 14 )(I’ 1 )‘i‘ (1-704 )(.’P1I )(1’24 )+
Po—1\[(p1—3\/p.—3
2
1 e
= §i[(Pe—2) (91—2) (P2 —2) + 3P0+ p1 + po—8]
= (M +2p,).
If f is even, Gy 5 Cy oGy, o is the first sum of products on the right

above with the subscripts 0 and 1 interchanged. Since 3 is invariant
under permutations of its subseripts, we have

G

%(ﬂ"[+2pl) if f; is even,
Cpo,z‘cpl,z'cpl,g =1: -
w (M+2p,) if f, is even,

and combination of the above results gives the lemma.
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