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A theorem on sets of polynomials over a finite field*
by

L. CarLirz (Durham, North Carolina)

Let F' = GF(¢) denote the finite field of order g = p", where p is
a prime and » = 1. Let
1) fJ'(wl,-":mr) (j::[’"-’k)
denote polynomials in the indeterminates z,, ...y, with coefficients
in I and let N denote the number of solutions in F of the system
(2) Jilgy ooy @) =0 (G=1,...,k).
Ax [1] has proved that N is divisible by ¢°, provided

I
(3) r>s ) degfy.
j=1

Moreover he gave an example that shows that this result is best Ppos-
sible.

The writer [2] has discussed the equivalence of sets of polynomials
in 7 indeterminates over F under the group T of (polynomial) transfor-
mations

Yi=qi(@, ..., %) (J=1,...,7)
possessing an inverse. In particular he proved ([2], Theorem 4.9) that
the set of polynomials (1) is equivalent (under T') to a set of polynomials
in r—s indeterminants if and only if the number of solutions of the
system.
(4) i iy o) =¢ (j=1,..,7)

is divisible by ¢ for all ¢eP.
If in (2) we replace f; Dy f;— ¢; it is clear that (3) is unaltered. Appli-
cation of Ax’s result therefore leads to the following

* Supported in part by NST grant GP-5174.
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AN
THEOREM. Lét fi(@4y « oy Tr)y oy ful@yy «o0y @) denote polynomials with
coefficients in I that satisfy (3). Then the f; are equivalent under the group T
to a set of polynomials in at most r—s indeterminates.
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The diophantine equation dy® = az*-+ba*+¢
by

L. J. MorpELL (Cambridge)

It is well known and easily proved that the equation
(1) dy? = az*+bat+¢,

where a >0, b, ¢, d > 0 are integers, b>— 4ac # 0, has only a finite num-
ber of integer solutions. Thus write (1) as

(2) Ay? = ar'+bawtet+e?, 2 =1.

Then the general solution of (2) is given by a finite number of expressions
of the form

(3) = ayp?--bypg+ o147
(4) 2 =1 = ayp®+bypq+caq?,

where p, g are integers.

The general solution of (3) is given by a finite number of expressions
of the form
(5) P = @72+ byrs 40382, g = a,r2--byrs4-es?,

where 7, 8 are integers.
Substituting in (4), we have a finite number of equations of the form

(6) Ar' - Brs O s* - Drs® L Bs* = 1.

By Thue’s theorem, such equations have only a finite number of
integer solutions. In general, it is very difficult to find these, and much
detail and advanced technique are often required. There are, however,
some classes of equations (1) all of whose integer solutions can be found
by elementary means. This idea had been previously (*) applied to
equations of the form

: ¥ = az’ + b’ +extd.

. (M L.J. Mordell, The diophantine equation y® = az’+ba?+cx+-d or fifty
years afler, Journ. Lond. Math. Soc. 38 (1963), pp. 454-458. The diophantine equation
y* = agd+ bw?+ cx+ d, Rend. Cive. Mat. Palermo (II) 13 (1964), pp. 1-8.
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