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1. Introduction. Let I" denote the modular group SL,(Z), and let
ox(I") denote the space of cusp forms of weight & associated to I'. If
feor(l), let

(1) F(x) = > evexp(2niny), Im(r) >0,

=1
be the Fourier expansion of f about the cusp dco. Following Hecke, we
associate to f the Dirichlet series

oo
o(s) = 2 onn~°
=1

which converges absolutely for Re(s) > (k+1)/2 and converges for
Re(s) > k/2 (Hecke [3], pp. 651-652). In the present paper we derive
several necessary and sufficient conditions for the Riemann hypothesis
for ¢(s) in case f is a simultaneous eigenfunction of the Hecke operators
for I

There is every reason to believe that the Riemann hypothesis is
true for these zeta functions. The present theory is completely analogous
to the theory for the Riemann zeta function (Titechmaxrsh [7], pp. 282-315).
However, the interesting feature of the present result is that the Riemann
hypothesis is reduced to an arithmetic question conecerning tiie coeffi-
cients c,, which bears a close resemblance to the conjecture of Hecke
and Petersson. Using this arithmetic formulation, one can apply the

* The present work constituted a portion of the author’s doctoral dissertation
submitted to Princeton University. The author would ke to thank Drs. Shimura,
Langlands and Grosswald, as well as the referee, for their many helpful suggestions.


Pem


206 L. J. Goldstein

Selberg-Richler trace formula to reduce the Riemann hypothesis for p(s)
to a question about class numbers of imaginary quadratic fields.

In order to state our main results, let us first state the prineipal
facts about Hecke operators (Hecke [3], Shimura [5], [6]). Let feo, (D),

y :(”‘ Z)ESLZ(R) and define f7(z) = f(y=)(¢z- dy* for # in the upper
¢ d

r
= U l'y

Fenl

half plane H, where yz = (az+4b)/(cz+d). I y eSLy(Z) and Iyl

is a coset decomposition, define

NIyl =

r
Sr
=
If feop(D), then so is f|//, and is independent of the choice of the coset
representatives «;. For w a positive integer, the Iecke operator T, is
defined formally as 3 Iy, where the sum is over the distinet
det(y)=n L
double cosets I'yl", yeSLy(Z) for which det(y) = n. There are only a finite
number of such double cosets and T, acts as & linear operator on oy (1) via
i A
Tof = D fIIyl
dof(y)=
or(I") can be given the structure of a finite-dimensional Hilbert space
with respect to the Petersson inner product and the T, are a family of
commuting normal operators with respect to this structure. Thus, the
Hecke operators can be simultaneously diagonalized and it is well-known
that the simultaneous eigenfunctions of the Hecke operators, normalized
so that their first Fourier coefficient is 1, have associated zeta functions
o(s) with an Euler product of the form.

(2) 0(s) = [[A—op~" ")

P
where the product is extended over all primes p and is absolutely con-
vergent for Re(s) > (k-+1)/2 (Hecke [3], I, Satz 40 and 42). Moreover,
¢(s) has an analytic continuation as an entire function of s and satisties
the functional equation (Hecke [3], p. 653):
(3) R(s) = (—=1)"* R (k—s),
‘where
R(s) = (2m)~°L'(s)qp(s).

In previous work we have shown:

TueoREM A (Goldstein [1]). Let N(T) denote the. number of zeros
of p(8) in the rectangle —T < Im(s) < T, —T < Re(s) < T, then

N(T) = (2/n)T log T— (2/r) (1 +log(2x) — =/2) T+ O (log T').

i=m®
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TEEOREM B (Goldstein [2]). If M(T) denotes the number of zeros o
in the rectangle of Theorem A such that Re(o) = k/2, then there ewists
a positive constant A such that

M(T) > AT [logT.
The main goal of the present paper is to show that the Riemann
hypothesis for ¢(s) is equivalent to the convergence of the series defined by
o0
[[0—ep+" ) = Yu@m:g)n
v n=1
$) > kf2.
2. Pre]jminary lemmas.

Lemya 2.1 (Hadamard Three-Circles Theorem, [8], p. 173). Let f
be analytic in the annulus r; < |2| < rg, and let vy < r, <71y, Lot M(r)
denote the maximum of [f(2)] on the circle |2| = r. Then

log 1 (r,) < {log(rafry)[log (rar:)}log M (ry)+- {log (rafry)[log (rs/r1)} log M (7).

Lemya 2.2 ([7], p. 84). Let « > 0 be unequal to an integer
¢ > 0. Then fo; n an integer

for Re(

, I >0,
cil
H 14 O((z/n)°/Tlog (x/n
(1/2=i) j () w  dw = + ((C/ Y g(./ )
elir Of(xc/n )| Tog (x[n)),
as T — oo, where the constants in the O-terms do not depend on z,n, or T.

Leyya 2.3 (Borel-Carathéodory, [8], p. 174). Let f(z)
in the disc|z—z| < R and for » < R define

M(r) A(r) =

n < &,

n >z,

be analytic

= sup f(2),

ESENESY

sup Re(f

|2—2p| =1

Then for 0 <r < R,

R P
M) S e AR AL ey

LEMMA 2.4, Let the Dirichlet series

o3
= E a5,

Ne=1

s = o-+it,

be absolutely convergent for o > k. Let ¢>0, 0y >0, T >0, w = a positive
integer + %, op+¢ >k, s = ay+it. Then

e+

Dan = (1/2mi) [ f(s+w)(@”/w)dw+ 0" +*T),
ni e—tT

where the constant in the O-term does not depend on T or .


Pem


208 T L. J. Goldstein’

Proof. Multiply the equation of Lemma 1.2 by a,n"° and sum
over n. We may interchange summation and integration since oy-+¢ >k
and for any closed subregion of Re(s) > & the series representation of
f(s) converges uniformly and absolutely. Thus,

e i 00
Dlawn™ = (Lf2mi) [ f(s-+10)(@"w)dw+ O Do lan = Tlog (an)),
n<t 31" M=l

as T —oo. Let us estimate the O-term. The terms for which » < o3
or #n = 32 are bounded by

0((@/1) Y lann="0~) = O(a*|T), T oo,

where the constant in the O-term does not depend onz or T. T 2 < n < 32
then

llog (@/n)] = log (L+ (2[=]+1)™") = d'[o
for some ¢’ > 0 and  sufficiently large. A similar result holds for #/3 < n
< «. Thus the terms of the sum corresponding to such = are O(a**'|T),

and there are at most 3z terms go that their sum is at most O(a®+?/T),
where the constant in the O-term does not depend on x or 7.

Lemuma 2.5. There ewist positive constants a, b, ¢ such that
lp (@)l < blyl%
untformly for k/2 <o < k.

lyl > ¢,

Proof. This fact follows from the Phragmén-Lindelof theorem and
the functional equation for ¢ in the same way as one proves the corre-
sponding statement for the Riemann zeta function ([4], pp. 157-159, [1],
Lemma 3.3).

3. A necessary and sufficient condition for the Riemann hypothesis.
Let all notation be as above.

TeeoREM 3.1. Assume that ¢(s) satisfies the Riemamn hypothesis,
that is, all non-trivial zeros of p(s) are on the line Re(s) = k2. Let k|2 < 0y
< k. Then there ewist positive constants I{(s), A(oo) such that [¢] > A (o)
implies that :

lp (ot d)] < K (&) [8l",
Ip(o+i8)™") << K (e) l8".

uniformly for %2 < o, < o <k

Proof. Let us fix o, and let us congider a point o 4-it, with [¢| large.
We will later specify how large |¢| must be in order for all our statements
to make sense, and we will see that the lower bound for |t| need depend

bm@
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only on g,. Let us consider three circles C1, 05, and Oy, all centered at
% =loglog|i|+ it and passing through the points

3k+(1floglogjt))+it, o+it,
respectively, where |¢| is so large that

k2 < k/2+ (1/loglogit]) < g <o

kj2+ (1/loglog I¢]) +it,

a condition which can be realized by making |¢| larger than some bound
depending only on q,.

The radii of these circles are, respectively, », = logiog [t —3k—
—(1floglog1t]), 1, = loglog|t|—o, 15 = loglog |t| — /2 — (1/loglog |#)). Since
we have assumed the Riemann hypothesis, we can unambiguously define
loggp(s) for Re(s) > k/2. Let us choose a branch of the logarithm and
fix it throughout the remainder of the discussion. Let M; (1 =1,2,3)
denote the maximum of ogg(s)| on O; relative to this branch. By Lemma
2.2 and the fact that o4 is on C,, we have

(4) Hogep (o4t} < M, < M, OB 106 Csiry) g log(ryry)/logtrymy)
Note that
loglog [t| — k/2 —
(5) log (75/rs) = log [_9% 0g 1| — k/2— (1/loglog|t))
loglog lt|— o

= 10g[1+(a~7{;/2)/10g10g|t|+0(1/(10g10g t)?)]
= (c—k[2)/loglog|t|+ O((loglog 4)=3),

ey loglog [t]— k{2 — (1/loglog [t])
() log(rfr) = lo [ Toglog [t — 8%— (1/loglog f]) ]

= log[1+5k/(21oglog#]) +- O{(loglog t])~?
= 5k/(2loglog )+ O{(loglog 1)),

) log (ryry) = log [ loglogltl —o ]

loglog [t| — 3k — (1/loglog |t])
= log[1+4 (3% — o)/loglog |¢] - O((loglog |#])~?)]
= (8k— o)/loglog ¢|4- O((loglog [¢))"?)

where the constants in the O-terms do not depend on o.

Let us now estimate M,. Since (Hecke [81, Satz 6), the Dirichlet
series for ¢(s) and 1/p(s) converge in the half-plane Re(s) > &, it follows
that loglp(s){ is bounded in this half-plane. Also, arge(s) is bounded
in this half-plane, for a fixed, continuous branch of the argument. There-
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fore, logp(s) = log|p(s)|+dargp(s) is bounded in the half-plane Re(s) > F.
Sinc’e 0, is contained in this half-plane, we have
®) ¥,<D

iti ding only on ¢ and Z%.
for D some positive constant depen ’ .
OI' Let us now turn to the estimation of M,. By Lemma 2.5 there exist

positive constants @, b, ¢ such that
lp(@+iy)l < blyl%

uniformly for k/2 <z < k. The inequality also holds in ‘rhe region y|
~ ¢, >k since here p(s) is bounded. Thus, for [¢ sufficiently large,
s =,m+i1/ on €, implies that for d > a an appropriate constant,

[yl > e,

log ¢ (s)| < logb+ alog| [t|-+loglog [t — k/2— (1/loglog [t]) < dloglt].
Now zlnpply Lemma 2.3 to f(z) = loge(z) in the discle—2zy| = 74 = 13+
4-(1/2loglog {t]) to get
(9) M, < 44 (r,)(loglog 1))+ (2rs+1/21oglog [¢]) (21oglog 1t]) I1qui(zo)l
< Blog |t (loglog ¢,
where J depends only on ¢ and k. Applying (5)-(9) to (4), we obtain
. a— k) /5k -+ O(1/log log|tl) X
1 o+ it)|| < M, < D¢ .
i Og‘qj( + ) | : X [E].Og m(].OgIOg|t|)2]2(%‘0)/5”1_o(moﬂogl)
< F (log [t~ (loglog [¢))?
< I (e) (log [#])*EF~ e+
for all e >0 and all sufficiently large |t|, for appropriate constants
and J(s). Since 3k— o < Bk/2, for e sufficiently small we have
2(3k—o)[bk+e < 1,
which implies
floglg(o+it)l| < J(e) (log ),
uniformly for /2 < o, < 0. Therefore
—J (e)(log [t))* < loglp(o+it)| < J (e) (log [¢])*

for all sufficiently large |t|. Thus, for || sufficiently large, say [t| > M,
given # > 0 there exists a positive number K (») such that

E(n) ™" < exp(—J () (log 1)) < g (o +it)| < exp (7 (¢) (log [t])}) < K (n) 8"

uniformly for } <o, < ¢ <k Since » > 0 is arbitrary, the theorem is
proved.

0<ixl,
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From the above proof, we derive

THEOREM 3.2. Let u(c) denote the Phragmén-Lindelof function for
@(s), and assume that the Riemann hypothesis is satisfied. Then

0, o> kj2,

o) = o <k2.

k—20,

Proof. The assertion for o > k/2 follows from Theorem 3.1. The

assertion for ¢ = %/2 follows from the continuity of u. For ¢ < k2 the

assertion follows from the functional equation for g, in just the same

Way as one proves the corresponding fact for the Riemann zeta function
(Titchmarsh [7], p. 81, Goldstein [1], Proposition 2.4).

For Re(s) > (k+1)/2, we have the absolutely convergent produect
representation

() = [] (1—epp=*+p" -2,

»

Since ¢(s) does not vanish for Re(s) > (k+1)/2, we may write for s in
this half-plane

llp(s) = H (l—cpp“3+pk—l~2s)-

Thus, 1/p(s) can be expanded in a Dirichlet series, absolutely convergent
for Re(s) > (k+1)/2. Let

oo

Yp(s) = Du(n:g)n=*

Nn=1

be this Dirichlet series representation. The series is unique (Titchmarsh [8],

p- 309), so that the quantities u(n:gq) are intrinsically defined by g.
We easily see that

PROPOSITION 3.3. Let ¥ > 1 be an integer. Then, if p is prime

—Cp; re=1,
#Phe) =1p" r=2,
0, otherwise.

PROPOSITION 3.4. If m, n are positive integers and relatively prime,
then

u(mn @) = p(m:p)u(n: p).

The function u(nm:¢@) can be regarded as a generalization of the
Mo6bius funetion u(n), since if ¢ (8) denotes the Riemann zeta funetion,

then
1¢(s) = Y u(m)n™, Re(s) >1.
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THEOREM 3.
hypothesis for ¢(s)

5. A necessary and sufficient condition that the Riemann
be true is that the series

2 1(n
=1
converge for Re(s) > k[2.

Proof. If Lhe series convelges for Re(s) > k/2, then it converges
uniformly in every half-plane Re(s) = k/2--¢, &> 0, and represents an
analytic function there. We have seen that this function coincides with
1/p(s) for Re(s) > (k-+1)/2, so that by analytie continuation, the fune-
tion defined by the series coincides with 1/p(s) for Re(s) > k/2. In partic-
ular, 1/p(s) is analytic for Re(s) > &/2 so that ¢(s) does not vanish for
Re(s) > k[2. The functional equation implies that ¢(s) does not vanish
for 0 < Re(s) < k/2, for if it did then there would exist a zero s for which
Re(s) > k/2, which is impossible. On the line Re(s) = 0, a similar argu-
ment shows that no point except zero is a zero of ¢(s). Thus, all the non-
trivial zeros of p(s) are on the critical line and ¢(s) satisfies the Riemann
hypothesis.

Conversely, assume that ¢(s) satisfies the Riemann hypothesis. Let
us apply Lemma 2.4 with f(s) == 1/p(s). If # = positive integer-4, ¢ > 0,
§=o0+1il, of+e>k T >0, ¢ > k2, then we have

il w
? * (1270 dw -+ O (a° 2 T).
D a (Af2mi) [ oo ot O )
n<e ¢~

By the assumed Riemann hypothesis, the integrand has a simple pole
at w = 0 with residue 1/p(s), and no other poles for Re(w-s) > k/2.
Thus, by Cauchy’s theorem

e+ w
12 J ffffff
(1/2m1) . D(p(S‘-—]—'M))
kf2 4§ a 0T k28— 01T ¢4
1 (s) -1 (1/97ri)l J T J l Y aw
= 1/p(8)-- 9 - . . ,{_,,,«,‘:_.“.,
el B2 b T2 04T g (8 -4-10)

for all sufficiently small § > 0. On the path of integration for the first
and third integrals on the right, Theorem 3.1 shows that

Lp(s+w)l < K{e)T*
for all &> 0, uniformly for %k/2-+4 06— o < Re(w) < ¢, for T sufficiently
large, where the lower bound for 7 is independent of e Therefore, we
may estimate the first integral
kf24-8—g 1T

mw e—1 .6
[ \<\ ™ e—1 Mg, < 1" k 6 T x”.
e czw’, K'(&)T f @dw < K" (s, 6, k, 8, 0)

e+iT' . ¢

i=m®
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A similar estimate holds for the third infegral. Let us now estimate the
second integral:
k/Z-}-G—E—X-iT w

—————— dw
kj2+8—o—il uq;(8+10)

[2+8~0
f I ( A/>+ s

P
AN

K () ahHo-e ‘ tEtdt < K (6) gt ome

-

for all suﬁicieﬁtly large T' and all & > 0. Therefore,
2,4(11,: = 1/p(s)+ 0 (a° T* 1)+ O (&*P+4-o T2y

nT
for all & > 0, and for » and T tending independently to co. Set 7 = z°+),
and choose ¢ and 6 so that ¢+ (s—1)(¢+1) < 0 and ec-+ El24+6—0<<O.
Then as 2 tends to oo, the error terms tend to zero and thus, the series
on the left converges for ¢ > k/2 to 1/p(s) and the converse assertion is
proved. i

THEOREM 3.6. For >0 define the function

Alx) = E,u

Nk

(n: ).

Then a necessary and sufficient condition that ¢ satisfy the Riemann hypo-
thesis is that

A@) = 0(@"+), 2 o0
for all e > 0, where the constant in the O-term depends on e. Moreover, if 6
denotes the supremum of the abeissae of the zeros of ¢(s), then

Az) = 0"+

Jor all & > 0, where the constant in the O-term depends on . The smallest
possible value of 0 is /2.

Proof. Note that A(w) is the coefficient sum function of the
Dirichlet series for 1/p(s). By the proof of Theorem 3.5, if ¢(s) has no
zeros in the half-plane Re(s) > 0, then the Dirichlet series for 1/p(s)
converges for Re(s) > 0, and thus, by a standard theorem on Dirichlet
series (Titchmarsh [8], p. 292), we get A(x) = O (2®*+*) for all & > 0, where
the ‘constant in the O-term depends on e This implies the next-to-last
aggertion of the theorem. Moreover, it is clear that assuming the Riemann
hypothesis, we get A(z) = O (z"*%) for all positive e. If § assurned a value
less than %/2 then g(s) would have no zeros on the critical line which
contradicts Theorom B. Lastly, if A(») = O(z™*) for all positive &,
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then a standard argument using partial summation shows that the
Dirichlet series for 1/p(s) converges for Re(s) > /2, which by Theorem
3.5 implies the Riemann hypothesis.

COoROLLARY 3.7. Given ¢ > 0, there ewisis a sequence &, @y, ... tending
to oo and such that

Ma o * > 00 as  n - oo.

Let {f1, ..., fs} be a basis of ox(I") composed of simultaneous eigen-
tunctions of the Hecke operators T'(n), and let

o

filr) = Zaﬁ’exp(Qnim),

n=1

Im(r) >0, o =1, 1<j<r,
be their respective Fourier expansions about the cusp 4co. Let

o

gi(s) = D ahn*,

n=1

1<j<r

be their associated zeta functions. The using the same argument as above,
we prove

TaEOREM 3.8. The Riemann hypothesis for the Sfunctions defined by
Pry oeny @p 18 Simullancously true if and only if

ibMe

p(n: k)" = [ [ (1—)p=4p*1-)

X
converges for Re(s) > /2.

Based on some empirical evidence, we conjecture the following
analogue of Merten’s conjecture:

CONJECTURE.

| 2 ulnsp)| < o™

N<®
It is clear that the conjecture implies the Riemann hypothesis.

4. Generalizations. In [5] and [6] Shimura has derived a general
theory of zeta functions attached to automorphic forms associated to
the unit group of a maximal order in an indefinite quaternion algebra
defined over a totally real algebraic number field. The results of the present
Paper carry over completely to the case of zeta functions corresponding
to simultaneous eigenfunctions of the Hecke operators in this setting,
provided that one assumes that the field of definition is the rational
numbers @ and that one only considers automorphic forms of level 1.
It is likely that all of our results hold in the most general setting. However,
one does not know the position of the poles in the analytic continuation

bm©
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of the zeta function explicitly enough and the analogue of Theorem B
is lacking in the general case. In the case of the principal congruence
subgroups of 8L,(Z) we have proved all of our results except for the fact
that the minimum value of 6 is %/2.
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