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un nombre fini des cas, aient un facteur premier idéal de degré 1
dans J, il faut et il suffit que
G(x) = oN (H (v)),

o H(x) est un polyndme & cocfficients de J, N est la norme dans J et
a est un nombre rationnel.

La propriété des corps Baueriens éxprimée dans ce théoréme est Gauss sums over finite fields of order 2" *
caracteristique: pour les autres corps p.ex. QW 20_05(27:/7)) (cf. [47, p. 335)
le théoréme est en défaut.

by
L. Carurrz (Durham, North Carolina)
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. o(a) = (—1).
. Let

°
~

Regu par la Rédaction le 22. 6. 1968 (1.1) Q) = Qmyy ...y @) = Z agawir;  (ayel)
i<j<m

1<
denote a quadratic form over . If
m
yi= Doga;  (cyeF, leyl #0)
=1

and

Q@1 oy @) = Q1 (Y1y s Ym),
the quadratic forms @ (x) and Q,(y) are equivalent. Dickson ([2], p. 197)
hag proved that if ¢ (#) is not equivalent to a form in fewer than m in-
determinates then it is equivalent to either
(1.2) Yot Yalat oo FYuslmortYm
when m is odd or to one of the forms
(-1-3) @ :V1y2+?/3y4+ e +ymﬁ1ym
or

(1.4) Yoot oor FYnosYmst+ Yot :’/m-—lym'l"/sy%n
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when m is even. In the latter case 8 is any number of # such that the
polynomial

u*+ uv - po*

is irreducible over F[u,v]. We shall say that Q(x) is of type v = +1
or —1 according as it is equivalent to (1.3) or (1.4). We remark that

T =¢(f).
We now define the sum
(1.3) 8@ = 3 ey ey 0m).
[T

However in the present situation it is of interest o consider
general sum

a  more

(1.6) 8(Q,L) = 2 e{@(C1s«vvy om)+L(Cyy oory m)}s
Cyunns el
where
v m
L(z) =L(w17---7wm)=2bimj (bjell),

i=1

is an arbitrary linear form over F. For odd ¢ there is no gain in generality
in considering sums like (1.6); however, as we shall see, for even ¢, (1.6)
is indeed more general than (1.5).

It is convenient to first treat the sum 8(Q). We assume that Q (@)
is not equivalent to a quadratic form in fewer than m indeterminates.
Then we show that

(L1.7)
(1.8)

(m odd),

8(Q) = 1¢™*  (m even),

where v denotes the type of @. The corresponding results for 8@, L)
require some preliminaries and are contained in Theorems 6 and 7 below.
It is not difficult to obtain these results when Q(x) is assumed to be in
one of the normal forms (1.2), (1.8) or (1.4). To state the results for arbi-
trary Q(z) it is necessary to define first an invariant (@) when m is
even and an invariant (@) when m is odd. In addition certain simulta-
neous invariants ¢(Q, L), o (@, L) for m even and odd, respectively, are
also needed. For the first three invariants see Theorems 1 and 2 below,
for w(@, L) see (4.15). These invariants suggest certain geometric ques-
tions that we hope to discuss elsewhere.

As an application we determine the number of solutions in F of the
equation

(1.9) Q@)+ (o) =

i=m®
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More generally we show that the weighted sum

(1.10) D ettt ) (heF),
where the summation is over all solutions of (1.9),
terms of the Kloosterman sum

E(a,b) = ¥

Cc#0

can be expressed in

e{ac+be™Y).

2. Preliminaries on quadratic forms. If @y, ..., ¥n) is equivalent
to a form in 7 indeterminates but not in fewer than 7, then @ is of rank r;
ifr =, @ is nonsingular.

Let
(2'1) 2 iz Xy 25 «
l<igim
Put
(i< gy,
(2.2) iy = (t>3),
(E=17),
(2.3) 8(Q) = det(a,
If
m
(2.4) vi=Dogz  (i=1,2,...,m),
j=1
where
¢ = det(ey) # 0
and
Qz) = Qi(y) = 2 biy:Y;,
1<y
then
m
0Q(@) 190Gy (y)
o, = 2 0?/5 Caiy
8=l
9Q(» 0*
2.5) o) _ 9w,
O; O 0,0y,
On the other hand
m
9Q (») _ 0?Q(x)
0; ——2 i O, 0; iy
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g0 that (2.4) reduces to

Ay = Tglj?stosictjy
St=1
where
by (s <),
by == bis  (s>1),
0 (s =1)
It therefore follows at once that
(2.6) 3(@) = ¢’ o(&),

that is to say, 0 is a rvelative invariant of weight two.
If m is odd it is easily seen that 8(Q) vanishes identically. For m
even, however, if
Q(w) = L1y + 3Tyt o+ B 1@
then it can be verified that 6(@) = 1.
When m is odd we shall construet an invariant that does not vanish
identically in the following way.
Some preliminaries are needed. If B is a skew matrix of even order:
B = (by)  (bi = by, by = 0),
it is readily seen that det B is equal to the square of a polynomial in the b;;.
Indeed this can be stated quite explicitly. We have for example

. b
b21 = = b1227
bio b1z b
b . by B . 2
n el I (b1gbagt b13b14'\“ b14b23)“7

b b - bu
‘bdl b42 b43 .

b b B b D = (D1ababsg+ bigbay g+ D14 bag st
byy Dus Doy Dug

by, b;o . by by by + b1z bys Dy -1+ Brg Dag Dig + Ds Day b -1-

b, b i b b b 4 B1o basbyg -+ D1y bas byg -+ bys Daa by -

P | bbby buubagDugt big b+

b51 bsa bsa bs4 b. 56 + bagbas byg+ Bay bas Dig - Do bygbig )
61 D62 Osy Dgs bgs -

The general expression for det B can now be written down without any
difficulty. Incidentally the number of terms is equal to (2s)!/(2!)°s!,
where B is of order 2s.
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With @; defined by (2.2) put

1 v Gy g el Ty Uy
: _ @y . (2 S S T
(2.7) @ (u) =
- (_Lml ﬁmz e . Unm
T T Unm,

For m even, ¢ () vanishes identically. For m odd, on the other haﬁd, 1t
is clear from the above that

(2.8) Qu) = (Z-Ai”i)dy
=1

where the 4; are certain well-defined polynomials in @;. For example,
for m = 3 we have

Q(u) = (@a3 %y + G5 Uy By ),
while for m =5

Q(u) =  {(Gos@ys + tog a5 + G5 agy) Uy +
(@13 Qg5+ Qg G5+ Qy5 ) Uy +
(312 Qus + (1 Gos + G5 oy) Us+
(812 G35 = @13 Gas —+ Q15 Gog) Ug+
(C2 gs + B3 as + Gry 003) U}

Again the mode of formation of the coefficients is clear.
We now define

(2.9) Q) = Q(A1, 4zy ..y Am),

where ¢} (z) is an arbitrary quadratic form with m odd. For example when
m =3 we have

+
+
+
+

7(Q) = ay Oy oy A3+ Az a’%ﬂ"i’ Ggg O3 O3.

For
(210) QO = ‘Dlm2+'--+mm—2wm—1+wﬂzn
we find that

Al =...=4p_;=0, A,=1
and therefore
(2.11) 7(Qo) = 1.
Thus 7(@) does not vanish identically.

To see how 5 (Q) transforms when () is subjected to & nonsingular
linear transformation we assume that the w; in (2.7) transform contra-
griently to the x;. For brevity we replace (2.7) by

- A u
(2.12) Gluw) =

'
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.y ) and " is the cor-
.y ¥y) and

where 4 = (@y), w is the column vector (uy, ..
responding row vector; similarly & is the column vector (m, ..

y the column vector (y1,.. ., Y¥m). Thus (2.4) becomes y = Cx, where C = (c;),
while
(2.13) C'v = u,
where ¢’ is the transpose of ¢ and v = col(vy, ..., vx). Since
4 = (B0,
where B = (by), it follows from (2.12) that
¢'BC (C'v
e =| g
Therefore
(2.14) G (u) = ¢ (v),
where
_ E P Ny )
Qo) = Zm
Hence by (2.8) and (2.14)
. m m
,\ Au; = cZB Vs,
which, in view of (2.13) 'melies
m
(2.15) 6By = Dlogd; (i=1,2,...,m).
=1

Now applying (2.9) we get

(2.16) 7(Q) = e*n(Q4),

80 that (@) is a relative invariant of weight two.
We shall also require, when m is even, & simultaneous invariant
of the pair of forms @ (z), L(x), where

m
= Zaimi.

=
Put

m

= 2%

f=1
We assume that §(Q) + 0, so that the system of equations
(2.17) Q@)=0a; (1=1,2,...,m)

Qi () 009,,

i=m®

Gauss sums over finite fields of order 2"

[ &)
(@1
w

has' the unique solution (af, a}, ..., ak).
{(Q, L) = Q(a’fs aﬂ*g ey a’;ﬁn)A

Applying the transformation (2.4), assume that L(x) becomes

m
= Z by,
i=1

Now define
(2.18)

and let the system

0.0)

; =b; i=1,2,...
().’1?,- i ( y <y

y M)

have the unique solution (b, d;,...,bn). Let a,b denote the column

vectors (@, @a, ..., @m), (by, bsy ..., by) and similarly for a, b*. Then
we have
(2.19) dd* =a, BV =b;
moreover we have
(2.20) a=0Cb.
It now follows easily from (2.19) and (2.20) that
(2.21) b* = Ca*,
so that the aj transform exactly like the z;. Consequently (2.18) yields

(2.22)

C(Q: L) = C(Qu L
Thus (@, L) is an absolute invariant.

The results of this section may be summarized in the following two
theorems.

THEOREM 1. For m even, 6(Q) is a relative invariant of weight two.
For m odd, »(Q) is a relative invariant of weight two.

THROREM 2. For m even and 6(Q) # 0, {(@Q, L) is a simultaneous
absolute invariant.

We note that if

Qo (2) = @12+ X3 Byt oo D1 T

then
(2.23) E(Qoy L) = ayapt+agay+...+p_10p
but if
Q(2) = wlwfr---+wm_3wm_e+wfn_1+wm_1wm+ﬂmfn
then . .
(2.24) (@, L) = ay s+ a1 Om_g+ an+ amam—1+ﬂa31t—1'
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Remark. For m even, @ (z) is nonsingular if and only if §(Q) = 0; -
for m odd, Q(z) is nonsingular if and only if (@) # 0.

3. Evaluation of S(Q). We shall make frequent use Of. the formula

q (a =0),
2 elaf) = 0 (a#0),

[
where the summation is over all feF. In what follows we shall usually
indicate summations in this way.
It follows at once from the definitiqn

(3.1)

5@ = Y

3(Q(01, cevy Cm))
L) PRPE Cm .

that if @, is equivalent to @ then

(3.2) 8(9.) = 8(Q).

However, as we shall see, the converse is in general not true.
In view of (3.2) we may assume that @ is in normal form. We assume @
nonsingular. Hence we may put

(3.3) Q = .25+

or, when m is even,

+-’Um—2wm—1+m3n (m odd)

Q x1m2+---+wm—-3wm~2+mmalmmy

o m1m2+---+mm_amm_zﬁ‘“‘?nq‘*'wm_lmm+ﬂw?’z
according as @ is of type 41 or —1.

Sinee by (3.1)
2 e(a?) =0,

a

(3.4)

it follows at once frorﬁ (3.3) that
. . S0) = 0
In the next place, by (3.1),
(3.8)

(m odd).

Ze(ab) =gq.

a,b

Hence for @ of type +1 we have

(3.6) 8Q)=¢™" (= +1).
For @ of typé —1 we have
(3.7) 8(Q) = g™ 3] e(a*+ab+- fb¥).

a,b
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Now since 22+ ay -+ py? is irreducible in I [, y]it follows that the equation
2+ xy -+ py* = 0

has the single solution’ (0,0). On the other hand the number of solu-
tions of

Poytpyt=a (a0

is independent of ¢ and is therefore equal to g+1. It follows that

\ b N
(3.8) el ab ) = 14 (g41) Y e(a) = —
ab a=0

Thus (3.7) becomes
(3.9) 8(Q) = — g™,

We may now state

TurOREM 3. Let

Q(m) = a2ty (ayeF)
liism

be a nonsingular quadratic form over F. Then

0 (m odd),

m)2

g

(3.10) 8(Q) =
(m even),

where © denotes the type of (.

Suppose now that ¢ is of rank r < m. If r is odd it follows at once

that S(Q) = 0. If » is even and @ is eqmvmlent to Qy(2y, ..., 2,) of type =,
then by (3.9)

S(Q) _ Tqr/ﬂq'm T _L_q(zmwr)/z

In particular this establishes the invariance of r and z. Moreover if
Q1(y, .v.y my) also satisfies

8(Qy) = wqtm-nr
it follows that ( and @, are e('{niv&lent.
This proves
THEOREM 4. The quadratio. form Q(x

18 of odd vank if and only if
8(Q) = 0. If

8(Q) = ¢
then @ is of rank r = 2(m—k) and type T. Moreover two forms Q,Q, of
even rank are equivalent if and only if 8(Q) = 8(Q,).

Thus for forms of even rank S Q) furnishes a criterion for equiva-
lence. For odd rank however this is not the case.

(m)2 < kE < m)
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The following corollary of Theorem 1 may be noted.

THEOREM 5. If @, (%4, ...
.., Yu) 18 nonsingular of type v, then

Q1@ ... +Qa(Y1y e

is nonsingular of type v 7.

s Bag) s Yat)

4. Evaluation of S(Q, L). We shall require several preliminary results.

LEMMA 1.

(4.1) D e+ ak+bu) = ge(ab).

Au
Proof. The sum is equal to
D e((A+b)(u+a)+ab) = e(ab) D e(iu
e F
and (4.1) follows at once.
LeMMA 2. Let 2*+zy-+fy® be irreducible over . Then

(42) D) 0 At fpt+ al+ ) = — ge(b+ ab+ fa?).

A

Proof. Replacing 4, 4 by A+Db, u-+a, the sum becomes

D68+t ppt b2 ab+ fa?) = — ge(b*+ ab - fa?)

by (3.8). .
Define
(4.3) R(a) = ) e(A*+ai)
LeMMA 3.
q (@ = )’
(4.4) R(a) = 0 (e

Proof. We have

Ba) = Y ellt )+ a(h+pw] =g Y e(i+ad),

N 2

80 that
(4.5) R*(a) = qR(a).
Hence R(a) =0 or ¢. On the other hand

D R(a) 22 (A2+ad) = 23(12)2 e(al).

, Zas) 18 nonsingular of type v, and Q,(y,, ...

bm©
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By (3.1) this reduces to
(4.6)

D R(a) =gq.

We now show that
(4.7)
Indeed

R() =q.

W) =1"42=0, o2l =

and (4.7) follows at once. Finally combining (4.5), (4.8) and (4.7) we get
(4.4).

We now assume that Q(z) is in normal form (3.3) or (3.4) and that

(4.8) L(z) = LT P M
If m is even and @ is of type +1, then it is evident that
my2
znzﬂ(lﬂ‘l‘“ﬂ—ll'f‘“ziﬂ)-
i=1 An

Applying Lemma 1 we get

(4.9) 8(Q, L) = 4" e(ar@st+ .. 4 Gy ).
If m is even and @ is of type —1, then
(m~2)p2
89, 1) = [] 2 ot ot
= N

= D el At B+ 1At ).

Ap

Applying Lemmas 1 and 2 we get
(4.10) 8(Q, L) = — e(a, 0,4+ ..

If m is odd we have

m)2
q |

2
+ Gy O o i+ O, B _1 4 ﬂafn— 1).

(n—1)2

[] 2 (At tyy s At agg ) 3 e(A+ am ).

e A

8(Q, L) =

Applying Lemmas 1 and 3 we get

q(m_'-l)m@(%“e”f"- o O Gy q) (@n, = 1),
0 (@m # 1),

By means of (4.9), (4.10) and (4.11) we have evaluated 8(Q, L)
when @ is assumed to be in normal form. We shall now express these
results in an invariantive form.

(4¢11)  8(Q, L) =

Acta Arithmetica XV.3 . 17
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2

We first consider the case m even. Comparing (2.23) with (4.9)
we get

8(Q, L) = ¢"*e[2(Q, L)]
when @ is of type +1; comparing (2.24) with (4.10) we get
8(Q, L) = —¢""e[2(Q, 1))

when @ is of type —1. We may therefore state
THEOREM 6. If m is even and Q(a) is nonsingular we have

(4.12) 8(Q, L) = ¢"*<(Q)e[2(Q, D)1
When m is odd let
Qo) = 2@yt Ty g By T

By (2.11) we have %(Q,) = 1. If the transformation

m
yi= D eya; (i =1,2,...,m)
j=1
carries Q,(z) into Q(y), it follows from (2.15) that
(4.13) e (Q) = 1.

In the next place consider Q(a,, @, ..., a,) as defined by (2.7). In
particular by a simple calculation we get

(4.14) Qolr; Gz ooy t) = i

By (2.8) we have

m

Qlag, gy .ony ay) = (2 11{”'1)2-
=

By (2.15) and (2.20)

n "
2 .Ai(bi = ¢ E B;}),’,.
=t i=
It follows that
(4.15) (‘)(Q: L) = Q(ay, oy ..., aun)/n(Q)

is an absolute invariant which reduces to a}, when @ = @,.
It remains to give an invariantive description of the coefficient

e(t apt+...+ [/ alm—l)
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occwrring in the right member of (4.11). To do this we consider the quad-
ratic form Q(z)4tL(x) in the m+1 indeterminates L1y .oiy Ty, t. When
@ =@, we find that

m
Qu(z)+tL(z) = ey +... 4- Ty Cm_y+ 2y, -+ 1 2 a; o
=1
= (2, ayt) (B2t art)+...+ (#_ g+ O 1 1} (T + tm_st) -
+ mfn‘}‘ Ul (@ ay ...+ [2 ) am_l)tz-
We may assume that a,, = 1. Tt follows that

7(Qy+1L) = e(ala2+...+a,,lA2a,,1_1).
We may now state
THEOREM 7. If m is odd and Q(x) is nonsingular, then
(1.16) (0, 1) — [ QT (0@, 1) =1),
0 (0)(Q’L)¢1):
where o (Q, L) is defined by (4.15).

5. Number of solutions. As an application of the results of §4 we
shall now determine the number of solutions of the equation

(5.1) Q(m“ vy ) “{'L(mu ceey Byy) = a,

where @ () is nonsingular and L(z) is arbitrary. If we let N denote the
number of solutions of (5.1) then by (3.1)

a¥ = ' Ne{ab+bQ()+bL(c))

[STIIN O b
="+ De(ad) 3 ebQ(e)+bL (o)}
b#0 [ T
Hence
(5.2) N = ¢" gt M e(ab)8(5Q, bL).

b0

We consider first the case m even. It is clear from the definition
of (@) that

(5.3) 7(bQ) = ©(Q) (b # 0).
Also it follows from. the definition of £(@, L) that
(5.4) (b9, 0L) = bL(Q, L) (b 0).

Thus by (4.12), (5.3) and (5.4)
3 e(an)8(bQ,I) = ¢"* (@) 3 e[(a-+ £(@, T)1].

b0 b#0
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Tt is convenient to define
g—1 (a=0),
F ko) = Y e(ab) =
(6.5) (@) 2 (ab) 1 (a # 0)

Then clearly

(5.6) Y e(ab) $(4Q, bI) = " =(@)kla-+E(Q, L.

=
Substituting from (5.6) in (5.2) we obtain
TueoREM 8. For m even and Q(z) nonsingular the nwmber of solu-
tions of (B.1) is given by
(5.7) N = ¢" 4" (Q)k[a+£(@Q, I)].
Turning now to the case m odd it is clear from (5.3) that
(bQ+BiL) = v(@+1L) (b #0).
Also it is evident from the definition that
w(bQ, bL) = bw (@, L) (b #0).
Thus (4.16) gives

q(m+l)/21 (Q ,*_ iL)

8@, bL) = ) (b (@, L) = 1),

(bar(@, L) # 1)
and therefore

De(ab) S(bQ, bI) = ™ VPr(@+1L)e{ajo (@, L)}

b%o

Substituting in (5.2) we get

THEOREM 9. For m odd and Q(x) nonsingular the number of solu-
tions of (B.1) is gqiven by

(8.8) N ="' " e (Q +tL)e{ao(@, )},
provided »(Q,L) s 0. If however w(Q,L) =0 then we have
(5.9) N =¢""

It may be of interest to state these results when the linear form. I ()
is identically zero. We find that (5.7) redueces to

(5‘7)1 N — qm-1+q(m—2)/21((2)
Since w(Q, 0) = 0, (5.8) does not apply and we have only
(5.9) N =q"!

(m even).

(m odd).
It is not difficult to prove (5.7)" and (5.9) dirvectly.

i=m®

/
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6. Weighted sums. Let A, <oy 2m be arbitrary elements of GF(q)
and consider the sum

(()1) 1\7(}') = 'Z\T(jWQ’L) = 23(1101—1‘...—\"&”0"1),

where the summation is extended over all solutions of

(6.2) Qwyy vy @)+ Ly, ...y #0) = a.
As above we assume that Q(z) is nonsingular while L(z) is arbitrary.
Clearly
(6.3) aN@) = D' Me{ab+bQ(e)+bL(0)+4 (o)},
Clyeinslppy b

where for brevity we put

/1(0) = }'101+'--‘|‘lm6m-

We rewrite (6.3) in the form

Nay =g D efd@)+¢" detab) N ¢{5Q(c)+bL(o)+A(0)}.
Claeenslop b#0 ClvinsCp
Put -
64 A= Y od)=|¢ B=o=h=0),
Lot 0  (otherwise).
Then it is evident that
(6.3) N(3) =g A(2)+q" Y o(ab)S(bQ, bL+4).

b0
For m even we have, by (5.3) and (5.4),

B0Q, bL+4) = ¢"*7(Q)e[b(Q, L+b~4)].
To evaluate £(Q, L--b~'4) let

mn

Zﬁudi =k (@
=

m
Z;aﬁ(:j=ai, 1,2,...,m).
iz

Then

LQ, LA4b7) = Qe+, ...y 0 +0 7 ) = £(Q, L) +D7 1 A4072(Q, 4),
‘where

(6.6) E= Ybgady, (@)(by) =1.
ig=1
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Hence
8(0Q, bL+4) = ¢"*7(Q)e{be(Q, D)+ £+b7L(Q, 4))
and (6.5) becomes
N(2) = g AR+ ¢ (@)e(8) b; e{ab+bL(Q, L)+ b7L(Q, A)}.

If we define the Kloosterman sum

(6.7) E(a,b) = D e(ac+bc™),

c#0
then it is clear that
(6.8) N(1) =¢ ' AM)+¢" e (Q)e(6) K {a-+L(Q, ), £(Q, A)}.
This proves
THEOREM 10. For m even and @(x) nonsingular the sum N(1) satis-
fies (6.8) with A(A), £ defined by (6.4), (6.6), respectively.
For m odd we have by (4.16)
869, bL4-A) = g™ ¢ (bQ - t(bL+A4)}
provided o(b@,bL+A4) =1 and 0 otherwise. It is easily verified that
(bQ, BL+4) = bo(Q, L)+ b0 (@, 4).
The following theorem now follows at once.

THEOREM 11. For m odd and Q(x) nonsingular we have

(6.9)  N(2) =g A@)+¢" " D" e(ab) T {bQ+ (DL +A)},

b

where the summation on the right is over all b such that
(6.10) bo(Q, L)+b"'w (@, 4) = 1.
Remark. Equation (6.10) has two solutions if
0@, Do(@,4)#0, e{o@, L)o@, )} =1;

one solution if just ome of w(Q, L), w(Q, 4) = 0; otherwise there are
no solutions.

For results corresponding to Theorems 10 and 11 when ¢ is odd
see [1].

7. Kloosterman sums. We conelude with a few properties of the sum

K(a,b) = Y e(ac+be™?).

c#0

(7.1)

bm@
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Clearly K(a,b) = K (b, a) and
K(a,0) = I(a),

with k(a) defined by (5.5). Also it is evident that

(7.2) K (a,b) = K(ab,1) (ab # 0).
This implies
(7.3) K(a,b) = K(c,¢) (ab = ¢*  0).

It follows at onece from (7.1) that K(a, b) is an odd integer. Also
since

o .
NK(a,1) = Dle™) De(ab) = 0,

we have * b0 ¢

(7.4) NE(a,1)=1.

a0

Thus it, is elear that, for ¢ > 2, K (a, 1) takes on both positive and negative
values.
Since

K(a% 1) = Ee(mb-|- Y = Z‘ e(a?h?4-p7%) = Ze(ab—{»b‘l),

b#0 b0 b#0
it follows that

K(a,1) = K(a*,1) (a7, 1).

If n is prime and a # 1, the numbers a, a2, ..., a" are distinct. Hence
(7.4) implies
(7.5) K(1,1) = 1(modn) (n prime).

In the next place

D, 1) = M N efa(b o)+ b7 o)

i

1 « b,e£0 .
{%‘Ueuﬂ-u— «ﬂg sa(b+0) = qlg—1)

and therefore
(7.6) S E*a,1) = g*—g—1.

[0

To evaluate the sum of the cubes take

D a, b=

a,b

D elaloty+2) b +y 2} = ¢ N,

a,b 2,9,8%0
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where N denotes the number of nonzero solutions of the system

s+y+e=0,

11 1
S 4= =0,
z Yy

This number is equal to the number of nonzero solutions of

2+ oy +y* = 0.

For ¢= 2", n odd, 22+ oy +y? is irreducible in F[z,y], so that N = 0.
For n even, on the other hand, we have N = 2(¢—1). Thus

R | 2¢*(g—1)  (n even),
%IX (@, b) = [ 0 (n odd).

Since K (0,0) = ¢—1 and

D Ea,0)= > E'(0,b) = —(g—1),

a0 #0

o

it follows that

¢+e¢—g—1 (n even),
Ea,b) =
é (@) l—(q—1>3+2<q—1) (n odd)

and therefore

o, 3 (g+1)® (n even),
(.7) ﬁ% e, 1) = l —(g*~2¢—1) (n odd).

For the sum of the fourth powers {Ve have
D EMa,b) = oM,
ab
where M is the number of nonzero solutions of
2+y+2+i=0,
1,111
x y 2t
This system is equivalent to

(@+y)(@+2)(y+2) =0,
wyz(w+y+2) # 0.
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We find that

M = (g—1)—(¢-1)(g—2)(¢—3) = (¢—1)(3¢—B),

so that
D (@, 8) = g2(g—1)(3g—5).
a,b

Finally

(7.8) D K*a,1) = 28— 2¢°— 3¢—1,
a0

so that

(7.9) E(a,1) = 0(¢") (a+0).
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