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and so this has only the non-negative integer solutions
2y =0, 2, =1, 3, = 2.

Tt might be of interest to find similar equations with four or more
solutions.
An instance when %k = 2 is given by

(17)  y*+202 = ((8p+2)a*—8¢—3)(ra*—s), P30, =0, r>0, §>0,

where we suppose ! has no prime factors =5, 7(mod8). The first factor
if positive excludes both # = 0(mod2) and « = 1(mod2).
It (@, 9) = (0,%), (1, y,) are solutions, then

V2P = (8¢43)s, 1i+2l = (8g—8p+1)(s—7).
Hence
_ yrer . yE 428

8¢+3° T 8g—8p+l’

Take ! =1,p =g = 0,9, = 8,8 = 22,7 = 20—¢:. Then
Y42 = (20" —3){(20—y}) a* — 22)

has only the solutions (w,y) = (0, 4-8), (+1, ;).
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On ratio sets of sets of natural numbers
by
T. SavAT (Bratislava)

Let us denote by N (C and R™' respectively) the set of all natural
numbers (all integral numbers and all positive rational numbers respec-
tively). If A = N, 4 # @, then we put

D(4) ={z<0; q 2=c—d},

¢,ded

pert G}
By =|reBs Lo =gf
D(4A) is the set of differences of numbers of the set 4 and R(4) is the
ratio set of the set A.

In the paper [3] it is proved that D(4) = C if the upper asymptotic
density of the set A is greater than 1/2. It is even proved in that paper
that in this case (that is if the upper asymptotic density of 4 is greater
than 1/2) the following holds: for each @ <C there exists an infinite number
of pairs (¢, d) of numbers of the set A such that z = ¢—d.

Let us remark that the condition d,(4) >1/2 (6,(4) denotes the
upper asymptotic density of the set A4) it is only a sufficient condition
for the equality D(4) = C to be true. B.g. if 4 ={1,2,4;...,2n,...},
then we have obviously d,(4) = 1/2 (= 6(4), 6(4) denotes the asym-
photic density of the set 4) and simultaneously D(4) = C.

We shall prove in this paper a theorem on the ratio sets which is
analogous to the above mentioned theorem of Professor W. Sierpinski
(see Theorem. 1) and then we shall study some properties of 4 = N
which quarantee the density of R(4) in the interval <0, -+ oco).

TumorEM 1. Let d,(A) = 1. Then for each meR™ there exists an
infinite number of pairs (¢, d) of numbers of the set A such that & = ¢/d.

COROLLARY. If 8,(4) =1, then R(4) = R,

Proof of the theorem. Let J,(4) = 1. Let us suppose that the
assertion of the theorem is not true. Then there exists a positive rational

mumber 7 — £ # 1, (p, q) =1 such that » = —:Z— only for a finite number
q

of pairs (¢, d) of numbers of the set A.
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Let (e, dp) (i = 1,2, ...,m) be all the pairs of numbers of the set 4

G . b 0 av
for whichr = — (i = 1,2, ..., m). Let us put a = MAX (Cry vuy Cuy dyy ..
iy
vevy dy). Let us form the sequence
a1, 642, ... (1> a).

(1}
Tt follows from the definition of the number « that the quotient of any
two numbers of the set A helonging to sequence (1) is different from 7

To sequence (1) belong all the multiples 7p of the number p, where

N

@

[ W
— <<l i, and all the multiples s¢ of the number ¢, where — << ¢ = ! .
P - q q
Tet us put d=max(p,q), d = min(p, ¢). Then the numbers ip, ig
belong to (1) if

(2)

Because the quotient of each two numbers of A belonging to (1) is differ-
i S

ent from 7 and ~?— =7, at least one of the numbers ip, 4¢ need not
"

belong to A if ¢ fulfils the inequalities (2).
Let us denote by M, (M,) the set of all numbers ¢ which fulfil ine-
qualities (2) and for which simultaneously ip¢A (ig¢ A). Hence we have

3)

v =12
P(JII])+P<M2).2[(Z] [d,],

where P(M;) (j =1, 2) denotes the number of elements of the set M;.
It follows from (3) that at least one of the numbers P(M,), P(M,) is not

1{[n a
smaller than ;([7] — [—EZT]) and so from the definition of the wets M,
M, we obtain for A(n) = 3 1 the inequality
led,ls<n

1{[n a »n 1] a 1
An) < n——|{—| —|— B R o = BRI
() < 2([4] [(Z]) Ry F2[0{/] by

from this we get

o

Aln .
0y(A) = lim sup - ﬁl < 1— --_-l~ < 1.
P n 2d

This is o contradiction of the assumption of the theorem.

The proof is
complete.

i=m®

Ratio sets of sets of natural numbers 275

Let us remark that the assumption 8,(4) =1 is only a sufficient
condition for the equality B(4) = R* to be true. E.g. let 4 — {4, ...
ey 2my ..} Then 6,(4) = 1/2 and simultaneously we have R(4)=R".
There even exist sets 4 = N of asymptotic density 0 such that R(A) = R*.
Such a set is the set of the terms of the sequence {p(n)}n1, ¢ being
Euler’s function (see [4], pp. 235-236, [2]).

We shall show now that number 1 in the assumption of the fore-
going theorem is the best possible; it eannot be replaced by any smaller
number.

THEOREM 2. For each ¢ 0 < e <1, there exisis a set A = N such
that 8,(A) > 1—¢ and simultaneously there exists an interval I < (0, + o0)
such that I ~ R(A) = @.

Proof. Let 0 < & < 1. Let us choose a natural number s for which

1/s <e. Let us put 4 = (J 4z, where
k=s

A = {211, (2B4+1)%H 42, L 52k 1))

(k=s,8+1,...).
Then we ohviously have

A(s(2k+1)2k+1) > (s—1)(2k+1)F (k= 8, 8+1,...)
and so
Af(2k4+1)")  s—1
S@REFET 2y >1—e (b =3ss8+1,...).

This requires that §,(4) >1— i >1—e
s

(28432

Let I = (s,~ ) We prove that I ~ R(A)=@. Let ¢, deA4,

¢ 2 d. Then we have the following two possibilities:

(a) There exists a number & > s such that e, dedy.
(b) cedy, dedy, 1+ j.

Ad (a). Obviously we have

¢ 8(2k1)EH

Fi = (Zk#—}i.i')%" 1

Ad (b). Because ¢ > d, we must have I>j and so I >j-1. But
then we have
¢ _ (3 (254 3)
a7 s+t T s
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The author thanks Professor P. Erdos for the remark that the follow-
ing, slightly weaker theorem, can easily be proved.

THEOREM 2'. For each e, 0 << ¢ <1, there ewists a sel A < N such
that 6,(A) >1—e and R(4) # R*.

Proof. Let 0 << e <1 and let p be a prime numher with 1/p < &,
Let A denote the set of all natural numbers which are not divisible by

. . 1
the prime number p. Then A has the asymptotic density T— > 1—¢
P

and obviously R(4) % R*.

" Let us remark that the set R(4) of Theorem 2’ ix dense in <0, + o),
so that we cannot find in this case any interval I < (0, 4- co) with
I~ R(A) =0 (see Theorem 2).

In what follows we shall study some sufficient conditions for the
density of the set I(A4) in the interval {0, 4+ o0). We shall show that
the class of all sets 4 < N for which R(4) is a dense set in (0, + o)
contains every set with positive asymptotic density.

ToEoREM 3. Let the set A < N satisfy the follmwing condition: for
each a,b; 0 <a <b, we have

.. Abn)
1 £
nl_glo m A{an)

Then R(A) is a dense set in {0, -+ oo).

Proof. It follows from the assumption of the theorem that A is
an infinite set. Let 0 < & < b. It suffices to prove that the intersection
of the set R(4) with the interval (a, b) is non-empty.

Considering the assumption of the theorem there exists a natural

A (b
number #, such that for % > n, we have ZT(W_;> 1. Because 4 is an
an
infinite set, there exists a ged such that g > m,. For this number ¢
the inequality 4 (bg)—A (ag) > 0 is true. Thus there exists a number

ped such that ag < p < bg and so we have

k3

a<Z<n, Z.ra.
g q

THEOREM 4. If the set A = N has o positive asymplotic density,
then the set R(A) is a dense set im €0, + oo).

Proof. Let

0 =46(4) =lim A

N—>00

>0.
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On account of the foregoing theorem it suffices to prove that for each
@, b; 0 < & < b, the following inequality

L, Abn)
1 f
(4) _ imin 1

fsco (an)

iy true.
Let us choose an & such that

(5) V< e ——ut.
a

Then there exists an #, >0 such that for & > z, we have
(6) (0—e)e < A(2) < (6+¢&)m.

Let us choose a #n, such that for n > n, we have an > x,. Then with
the use of a simple estimation we obtain for »n > n, with the aid of (5)
and (6)
A(bn)  (6—e)bn (6—e)b

A(an) ~ (3t ayam _ (3Fe)a

From this (4) follows immediately.
ExAmprE. Let
¢
A(”)N‘fafﬁ’ ¢1>0, a>0.

.

Then it is easy to see that for the set A the relation

b‘
m——A( -“—)-z-b~>1 (0 <<a<b)
N—r00 (M’h) a

holds. It follows from Theorem 3 that the set R (4) is dense in 0, 4 oo).
Bspecially it follows from this on account of the prime number theorem
that R(P) is dense in {0, -+ oo), P being the set of all prime numbers
(see [4], p. 15DB).
Further, if for the number P,(z) of prime-pairs p, p--2 with p < =
the hypothesis
20,0

Py() ~ g

(c2>0)

holds (see [1], p. 412) and if P* is the union of all sets {p, p--2}, where
P, p+2 are prime nurmbers, then obviously P*' < P and simultaneously
R(P*) is dense in {0, + o).
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Let us remark finally that in Theorem 4 the assumption 6(4) > 0
cannot be replaced by the following weaker assumption:

Al
™ .
Vs

6, (4) = liminf

P0G
This can be seen from the following example:

Let A = (J As, where
k==0

It is easy to see that 6,(4) = %, 6,(4) = # and it can easily be proved
that (3, £) ~ R(4) = @.
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An effective p-adic analogue of a theorem of Thue
by

J. Coares (Cambridge)

I. Introduction. A famous theorem of Thue [11] states that the
diophantine equation

1) fl@,y) =m,

where f denotes an irreducible binary form with integer coefficients and
degree at least 3, and m is any integer, possesses only a finite number
of solutions in integers x, . Thue’s theorem was extended by Siegel [10],
both with regard to the basic result obtained by Thue on rational approx-
imations to algebraic numbers, from which the theorem referred to
above followed as a corollary, and in connexion with generalizations
to integer solutions of equations in algebraic number fields. This work
gave rise to many further developments; in particular Mahler [5], [6],
[7], using Siegel’s methods, established far-reaching p-adic analogues of
the original theorems, and, in 1955, Roth [9] succeeded in establishing
a profound improvement on the work of Thue-Siegel, giving a best pos-
sible approximation inequality.

All the work described above, however, is non-effective, in that
although it establishes the finiteness of the number of solutions of dio-
phantine equations of the type (1), it does not yield an effective algorithm
for their explicit determination. In a recent paper [3], Baker gave the
first effective proof of Thue’s original theorem, obtaining thereby an
explicit upper bound for the size of all integer solutions @,y of (1). The
object of the present paper is to prove, by means of Baker’s method,
cerfain effective p-adic analogues of Thue’s theorem, similar to those
first obtained by Mahler in a non-effective form. As above, f(w, y) will
signify a binary form with integer coefficients and degree n > 3, irreduc-
ible over the rationals, and m will signify a non-zero integer. By py, ..., Ps
we shall denote a fixed set of s prime numbers, and we shall use m to
denote the largest integer, comprised solely of powers of py, ..., B, Which
divides m. Further, we shall suppose that » is any number satisfying

(2) % > n(s+1)+1.
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