

L. J. Mordell

and so this has only the non-negative integer solutions

$$x_0 = 0, x_1 = 1, x_2 = 2.$$

It might be of interest to find similar equations with four or more solutions.

An instance when k=2 is given by

$$(17) \quad y^2+2l^2=\big((8p+2)\,x^2-8q-3\big)(rx^2-s)\,, \quad p\geqslant 0, \ q\geqslant 0, \ r>0, \ s>0\,,$$

where we suppose l has no prime factors $\equiv 5,7 \pmod{8}$. The first factor if positive excludes both $x \equiv 0 \pmod{2}$ and $x \equiv 1 \pmod{2}$.

If
$$(x, y) = (0, y_0)$$
, $(1, y_1)$ are solutions, then

$$y_0^2 + 2l^2 = (8q+3)s$$
, $y_1^2 + 2l^2 = (8q-8p+1)(s-r)$.

Hence

272

$$s = \frac{y_0^2 + 2l^2}{8g + 3}, \quad r = s - \frac{y_1^2 + 2l^2}{8g - 8p + 1}.$$

Take l = 1, p = q = 0, $y_0 = 8$, s = 22, $r = 20 - y_1^2$. Then

$$y^2 + 2 = (2x^2 - 3)((20 - y_1^2)x^2 - 22)$$

has only the solutions $(x, y) = (0, \pm 8), (\pm 1, \pm y_1).$

ST. JOHN'S COLLEGE Cambridge, England

Recu par la Rédaction le 4. 6. 1968

ACTA ARITHMETICA XV (1969)

On ratio sets of sets of natural numbers

bv

T. Šalát (Bratislava)

Let us denote by N (C and R^+ respectively) the set of all natural numbers (all integral numbers and all positive rational numbers respectively). If $A \subset N$, $A \neq \emptyset$, then we put

$$D(A) = \{x \in C; \quad \underset{c,d \in A}{\coprod} x = c - d\},$$

$$R(A) = \left\{x \in R^+; \quad \underset{c,d \in A}{\coprod} x = \frac{c}{d}\right\}.$$

D(A) is the set of differences of numbers of the set A and R(A) is the ratio set of the set A.

In the paper [3] it is proved that D(A) = C if the upper asymptotic density of the set A is greater than 1/2. It is even proved in that paper that in this case (that is if the upper asymptotic density of A is greater than 1/2) the following holds: for each $x \in C$ there exists an infinite number of pairs (c, d) of numbers of the set A such that x = c - d.

Let us remark that the condition $\delta_2(A) > 1/2$ ($\delta_2(A)$ denotes the upper asymptotic density of the set A) it is only a sufficient condition for the equality D(A) = C to be true. E.g. if $A = \{1, 2, 4, ..., 2n, ...\}$, then we have obviously $\delta_2(A) = 1/2$ ($= \delta(A), \delta(A)$ denotes the asymptotic density of the set A) and simultaneously D(A) = C.

We shall prove in this paper a theorem on the ratio sets which is analogous to the above mentioned theorem of Professor W. Sierpiński (see Theorem 1) and then we shall study some properties of $A \subset N$ which quarantee the density of R(A) in the interval $\langle 0, +\infty \rangle$.

THEOREM 1. Let $\delta_2(A) = 1$. Then for each $x \in \mathbb{R}^+$ there exists an infinite number of pairs (c, d) of numbers of the set A such that x = c/d.

COROLLARY. If
$$\delta_2(A) = 1$$
, then $R(A) = R^+$.

Proof of the theorem. Let $\delta_2(A) = 1$. Let us suppose that the assertion of the theorem is not true. Then there exists a positive rational number $r = \frac{p}{q} \neq 1$, (p,q) = 1 such that $r = \frac{c}{d}$ only for a finite number of pairs (c,d) of numbers of the set A.

Let (c_i, d_i) (i = 1, 2, ..., m) be all the pairs of numbers of the set A for which $r = \frac{c_i}{d_i}$ (i = 1, 2, ..., m). Let us put $a = \max(e_1, ..., e_m, d_1, ..., d_m)$. Let us form the sequence

(1)
$$a+1, a+2, ..., n \quad (n>a).$$

It follows from the definition of the number a that the quotient of any two numbers of the set A belonging to sequence (1) is different from r.

To sequence (1) belong all the multiples lp of the number p, where $\frac{a}{p} < l \le \frac{n}{p}$, and all the multiples sq of the number q, where $\frac{a}{q} < s \le \frac{n}{q}$. Let us put $d = \max(p, q)$, $d' = \min(p, q)$. Then the numbers ip, iq belong to (1) if

$$\frac{a}{d'} < i \leqslant \frac{n}{d}.$$

Because the quotient of each two numbers of A belonging to (1) is different from r and $\frac{ip}{iq} = r$, at least one of the numbers ip, iq need not belong to A if i fulfils the inequalities (2).

Let us denote by M_1 (M_2) the set of all numbers i which fulfil inequalities (2) and for which simultaneously $ip \notin A$ ($iq \notin A$). Hence we have

$$(3) \hspace{1cm} P(M_1) + P(M_2) \geqslant \left[\frac{n}{d}\right] - \left[\frac{a}{d'}\right], \label{eq:posterior}$$

where $P(M_j)$ (j=1,2) denotes the number of elements of the set M_j . It follows from (3) that at least one of the numbers $P(M_1)$, $P(M_2)$ is not smaller than $\frac{1}{2}\left(\left[\frac{n}{d}\right]-\left[\frac{a}{d'}\right]\right)$ and so from the definition of the sets M_1 , M_2 we obtain for $A(n)=\sum_{\{d,d'\in \mathcal{D}\}}1$ the inequality

$$A\left(n\right)\leqslant n-\frac{1}{2}\left(\left[\frac{n}{d}\right]-\left[\frac{a}{d'}\right]\right)\leqslant n-\frac{n}{2d}+\frac{1}{2}\left[\frac{a}{d'}\right]+\frac{1}{2};$$

from this we get

$$\delta_2(A) = \lim_{n \to \infty} \sup \frac{A(n)}{n} \leqslant 1 - \frac{1}{2d} < 1.$$

This is a contradiction of the assumption of the theorem. The proof is complete.

Let us remark that the assumption $\delta_2(A) = 1$ is only a sufficient condition for the equality $R(A) = R^+$ to be true. E.g. let $A = \{2, 4, ..., 2n, ...\}$. Then $\delta_2(A) = 1/2$ and simultaneously we have $R(A) = R^+$. There even exist sets $A \subset N$ of asymptotic density 0 such that $R(A) = R^+$. Such a set is the set of the terms of the sequence $\{\varphi(n)\}_{n=1}^{\infty}$, φ being Euler's function (see [4], pp. 235–236, [2]).

We shall show now that number 1 in the assumption of the foregoing theorem is the best possible; it cannot be replaced by any smaller number.

THEOREM 2. For each ε , $0 < \varepsilon < 1$, there exists a set $A \subset N$ such that $\delta_2(A) > 1 - \varepsilon$ and simultaneously there exists an interval $I \subset (0, +\infty)$ such that $I \cap R(A) = \emptyset$.

Proof. Let $0<\varepsilon<1.$ Let us choose a natural number s for which $1/s<\varepsilon.$ Let us put $A=\bigcup\limits_{k=0}^{\infty}A_{k},$ where

$$A_k = \{(2k+1)^{2k+1} + 1, (2k+1)^{2k+1} + 2, \dots, s(2k+1)^{2k+1}\}\$$

$$(k = s, s+1, \dots).$$

Then we obviously have

$$A(s(2k+1)^{2k+1}) \ge (s-1)(2k+1)^{2k+1}$$
 $(k=s,s+1,...)$

and so

$$\frac{A(s(2k+1)^{2k+1})}{s(2k+1)^{2k+1}} \geqslant \frac{s-1}{s} > 1-\varepsilon \quad (k=s, s+1, \ldots).$$

This requires that $\delta_2(A) \geqslant 1 - \frac{1}{c} > 1 - \varepsilon$.

Let $I = \left(s, \frac{(2s+3)^2}{s}\right)$. We prove that $I \cap R(A) = \emptyset$. Let $c, d \in A$, $c \ge d$. Then we have the following two possibilities:

- (a) There exists a number $k \ge s$ such that $c, d \in A_k$.
- (b) $c \in A_l$, $d \in A_j$, $l \neq j$.

Ad (a). Obviously we have

$$\frac{c}{d} \leqslant \frac{s(2k+1)^{2k+1}}{(2k+1)^{2k+1}} = s.$$

Ad (b). Because $c \ge d$, we must have l > j and so $l \ge j+1$. But then we have

$$\frac{c}{d} \geqslant \frac{(2j+3)^{2j+3}}{s(2j+1)^{2j+1}} \geqslant \frac{(2s+3)^2}{s}$$
.

The author thanks Professor P. Erdös for the remark that the following, slightly weaker theorem, can easily be proved.

Theorem 2'. For each ε , $0 < \varepsilon < 1$, there exists a set $A \subset N$ such that $\delta_2(A) > 1 - \varepsilon$ and $R(A) \neq R^+$.

Proof. Let $0 < \varepsilon < 1$ and let p be a prime number with $1/p < \varepsilon$. Let A denote the set of all natural numbers which are not divisible by the prime number p. Then A has the asymptotic density $1 - \frac{1}{p} > 1 - \varepsilon$ and obviously $R(A) \neq R^+$.

Let us remark that the set R(A) of Theorem 2' is dense in $(0, +\infty)$, so that we cannot find in this case any interval $I \subset (0, +\infty)$ with $I \cap R(A) = \emptyset$ (see Theorem 2).

In what follows we shall study some sufficient conditions for the density of the set R(A) in the interval $(0, +\infty)$. We shall show that the class of all sets $A \subset N$ for which R(A) is a dense set in $(0, +\infty)$ contains every set with positive asymptotic density.

THEOREM 3. Let the set $A \subset N$ satisfy the following condition: for each a, b; 0 < a < b, we have

$$\lim_{n\to\infty}\inf\frac{A(bn)}{A(an)}>1.$$

Then R(A) is a dense set in $(0, +\infty)$.

Proof. It follows from the assumption of the theorem that A is an infinite set. Let 0 < a < b. It suffices to prove that the intersection of the set R(A) with the interval (a, b) is non-empty.

Considering the assumption of the theorem there exists a natural number n_0 such that for $n > n_0$ we have $\frac{A(bn)}{A(an)} > 1$. Because A is an infinite set, there exists a $q \in A$ such that $q > n_0$. For this number q the inequality A(bq) - A(aq) > 0 is true. Thus there exists a number $p \in A$ such that aq and so we have

$$a<\frac{p}{q}\leqslant b\,,\quad \frac{p}{q}\;\epsilon R(A)\,.$$

THEOREM 4. If the set $A \subset N$ has a positive asymptotic density, then the set R(A) is a dense set in $(0, +\infty)$.

Proof. Let

$$\delta = \delta(A) = \lim_{n \to \infty} \frac{A(n)}{n} > 0.$$

On account of the foregoing theorem it suffices to prove that for each a,b; 0< a < b, the following inequality

$$\lim_{n \to \infty} \inf \frac{A(bn)}{A(an)} > 1$$

is true.

Let us choose an & such that

$$0 < \varepsilon < \frac{\delta(b-a)}{a+b}.$$

Then there exists an $x_0 > 0$ such that for $x > x_0$ we have

$$(\delta - \varepsilon)x < A(x) < (\delta + \varepsilon)x.$$

Let us choose a n_0 such that for $n > n_0$ we have $an > x_0$. Then with the use of a simple estimation we obtain for $n > n_0$ with the aid of (5) and (6)

$$\frac{A(bn)}{A(an)} > \frac{(\delta - \varepsilon)bn}{(\delta + \varepsilon)an} = \frac{(\delta - \varepsilon)b}{(\delta + \varepsilon)a} > 1.$$

From this (4) follows immediately.

EXAMPLE. Let

$$A(x) \sim \frac{c_1 x}{\log^a x}, \quad c_1 > 0, \ \alpha > 0.$$

Then it is easy to see that for the set A the relation

$$\lim_{n \to \infty} \frac{A(bn)}{A(an)} = \frac{b}{a} > 1 \quad (0 < a < b)$$

holds. It follows from Theorem 3 that the set R(A) is dense in $(0, +\infty)$. Especially it follows from this on account of the prime number theorem that R(P) is dense in $(0, +\infty)$, P being the set of all prime numbers (see [4], p. 155).

Further, if for the number $P_2(x)$ of prime-pairs $p,\,p+2$ with $p\leqslant x$ the hypothesis

$$P_2(x) \sim \frac{2c_2x}{\log^2 x} \quad (c_2 > 0)$$

holds (see [1], p. 412) and if P^* is the union of all sets $\{p, p+2\}$, where p, p+2 are prime numbers, then obviously $P^* \subset P$ and simultaneously $R(P^*)$ is dense in $(0, +\infty)$.

278 T. Šalát

Let us remark finally that in Theorem 4 the assumption $\delta(A) > 0$ cannot be replaced by the following weaker assumption:

$$\delta_1(A) = \liminf_{n \to \infty} \frac{A(n)}{n} > 0.$$

This can be seen from the following example:

Let
$$A = \bigcup_{k=0}^{\infty} A_k$$
, where

$$A_k = \{2^{k+1}+1, 2^{k+1}+2, \dots, 2^{k+1}+2^k\}$$
 $(k = 0, 1, \dots).$

It is easy to see that $\delta_1(A) = \frac{1}{2}$, $\delta_2(A) = \frac{3}{4}$ and it can easily be proved that $\binom{3}{2}$, $\frac{4}{3}$ $\cap R(A) = \emptyset$.

References

- [1] G. H. Hardy-E. M. Wright, An introduction to the theory of numbers, Oxford 1954.
- [2] S.S. Pillai, On some functions connected with $\varphi(n)$, Bull. Amer. Math. Soc. 35 (1929), pp. 832-836.
- [3] W. Sierpiński, Sur une propriété des nombres naturels, Elem. Math. 19 (1964), pp. 27-29.
 - [4] Elementary theory of numbers, Warszawa 1964.

Reçu par la Rédaction le 6. 6. 1968

ACTA ARITHMETICA XV (1969)

An effective p-adic analogue of a theorem of Thue

by

J. Coates (Cambridge)

I. Introduction. A famous theorem of Thue [11] states that the diophantine equation

$$(1) f(x,y) = m,$$

where f denotes an irreducible binary form with integer coefficients and degree at least 3, and m is any integer, possesses only a finite number of solutions in integers x, y. Thue's theorem was extended by Siegel [10], both with regard to the basic result obtained by Thue on rational approximations to algebraic numbers, from which the theorem referred to above followed as a corollary, and in connexion with generalizations to integer solutions of equations in algebraic number fields. This work gave rise to many further developments; in particular Mahler [5], [6], [7], using Siegel's methods, established far-reaching p-adic analogues of the original theorems, and, in 1955, Roth [9] succeeded in establishing a profound improvement on the work of Thue-Siegel, giving a best possible approximation inequality.

All the work described above, however, is non-effective, in that although it establishes the finiteness of the number of solutions of diophantine equations of the type (1), it does not yield an effective algorithm for their explicit determination. In a recent paper [3], Baker gave the first effective proof of Thue's original theorem, obtaining thereby an explicit upper bound for the size of all integer solutions x, y of (1). The object of the present paper is to prove, by means of Baker's method, certain effective p-adic analogues of Thue's theorem, similar to those first obtained by Mahler in a non-effective form. As above, f(x, y) will signify a binary form with integer coefficients and degree $n \ge 3$, irreducible over the rationals, and m will signify a non-zero integer. By p_1, \ldots, p_s we shall denote a fixed set of s prime numbers, and we shall use m to denote the largest integer, comprised solely of powers of p_1, \ldots, p_s , which divides m. Further, we shall suppose that \varkappa is any number satisfying