

ACTA ARITHMETICA XV (1969)

A problem of Schinzel on lattice points

b

Wolfgang M. Schmidt (Boulder, Colo.)

1. THEOREM. Let Λ be a lattice of integer points in Euclidean E^n and let Λ^+ be the set of lattice points with nonnegative coordinates. There exists a finite set S of points of Λ^+ such that every point g of Λ^+ may be written

(1)
$$g = c_1 u_1 + \ldots + c_n u_n$$
with $u_1 = u_1 v_2 S$ and with propagating integers $v_1 v_2 S$.

with u_1, \ldots, u_n in S and with nonnegative integer coefficients c_1, \ldots, c_n . The truth of this theorem had been conjectured by Schinzel, who

The truth of this theorem had been conjectured by Schinzel, who proved the case n=2 by means of continued fractions (1). He originally wanted to use the theorem to prove results on polynomials, but later found a way to avoid it.

Notation. Write E^t for the coordinate plane consisting of points $(x_1,\ldots,x_t,0,\ldots,0)$ and E^{t+} for the subset of E^t when $x_1\geqslant 0,\ldots,x_t\geqslant 0$. We also shall write $E^+=E^{n+}$. Let K^+ be the set of points $x\in E^+$ with length |x|=1.

 $\boldsymbol{B}=(u_1,\ldots,u_n)$ will be called a *basis* of Λ^+ if u_1,\ldots,u_n lie in Λ^+ and form a basis of Λ . Given such a basis \boldsymbol{B} , let $C(\boldsymbol{B})$ be the cone consisting of the points

$$(2) x = \lambda_1 u_1 + \ldots + \lambda_r u_n$$

with nonnegative coefficients λ_i . If a lattice point g lies in C(B), then these coefficients will be integers.

Hence the following proposition will suffice for the proof of our theorem.

Proposition 1. There are finitely many bases ${m B}_1,\dots,{m B}_m$ of ${\Lambda}^+$ such that

$$(3) \qquad \qquad \bigcup_{i=1}^{m} C(\boldsymbol{B}_{i}) = E^{+}.$$

The case n=1 of Proposition 1 is obvious; we may then take m=1. We shall derive the case of dimension n from the case n-1.

⁽¹⁾ In the course of the proof of Lemma 5 of On the reducibility of polynomials and in particular of trinomials, Acta Arith. 11 (1965), pp. 1-34.

By homogeneity it will suffice to find bases B_1, \ldots, B_m such that

$$\bigcup_{i=1}^m C(\boldsymbol{B}_i)$$

covers K^+ . Now K^+ is compact, and hence it will be enough to show that every x in K^+ is contained in a neighborhood N(x) in K^+ which is open with respect to K^+ and which is contained in a finite union of sets C(B).

Using homogeneity again we infer that it will suffice to prove the following proposition.

PROPOSITION 2. Every $x \neq 0$ in E^+ is contained in a neighborhood N(x) in E^+ which is open with respect to E^+ and which is contained in a finite union of cones C(B).

2. We now proceed to prove Proposition 2 when x is not contained in an (n-1)-dimensional rational subspace. In particular, x does not lie in a coordinate plane.

Consider *n*-tuples of linearly independent points u_1, \dots, u_n of \varLambda^+ such that

(4)
$$x = \lambda_1 u_1 + \ldots + \lambda_n u_n \quad \text{with} \quad \lambda_1 > 0, \ldots, \lambda_n > 0.$$

There do in fact exist such n-tuples: Let u_1, \ldots, u_n be points of Λ^+ which lie on the positive coordinate axes. Such points exist since Λ is a sublattice of the integer lattice. Since all the coordinates of x are positive, x has a representation as in (4) with positive coefficients.

Let u_1, \ldots, u_n be an *n*-tuple of this type such that the absolute value of the determinant $|u_1, \ldots, u_n|$ is least possible. We claim that $B = (u_1, \ldots, u_n)$ is a basis of Λ^+ .

Otherwise, there would be a point $u' \neq 0$ in Λ with

$$u' = \mu_1 u_1 + \ldots + \mu_n u_n$$

and $0 \le \mu_i < 1$ (i = 1, ..., n). We may assume without loss of generality that $\mu_1 > 0, ..., \mu_s > 0, \mu_{s+1} = ... = \mu_n = 0$. We may further assume that

$$\lambda_1/\mu_1 \leqslant \lambda_2/\mu_2 \leqslant \ldots \leqslant \lambda_s/\mu_s$$

where $\lambda_1, \ldots, \lambda_s$ are given by (4).

The points $u', u_2, ..., u_n$ are linearly independent. A short computation shows that

$$\boldsymbol{x} = \lambda_1' \boldsymbol{u}' + \lambda_2' \boldsymbol{u}_2 + \ldots + \lambda_n' \boldsymbol{u}_n$$

with

$$\lambda_1' = \lambda_1/\mu_1, \quad \lambda_i' = \mu_i \left(\frac{\lambda_i}{\mu_i} - \frac{\lambda_1}{\mu_1}\right) \quad (2 \leqslant i \leqslant s),$$

$$\lambda_i' = \lambda_i \quad (s < i \leqslant n).$$

Hence the coefficients λ_j' are nonnegative, and since x lies in no rational subspace, they are in fact positive. Moreover, the absolute value of $|u', u_2, \ldots, u_n|$ is smaller than the absolute value of $|u_1, \ldots, u_n|$, and this contradicts the choice of u_1, \ldots, u_n .

Hence $B = (u_1, \ldots, u_n)$ is in fact a basis of Λ^+ and by (4) x lies in the interior of C(B). Hence there is a neighborhood N(x) of x which is contained in C(B).

3. Now suppose x is contained in an (n-1)-dimensional rational subspace, but in no (n-1)-dimensional coordinate plane. Let k be the smallest integer such that x lies in a k-dimensional rational subspace R^k but in no (k-1)-dimensional such space. We have

$$(5) 1 \leq k \leq n-1$$

Let $R^{k+}=R^k \cap E^+$. Since x is in the interior of E^+ , there is a neighborhood $M^k(x)$ of x in R^k which is contained in R^{k+} . Suppose R^k is spanned by points q_1,\ldots,q_k of A. The points

$$\boldsymbol{r} = r_1 \boldsymbol{q}_1 + \ldots + r_k \boldsymbol{q}_k$$

with rational coefficients r_i are dense in R^k . Hence there are k linearly independent such points r_1, \ldots, r_k in $M^k(x)$ such that

$$x = v_1 r_1 + \ldots + v_k r_k$$

with positive coefficients r_1, \ldots, r_k . Each r_i is a positive rational multiple of a lattice point u_i in R^{k+} , and we may write

(6)
$$x = \lambda_1 u_1 + \ldots + \lambda_k u_k$$

with positive $\lambda_1, \ldots, \lambda_k$. By an argument used in § 2 above there are in fact points u_1, \ldots, u_k of R^{k+} which form a basis of the lattice $A^k = R^k \cap A$ of R^k such that (6) holds with positive $\lambda_1, \ldots, \lambda_k$.

Since x has positive coordinates, so does

$$y = \langle \lambda_1 \rangle u_1 + \ldots + \langle \lambda_k \rangle u_k \, (^2).$$

It is possible to choose v_{k+1}, \ldots, v_n such that

$$(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_k,\,\boldsymbol{v}_{k+1},\ldots,\,\boldsymbol{v}_n)$$

is a basis of Λ . Choose the integer t so large that the 2(n-k) points

$$\pm \boldsymbol{v}_{k+1} + t\boldsymbol{y}, \ldots, \pm \boldsymbol{v}_n + t\boldsymbol{y}$$

have positive coordinates. For each choice of sign \pm , the points

(7)
$$u_1, \ldots, u_k, \pm v_{k+1} + ty, \ldots, \pm v_n + ty$$

form a basis **B** of Λ^+ . There are 2^{n-k} such bases.

⁽²⁾ $\langle a \rangle$ denotes the integer g with $a \leq g < a+1$.

An arbitrary point z may be written

$$z = \mu_1 u_1 + \ldots + \mu_k u_k + \mu_{k+1} v_{k+1} + \ldots + \mu_n v_n$$

An easy computation shows that

(8)
$$z = \sum_{i=1}^{k} \left(\mu_i - t \langle \lambda_i \rangle \sum_{i=k+1}^{n} |\mu_i| \right) u_i + \sum_{i=k+1}^{n} |\mu_i| \left(\pm v_i + t \boldsymbol{y} \right),$$

with $+v_i$ if μ_i is positive and $-v_i$ otherwise. Recall that $\lambda_1, \ldots, \lambda_k$ are positive. If z is close to x then μ_1, \ldots, μ_k will be close to $\lambda_1, \ldots, \lambda_k$, respectively, and μ_{k+1}, \ldots, μ_n will be small. Therefore in this case the coefficients in (8) will be nonnegative and z will be in a cone C(B) where B is one of the bases (7).

Hence there is a neighborhood of x which is contained in the union of the 2^{n-k} cones C(B) with B of the type (7).

4. Finally we consider the case when n lies in a coordinate plane. We may assume that x lies in E^t where

$$(9) 1 \leqslant t \leqslant n-1,$$

but in no (t-1)-dimensional plane. Hence $x = (x_1, \ldots, x_l, 0, \ldots, 0)$ with $x_1 > 0, \ldots, x_l > 0$.

Let F be the orthogonal complement of E^t ; it consists of points $\mathbf{y}=(0,\ldots,0,y_{t+1},\ldots,y_n)$. Further let $F^+=F \cap E^+$. Given ε with $0<\varepsilon<\min(x_1,\ldots,x_t)$, the points

$$(10) z = z_1 + z_2$$

with $z_1 \in E^t$, $z_2 \in F^+$ and with $|z_1 - x| < \varepsilon$, $|z_2| < \varepsilon$ form a neighborhood $N_*(x)$ of x in E^+ .

Let A^t be the lattice $A \cap E^t$ in E^t , and let $A^{t+} = A^t \cap E^+$. By the inductive assumption there are bases

$$oldsymbol{B}_1^t,\,\ldots,oldsymbol{B}_l^t$$

of Λ^{t+} such that

$$\bigcup_{i=1}^{l} C(\boldsymbol{B}_{i}^{t}) = E^{t+}.$$

Let Λ^* be the orthogonal projection of Λ on F; it is a lattice in F consisting of integer points. Further put $\Lambda^{*+} = \Lambda^* \cap E^+$. Again by the induction there are bases

$$B_1^*,\ldots,B_m^*$$

in Λ^{*+} such that

$$\bigcup_{j=1}^m C(\boldsymbol{B}_j^*) = F^+.$$

Suppose $\boldsymbol{B}_{i}^{t} = (\boldsymbol{u}_{1}^{(i)}, \ldots, \boldsymbol{u}_{i}^{(i)})$ and suppose \boldsymbol{B}_{I}^{*} consists of orthogonal projections of $\boldsymbol{v}_{l+1}^{(j)}, \ldots, \boldsymbol{v}_{n}^{(l)}$. Then $(\boldsymbol{u}_{1}^{(i)}, \ldots, \boldsymbol{u}_{1}^{(i)}, \boldsymbol{v}_{l+1}^{(j)}, \ldots, \boldsymbol{v}_{n}^{(l)})$ is a basis of Λ . The vectors $\boldsymbol{u}_{i}^{(i)}$ lie in Λ^{+} , and the last n-t coordinates of the vectors $\boldsymbol{v}_{s}^{(i)}$ are nonnegative. By adding a suitable lattice point of Λ^{t+} to each $\boldsymbol{v}_{s}^{(i)}$ we may in fact assume that

(11)
$$m{B}_{i,j} = (m{u}_1^{(i)}, \ldots, m{u}_l^{(i)}, m{v}_{l+1}^{(j)}, \ldots, m{v}_n^{(j)})$$

is a basis of Λ^+ .

Now suppose that z is of the type (10) and lies in $N_{\epsilon}(x)$. The vector z_2 is in some cone $C(B_j^*)$. Hence there are nonnegative reals $\lambda_{t+1}, \ldots, \lambda_n$ such that

$$oldsymbol{z_0} = oldsymbol{z}_2 - \lambda_{t+1} oldsymbol{v}_{t+1}^{(j)} - \ldots - \lambda_n oldsymbol{v}_n^{(j)}$$

lies in E^l . If ε is small, then so will be $\lambda_{l+1},\ldots,\lambda_n$, and hence $|z_0|$ will be small. For sufficiently small ε and $z \in N_{\varepsilon}(x)$ we shall have

$$|z_0| < \frac{1}{2}\min(x_1, \ldots, x_t)$$
 and $|z_1 - x| < \frac{1}{2}\min(x_1, \ldots, x_t)$.

Therefore the first t coordinates of $z_0 + z_1$ will be positive, and $z_0 + z_1$ will lie in $C(B_t^t)$ for some B_t^t . Therefore

$$\boldsymbol{z}_0 + \boldsymbol{z}_1 = \lambda_1 \boldsymbol{u}_1^{(i)} + \ldots + \lambda_t \boldsymbol{u}_t^{(i)}$$

with nonnegative coefficients $\lambda_1, \ldots, \lambda_t$. We therefore get

$$z = z_1 + z_2 = \lambda_1 u_1^{(i)} + \ldots + \lambda_t u_t^{(i)} + \lambda_{t+1} v_{t+1}^{(i)} + \ldots + \lambda_n v_n^{(i)}$$

This shows that z lies in $C(B_{i,j})$.

Thus for sufficiently small ε , the neighborhood $N_{\varepsilon}(x)$ is contained in the union of the lm cones $C(\mathbf{B}_{i,j})$.

This finishes the proof of our theorem.

Reçu par la Rédaction le 4.5.1968