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Let us remark finally that in Theorem 4 the assumption 6(4) > 0
cannot be replaced by the following weaker assumption:

Al
™ .
Vs

6, (4) = liminf

P0G
This can be seen from the following example:

Let A = (J As, where
k==0

It is easy to see that 6,(4) = %, 6,(4) = # and it can easily be proved
that (3, £) ~ R(4) = @.
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ACTA ARITHMETICA
XV (1969)

An effective p-adic analogue of a theorem of Thue
by

J. Coares (Cambridge)

I. Introduction. A famous theorem of Thue [11] states that the
diophantine equation

1) fl@,y) =m,

where f denotes an irreducible binary form with integer coefficients and
degree at least 3, and m is any integer, possesses only a finite number
of solutions in integers x, . Thue’s theorem was extended by Siegel [10],
both with regard to the basic result obtained by Thue on rational approx-
imations to algebraic numbers, from which the theorem referred to
above followed as a corollary, and in connexion with generalizations
to integer solutions of equations in algebraic number fields. This work
gave rise to many further developments; in particular Mahler [5], [6],
[7], using Siegel’s methods, established far-reaching p-adic analogues of
the original theorems, and, in 1955, Roth [9] succeeded in establishing
a profound improvement on the work of Thue-Siegel, giving a best pos-
sible approximation inequality.

All the work described above, however, is non-effective, in that
although it establishes the finiteness of the number of solutions of dio-
phantine equations of the type (1), it does not yield an effective algorithm
for their explicit determination. In a recent paper [3], Baker gave the
first effective proof of Thue’s original theorem, obtaining thereby an
explicit upper bound for the size of all integer solutions @,y of (1). The
object of the present paper is to prove, by means of Baker’s method,
cerfain effective p-adic analogues of Thue’s theorem, similar to those
first obtained by Mahler in a non-effective form. As above, f(w, y) will
signify a binary form with integer coefficients and degree n > 3, irreduc-
ible over the rationals, and m will signify a non-zero integer. By py, ..., Ps
we shall denote a fixed set of s prime numbers, and we shall use m to
denote the largest integer, comprised solely of powers of py, ..., B, Which
divides m. Further, we shall suppose that » is any number satisfying

(2) % > n(s+1)+1.
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Our main result is then as follows:

TasorEM 1. All solutions of (1) in integers &, y, with (*) (z, ¥, py...p,)
= 1, satisfy

max (ja|, ly|) < Cel*5"m)",
where O is an effectively computable number depending on N, u, py, ..., s
and the coefficients of f, but not on m.

It will be observed that when s = 0, that iy when no primes p,, ..., p,
are specified, Theorem 1 reduces to the theorem of Baker mentioned
earlier. Further it will be seen that if m is eomprised only of powers of
Dyy -3 Ps, then |m|/m =1, and so all solutions of (1) in integers w,y
with (i, ¥, py ... Ds) = 1 are bounded by an effectively computable num-
ber not depending on m. Furthermore it is clear from the theorem that,
for any given m, one can effectively compute the set of all rational num-
bers @,y satisfying (1), the denominators of which are divisible solely
by powers of py, ..., ps.

Theorem 1 can be interpreted in terms of rational approximations
to algebraic numbers. Let f(#) be an irreducible polynomial with integer
coefficients and degree n >3. Again let p,, ..., s denote a fixed set
of primes, and suppose that » satisfies (2). We signify by | |p, ..., | I,
the usual valuations of the rational field defined by py, ..., ps, normalized
80 that |Dslp; = 1/p; (3). It is then apparent from Theorem 1 that the
following result holds.

THEOREM 2. For any pair of relatively prime integers gq,r, we have

"l [ [ 16" F(rla)ly, > cet= @™,
=1

where @ = max(lgl, 7)), and ¢ >0 is an effectively computable number
depending on M, %, D1y ..., s and the coefficients of f, but mot on q or r.

The inequality asserted by Theorem 2 gives an effective limit to the
degree of precision by which the complex or p-adic zeros of f can be
approximated by rationals r/g. When s = 0, Theorem 2 becomes essen-
tially Theorem 2 of [3], which relates to the approximation of a real
zero of f.

As regards the proof of these results, our work involves extensions
of the various analytic techniques of [3] to functions defined on the
completion of the algebraic closure of the field of p-adic numbers. We
ghall assume an acquaintance with the elements of algebraic number
theory as expounded, for example, in Artin [2], Hecke [4], or O’Meara [8].

") By (a,b,...) we mean the g-remte-st common divisor of a, b
(%) See, e.g. Artin [2].
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In addition, we malke use of certain simple properties of the Schnirelman
line integral as deseribed, for example, in the appendix to [1].

In conclusion, I wish to express my sincere thanks to Dr. A. Baker,
both for allowing me to see & manuscript of [3] prior to its publication,
and for his valuable advice.

v

II. Notation. In the sequel, ¢ will denote the field of rational num-
Dbers, K will denote an algebraic extension of @ of finite degree d, p will
denote a prime ideal in K, and p will denote the unique rational prime
divisible by p. We signify, as usual, the exponent to which p divides an
arbitrary element « of K by ordya, and define the valuation | |, on K
by lal, = p‘f, where j = (ord,a)/(ord,p). We retain | | for the ordinary
absolute value. .

Let now @, denote the completion of ¢ with respect to the p-adic
valuation | |,. The valuation of @, extends uniquely to the algebraie
closure of @, (*). We denote by £, the completion of the algebraic closure
of @, equiped with the valuation | |, extending that of @, . Certain results
from the theory of analytic functions on £, will play a fundamental
role in our work, and we now mention these briefly. An analytic function

o0
on a disclzl, < R in 2, is defined to be a power series f(2) = 2‘0 W™
M=
which converges in the disc, that is, lim |6,,2", = 0 when |zl, < R.
M—00

By a meromorphic function, we mean the quotient of two analytic fune-
tions. We shall, in particular, make use of the analytie functions

¢ o0 o0 m
ki 2

exps = Z :1,! ,  log(1+4-2) =2(——1)m+1—‘

’
m
m=0 m=1

which are defined for |s|, < p~"®~Y and [2|, < 1, respeetively. These
funetions satisfy the usual functional equations in their regions of con-
vergence. Further we have

3)
for all 2z satistying |ely, < p
Let f(z) be a meromorphic function on the dise 2], <‘R, and let I?,
@ be elements of 2, satisfying |y < B, |al, < E. We define th.e ;?’chm-
relman line integral of f(z) on I' with centre # = a to be the limit

m

lexpe—L1[ = [2lp, Log(1+42)lp = I2lp,

-Yp-),

. oy
[ 1)z = 1im —m;gﬂwrﬂgm),
fa mp=1 k=

() To extend the valuation of Qp to its algebraic closure, we define |alp, fo.r
an arbitrary element a in the closure, to be |N a];,/’", where N and n denote respecti-

vely the norm and degree of a over @p; see Artin [2].
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when it exists, where 5{™, ..., 7}’ denote the mth roots of unity in 0,
The properties of this integral, which are analogous to those of the class-
ical complex line integral, are given in the appendix to [1], and shall
be used without comment. The most important of these properties for
us is the analogue of Cauchy’s integral formula, namely, if f(2) is ana-
Iytic in the disc |2l, < B and @ is such that |z—al, < |/7,, then

J(2)(z—a)
Ju(@) = n! f"('é‘:m")w(f de,
I
where f,(z) denotes the nth derivative of f(z) evaluated ot 2 == 2. Also
we shall make frequent reference to the fact that

|1,~£f(z)dz ‘17 < max |f(=)y,

where the maximum is over all & with |[¢— al, = |I7,; this is clear from
the definition.

Finally, we record the product formula for I, to which repeated
reference will be made. Namely, if p is any non-zero element of &, we

have
[ =1,
b

where the product ranges over all valuations of K, both archimedean
and non-archimedean, and n, (*) is the degree of the completion of K
at p over the completion of @ at p; the formula follows immediately
from the familiar equations

VBl = [ ] 181,

[\, =1,
» pip

where, as usual, N4 denotes the field norm of . We deduce at once that,
if # is & non-zero integer in K, we have

(4) Bl 181 18 = 1,
where g, ..., 8% denote the complex field conjugates of f.

III. The p-adic logarithms of algebraic numbers. Let K Dhe an
a,lgebra.lsc number field of degree d, generated by an element § with
height (°) 6. Let ay, ..., a, be # > 2 non-zero elements of X, with heights

{4) Alte‘rga.tively ‘when p is non-archimedean ny = epfy, where e, is thoe exponent
!ao which p divides p and f, is defined by the property that the number of elements
in the residue field of p is p'».

(5) As usual, the height of an algebraic number is defined to be the maximuwm

Df‘ t_he ordinary absolute values of the relatively prime integer coefficients in its
minimal polynomial.
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Aqy..ny Ay, respectively, and write 4 = 4,. Let p be any prime ideal
of K, and let p be the unique rational prime divisible by p. Suppose fur-
ther that, for some number = > 0, we have

(5)

and let 4, » be real numbers with

max {|aly, wly < &

§ >0,

>n+1.

We shall prove in § V that Theorem 1 can be reduced to a verification
of the following result.

THEOREM 3. If by, ..., bu_, are rational integers, with absolute values
at most H, satisfying
(6)
then

8H

b b, —
0 <o it —anly, < €77,

H < max {0, (log ),

where C is an effectively computable number depending on n, d, 0, 5, 44, ...
vey A1, D, 8, %, but not on A.

The purpose of this section is to show that it suffices to establish
a modified form of Theorem 3, involving an inequality for a linear form
in the p-adic logarithms of algebraic numbers, in place of (6). First we
make a preliminary observation concerning the condition (5). It will
in fact suffice to prove Theorem 3 with (5) replaced by

(7)

where » = 20d. This new condition is required for the convergence of
the p-adic logarithms at the points @;. The number » is chosen for later
convenience, and our work could be modified so that a less stringent
inequality could De taken here. As regards the proof that (5) can be
replaced by (7), we assume that the hypotheses of Theorem 3 hold with
the original condition (5), and we suppose that the theorem has been
proven under the new condition (7). We note first that (5) and (6) imply
that {xl, == |yl,, where, for brevity, we have written @ for ... db

ls—1ly, <p™” (A <i<n),

ﬂfn,’f:il
and y for a,. For otherwise we would have either |z[, < |yl, or @l > Iyly;
the first alternative is impossible for sufficiently large H since it would
give

ol - , —0H

E7 < fyly < max(lw—yly, lol) = lo—yl, <67,

and the second alternative is also impossible since it would give

BN <yl < Jal, < max(jm—yly, lyly) = le—yl, < e~
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Now choose an element x in K such that ord,m == 1; such an element

is given, for example, by one of the numbers in an integral basis for p,

and so can be chosen to have height bounded above by a number de-
-1

pending only on d, @ and p. Since |x|, = |yl,, we have > bioy = ay,
=1

where o; denotes ord,e; (1 <7 < m). Thus, on writing «; = @u %

b alerl ' == gy, we deduce from (6) that

' .
IS -L.
=], <6 )

and
L !
@' = a

o1 &

0 < |o'—y'l, < el
if H is sufficiently large. Further, it is clear that for each suffix ¢ with
1<i<n, wehave ord,e; =0 and, from (5), log 4;/log 4;, where A; denotes
the height of a, is bounded above by a number depending only on d, 0, Z,
and p (cf. [3], § 6). Since ord,(a;) = 0, it follows from the generalization of
Euler’s theorem to algebraic number fields (°) that there is an integer ¢,
bounded above by a number depending only on d, ® and p, such that

=1, <p™ (L <1< 0).
Also we observe that

§

i

7 ’ q—1 g2 -1 - 2
[Wq—"?/q’h— W—‘ﬂ'lv\wq + z" ?/'“l‘---"f”’!/q |v = 1-'1"—‘.1/’|n<6 ’

and we cannot have 2 = y'?, since this would imply that ' =
where o is a gth root of unity in K, whence

wy'y

&
—511
0 < lo—1], = [y'lslo—1l, = [&'—y'l, <e¢ *

?

which is impossible for sufficiently large H by virtue of the fact that,
by (4), lw—1|, > 2~% TFurther, we note that logA; /logA4;, where A;
denotes the height of ¢, is bounded above by a number depending only
on d, 0, 5, and p. Hence we see that all the hypotheses of Theoremn 3
are satistied with o, ..., a, veplaced by af ..., af, 6 replaced by 6/2, »
replaced by $(»+n-+1), and with the new condition (7) in place of (5),
provided that we assume, as we may, that H is sufficiently large. The
conclusion of Theorem 3 with these new quantities implies the corve-
sponding conclusion with the original quantities, since, as remarked
earlier, log 4;'flog 4; is bounded above by a number depending only on
d, 0, 5, and »p. . ’

(6) The form of Euler’s theorem given, for example, in Hecke [4], p. 102, must
be modified slightly to give the regult asserted above. In [4], the hypotheses require
that a be an integer in K ; in fact the assertion remains valid if o is any olemont of I
with ordya = 0. For choose an integer 8 in K such that ordyf = 0 and Ba is an integer

in K. Then, by the result in [4], ordy(f2—1)> vordy p, ordy ((Ba)?—1) > vordyp,
and so ordy(a?—1) > vordyp.
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We can now state the version of Theorem 3 which we shall ultimately
establish. We adopt the same notation as before; ay, ..., a, denote ele-
ments of K satisfying (7), ¢ is any positive number, and » > n-+1. How-
ever, in order to define loga;, we regard K as embedded in £, in such
a way that the valuations | |, of K and | |, of 2, coincide, and we treat
this embedding as an identification.

THEOREM 4. Suppose that by, ..., b, are integers with absolute values
at most HY, where H, g are positive integers, satisfying

(8)

Suppose further that there are no integers b7, ..., by, with absolute values
at most H, satisfying biloga, ...+ byloga, = O other than by
. =Dy = 0. Then

0 < [blogay+...+bylogayl, < e™°F,

I < max{0, (logA)*},

where C s an effectively computadble number depending on n,d, A, ...
ceey Au_1, Dy 0y 8y %y Dut mot on A.

We now show that Theorem 4 implies Theorem 3. Suppose therefore
that the hypotheses of Theorem 3 hold with (5) replaced by (7). Then,
from (3),

9)

whence |2|, < p~’, where 2z = blogu+...+by_sloga, —loga,. Thus
by (3) again and condition (6) of Theorem 3, we obtain

logaily = |~ < p™" (L <4 <),

8H,

0 < |2, = lexpz—1lp = |} ... drqlag'—1), < e™*%; -

for clearly (7) implies that |a], =1. It sutfices now to deduce the exis-
tence of an integer %k, with 1 < k < m, possessing the following prop-
erties: (i) There are integers b, ..., b,, with absolute values at most
(2H)"*1 quch that (8) holds; (ii) At least n—k of the integers by, ..., by,
are zero; (iii) The only integers by, ..., by, With absolute values at most
H, such that biloga,-t...-+byloga, = 0, and such that b; = 0 when-
ever by =0, are given by b; =... = b, = 0. For having established
the existence of such a k, the conclusion of Theorem 3 follows from that
of Theorem 4, the latter being applied with » now given by the number
of non-zero b;, and ¢ defined as twice the original ». Note here that Theo-
rem 4 is applied to an arbitrary subset of the original ay, ..., a, and the
necessity to distinguish between A = A, and A,,..., 4,_, does nob
always arise. To prove the assertion, we note first that (i) and (i) hold
for k =n (since 0 < |2], < ¢°%, with 2 defined as above), and so we
may assume that (iii) does not hold for & = n. It follows that there is
a least positive integer & for which (i) and (ii) hold but (iii) does not,
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and by (ii) we may assume that k > 1. Let byy ..., by be a set of integers
with the properties specified by (iii) other th&n b1 .= b, =0, say
b; # 0, and put

b= bbi—bib (1 <j<n),

where by, ..., b, are integers satisfying (i) and (ii). Then

0 < [bi’logal G+ b;,'logun\,, = |bzlip |b110g et bnlog“n‘p <e

Turther, ;' = 0 whenever b; = 0, and since also b;’ = 0, b; # 0, it follows
that at least n—k+1 of the integers by, ..., b, are zero. Moreover, the b;’
have absolute values at most (2H)" 2 Thus (i) and (ii) hold with %
replaced by k—1. But, by the minimal choice of ¥, (iii) must hold with %
replaced by k—1, and so k—1 has all the requirved properties. This com-
pletes the proof that Theorem 4 implies Theorem 3.

-8H

* IV. Proof of Theorem 4. The notation introduced in § ITI will be
assumed withont change. C, ¢y, ¢y, ... Will denote positive numbers
which can be specified explicitly in terms of n,d, 4,,..., 4n_(, 9,9, 6,
and » only. The number €, which will finally represent the constant oceur-
ring in the enunciation of Theorem 4, will be supposed sufficiently large
throughout. We assume now that the hypotheses of Theorem 4 hold but
that the conclusion is not valid, and we shall ultimately deduce & con-
tradietion. Thus we assume that there exist rational integers by, ..., by
with absolute values at most HY such that (8) holds, that the only in-
tegers bi, ..., by, with absolute values at most H such that b loge,+...+
+byloga, = 0 are given by by = ... = by, = 0, and that
(10) H > max{C, (logA4)*}.

Further, we assume that b, 7 0; this involves no loss of generality for,
by (8), one at least of by, ..., D, is not 0, and clearly, if b, = 0 then the

conclusion of Theorem 4 would follow from the analogous theorem for
a subset of ay, ..., ay. For brevity, we write

B = —bifbn, &= pilogat... (1=j<n).
The inequality (8) can Dhe written in the form 0 < [&], < ¢ b1

+ ﬂ'n_ 110g (€79 R 10g Uy,

. o
and thus, sinee |b,);' < H?, this implies that 0 < |&, < e * when I
is sufficiently large. In particular, |£}, < p~" when H is sufficiently large,
and from this last inequality and (9) it is clear that

(11) lﬁllogal'{_“~+ﬁn—llogan—.1!?7 < max{]&\p, llOga'n‘p} <p~"

~Sm
Now (3), (9) and (11) together with the inequality 0 < |&], << ¢ * show
that

_1 —;H
S0 < uay 1 <e 7,
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where p denotes exp(filoga+...+ . loga, ;).
conclude finally that

Since Ian|,p =1, we

&
—-EH

(12)

0 << ju—aly < e

In the following, we shall write of, u® hriefly for the analytic funetions
exp (¢log ay), exp(2logu), respectively. Since |logai, <p™ and |logul,
< p~’, the power series defining these functions certainly converge for
all # satisfying 2], < "~

We now define

o =20

and we observe that, sinee x» >

a1y, e = {1—1[(0»)}/(2n),

n-+1, we have

/e < o <1n41), 0<e<<1f(2n).
We write (7)
b= [H], h=I[k"],
L=L =..=0L, = []514”]7 L, = [&"].

We shall now give a series of seven lemmas from which we shall
ultimately derive a contradiction.

LeMMA 1. Let M, N be integers with N > M > 0, and let uy (1 <1
< M,1 <j << M) be integers with absolute values ot most U. Then there
exist integers @y, ..., @y, not all 0, with absolute values at most (N U)ME-M
such that

N

2 Uiy = 0

j=1
Proof. See §4 of [3].
LEMMA 2. There ewist integers p(Ay, ...

1 <i< M.

y An)y mot all 0, with absolute

values at most 17""‘, such that for all non-negative integers My, ..., Myu_y
satisfying my ... My <k, the function

I Ty,

Al Az Y] m My
By (2) =P D)oo DT pUhyy ooy M)l o aps ey gy,

P S e
where P = (loga)™ ...(loga, )" and y, = b+ M, (1 < r < n), sat-
isfies

_gzz

{13) [(I)'tnl,“.,mn,_l(l)‘w <e

for all integers 1 with

1<l <h

(") If @ is o real number, [a] denotes the integral part of a.
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Proof. We shaﬂ choose the p(4y,..., 4,) such that

(14) 2 2 DUy -eey A) iy oy 51 = 0

2=0 Ap=0
for the above ranges of I and my, ..., my_,, and we shall subsequently
verify that this implies (13). Let ay, ..., a, denote the leading coefficients,
supposed positive, in the minimal polynomials of ay, ..., a,, respectively,
Then, for any non-negative integer j,

(e, = Z af) o,

where the off are integers with absolute values at most ¢ or (24,
a,ceordmg as r<n or r =q (see [3], §3). Thus, multiplying (14) by
. agthytt et -1 and substituting for the powers of ., we
obtmn the equation

d—1 d—1
W D V). dp =0,
81=0 8=
where
' Iy Ly,
V(s) = Yoo D plhay ey Aol 5),
=0  Ap=0
and

N1

—2 7) - 3
(4, 8) = ai=aln) [ [ (o als) (b, 2, b, 2)™}.
r=1

Hence (14) will hold if the d" equations V(s) = 0 are satisfied. These
are linear equations in the p(4,, ..., 4,) with integer coefficients. Since
L<h, my+...4+ma_y <k, Ln < L, and, by hypothesis, the integers b,
have absolute values at most H, the coefficient v(1, s) of p(d;, ..., &)
in the linear form V¥ (s) has absolute value at most

U = (24)% " cf* 2 LH?)".

There are at most (k--1)""'h distinet sebs of integers I, my, ..., mg_1,
and hence there are

ﬂ[ dn(70+1)%_1h dn2n 1kﬂ 14-2/4
equations corresponding to them. On the other hand, there are N =
(Zn+1) ... (In+1) unknowns p(ky, ..., 4,), and

N > k(n—l)(l-s)+ns —_ 70n~—1+x > 2M
3
since & clearly exceeds 2"d" when & is sufficiently large. It follows from
Lemma 1 that the system of equations V(s) = 0 has a non-trivial solu-
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tion such that the integers p(4.,..., 4,) have absolute values at most
NU. Now by (10)
(15) LnIOgA \i k’msHI/x < kﬂs(zk)l/ez < 2k1—m7
and since also .
2LH® < LH' < 6¥°
when H is sufficiently large, it follows easily that
NU < 70%(2(%;)”'67"1‘ lng'AghI-/z < 6Izk
is required. .
It remains only to verify that (14) implies (13). By virtue of (14),
we have
(16) ®ml,,..,mnh1(z)

Ly L,
1l a1 Anl 3
=7 o.'P (A, - Cagrgt (it — oy Ly
Z Zn_

Now, noting that |aly, = 1, |ul, =1 and applying (12), it is clear that

3

Al -
Ip < lioe— anlp < e .

|t — aty = lu— Unlp |#1"ZA1+ -+ o
Thus, since
Dt S(EOF < 6™ aily =1,  fogal, <1 (1<i<n),
it follows from (16) that
I@ml,...,mn 1( o << €” € <e ;
R

the last inequality is valid since 6%e <1 when H is sufficiently large.
This completes the proof of the lemma.

LeMMA 3. For any mon-negative imtegers My, ..., My_q With my 4. ..+
+amg_y <k, and any integer 1 satisfying 1 <1< hE™F1 gither (13)
holds or

(17) (Bong,...my_y (Dlp > (c5 ™)~
Proof. Define

o,
5]

Ly
Q =P 2 2}? Ay eeny M)l adnty™ y:.f'f;l,
A1=0
where P’ = of1? ., aﬁn’b,”fﬁ""‘mﬂ—l, and, as in the proof of Lemma 2,
@1y ..., @y are the leading coefficients of the minimal polynomials of
al, -eey ay. It is clear that @' is an integer in K. Noting that
Bttty gt < QLE) < 6,
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we see that any complex conjugate of ¢, obtained by substituting ar-
bitrary complex conjugates for the «., has absolute value at most

Sk
(Ly1) o (L 1) (@A)
(ef. [3], §3). Since, by (15), IL,log A < 21k'™™, this last expression is

Thte
at most ¢“e* . Thus, either Q' = 0, or by (4)

H
(18) Q' = (e )%
Now it is evident that
(19) [ Puny,..oomy_ Dl = [PRUQP = 1Q P ™ — Py, (VPV}

By a similar argument to that given at the end of the proof of Lemma 2,

we deduce that
: )
i

(20) QP " =By (WP, < e
In particular, this shows that (13) certainly is valid if @' = 0. If, how-

ever, Q' 5 0, then applying the estimates

(1je)+ef2-1
Pl<1, L<k™ 1<hk ., k<K

it follows from (18) that
Su

(21) QP >20
The inequalities (20) and (21) plainly imply that
|QIPI»1—qu,...,mn‘;l(Z)PNII'D < %|QVPI~1|717

and thus we deduce from (19) that

But by (18), (3) and (4) (cf‘. [3], §3), we have the estimates

H.
el
QP = 1Q'] = (e )Y,
[Plp = |a,—1[3"... malwm L
and so

( Llezhk) d'

Do,y (Dl >
This completes the proof of Lemma 3.
Levma 4. Let J be any integer safisfying 0 < J << v, where

T=¢(n—1+¢"Y)+1.
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Then (13) holds for all integers 1 with 1 <1< bk, and each set of mon-
negative integers my, ..., Mp_y With my~+...+My_y < k/2‘7 .

Proof. The lemma is true for J = 0 by Lemma 2. We let I be an
integer satisfying 0 < I < v—1, and we assume that the lemma ig true
for J = 0,1,...,I. We prove the validity of the lemma for J = I--1.

We begm bV defining

;= [W7P), 8, =[k27] (J =0,1,...).

Then it suffices to prove that for any integer I with Ry <1 < RI+1, and

any set of non-negative integers m,, ..., My_, With m,+...+mu_, < 8.1,
we have

—gH '
(22) FOp<e*,

where f(z) denotes Do . m, ,(2). Let f.(z) denote the mth derivative
of f(2). By our inductive hypothesis, we see that for each integer » with
1 <r < Ry, and each integer m with 0 < m < 8r,,, we have

o
(23) fm(m)lp <€ " 3
for f.(7) is given by

I Lp

% Ay 7 T, m My,
fulr)y =P 3 Z'p Aiyvevy dy )ad! ...ann_ll,u"'y Loy, it X

;.1=D ;-”=0
X (yilogay+... 4+ yu_1logan_1)™,

and on expanding the mth power of the linear form on the right we

obtain
y E -7 m1+11,...,m,,_1+7n_1 ()3
Jat

ilno Tp— 1-=l)
f1to . Hip_g=m

the valuation of each term in the last multiple sum is at most ¢ * , since
Myt Mg Ji4 o ey < I“/‘)I

and m!(§,! ... Jaa!), With ji+...4Jny = m, is an integer.
We write, for brevity,

F(2) = {(e—1) ... (e—R)}Tt*?,
and we denote by I', I'" elements of Q, satistying

1y = PN_Ey lep < 1/2Bz.,,
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respectively. Then
Ry SIt1
2f(z ¢ (7 - pRCIER
34 f(":]jl%(;)dz:}; Z E m') J Z)Z’ dz.
rio =1 =0 ¥y (¢—1) ()

Here, of course, the integraly are Schnirelman line integrals as defined
in § IT. To verify this, we observe that the integral on the left is the sum
of the residues of f(2)/((s—1)F(2)) (cf. [1], Theorem 13 of Appendix),
and the residue at z = v is given by

— 7~)SI+1+1f(z))

1 T
Sriq! szH-l( (z—1)F(z)

evaluated at 2z = r. On the other hand, the integral on I™ with centre
2z = r on the right is given by

1 dSI+1—7”‘ (z—q")'gf+1+]
(871 —m)! @I ( (z— 1) F(2) )

again evaluated at z = r, and (24) now follows by Leibnitz’s theorem.

We now obtain an upper bound for the valuation of the double sum
on the right of (24). For those # satistying |e—7|, = |I™|,, we have, by (4)
and the definition of I'*,

1Ry < fr—sly <max {|g—sln, [2—7))} = [e—s|,
) (8=17"'7RI»[~1;8¢T)7
whence
—y M |—1 . ’IIL-)-I
o= < ms (g—m)™" RELI DO+
rir @B=DF@) T perp=irny, | (2—DF(2) | * :
Since
Ry SRR, - Sp 41 <k, Rr+1 <20EC-D2 R B I HE

it follows that

ey
(z—1)F(2)

my1 *

2H logHY'
dz |p < e L

)

Ik,
‘where, for brevity, we have written
= #{1+(n+1) o} + o0,

Noting that [1/m!], < m! <" and applying (23), we conclude that the
double sum on the rlght of (24) has v&luatmn at most

0" = evo-+ieo.

~SH 9B l0gHY v HO0gHY g
e 8

<e

i=m®
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the last inequality is valid for sufficiently lzmrge H since clearly
! 1 —1) _ 1
r=3ty unlu"*“*—l ﬂmﬁ

We next observe that, since Ry,; < hk™* and
ler = y(n+1+1/o)+3e—1 < 1/o+3$e—1,

I satisfies the condition of Lemma 3. Consequently either (13) holds,
in which case there is nothing more to prove, or
(25) Dy > (o5 e™) " ‘ .

¢ €
We show that this last inequality leads to a contradiction. For if this
inequality is valid, then since LRr,, <k"~9" and hk <K, we
immediately obtain

+l+x—n—1} -1
1” -—-——-—2 = 1.

Y
(26) IF(D]p >2e * .

But it was shown in the last paragraph that the double sum on the right
]
—~2H
8

of (24) has valuation at most e ® . Hence, applying (26) and the esti-

mate [F(1)], <1, it follows from (24) that

pil) R,
() i (2— 1) F(2)
We now obtain an upper bound for the right side of this inequality. For
those # satistying ||, = |['l, = p"~", we have

1

(@7) 5

»

4

v—2

CE

P =y < (s=1,...,

< max {|g— s, ’8[1)},= [2—8lp Bryq),

and o for such 2

11"’(2)]27 >p(v—2)RI(SI+1+1)’ Iz___uq] ; pv-—z

Further, by virtue of the estimates
Pl <1, 91y

Ia;}izizl < 17 |Ml"z|1z < l mn__ll < 6hlc/z

we see that [f(2), < ¢ for those # satisfying |2|, = p’~*. Hence
f_ff(z) < #f(2) < M= O-DRISL LD
o B=DF@) " lp  y=iry | (2—DF(2) |p

On the other hand, (25) and the trivial estimate |F(I)], <1 give a lower
bound for the left of (27). Substituting these bounds into (27), we con-
clude that

Hed'e™)

4 < 6hkl2p—("“2)R1(SI+1+1)’
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whence
(28) C:_IALle_:ialhlc<pw(«_z)lfI(SI_)_14—1)‘

But this is impossible for sufficiently large H. For if I = 0, the left side

—4dhk - hk(u ~2)logp

of (28) is greater than e , and the right side is at most ¢
and these estimates are contradictory, since, by virtue of the deflmtlon
» = 20d, we have

v—2)logp > 2d > 4d.
If 1> 0, the left side of (28) is greater than exp(— cyhk*/*+!=4) anq
the right side is at most exp(—c, hk¥**"), and these estimates are also
clearly inconsistent. We have therefore derived a contradiction from (25),
and so the proof of Lemma 4 is complete.

Lemma 5. Let @(2) = Dy, o(2). Then, for each non-negative integer j,
we have
(29)

log|®;(0)l, < "Cluhka(t_l)/gﬂa

where D;(z) denotes the j-th derivative of @(z)

Proof. Put

X =[] Y = [k[2"].

Then, by Lemma 4, (13) holds for each integer ! with 1 <1< X, and
each set of non-negative integers m, ..., m,_; with m,+...+m,_, < Y.
Since this is s0, a similar argument to that given at the beginning of
the proof of Lemma 4 shows that, for each integer r with 1 <r < X
and each integer m with 0 < m < ¥, we have
4:

(30) m( )If) < 6_

Now let w denote any element of 2, satisfying |wl, = p. We proceed
to give an upper bound for |®(w)|,. Let I, I'™ be elements of £, satisfying
IPlp = p"7%, ||, < 1/2X, respectively, and let

B(2) = {(z—1)... (2—X)}**.
Then, as in the proof of Lemma 4, we have

s S5 (e

T=1 M=

f 20 (2)
(z—w) B (2 )

I,o

(z—r)™+?

31
ey =) B

For those # satisfying |¢—r|, = |I'™|,, it is clear that

X < r—slp, <max{jz—sl,, [o—r|,} = —sly (s=1,..., X, 8%7),

P = lwl Smax{lz—rly, le—wl,, lrvp}—lz—mp,

i=m®
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whence

m 1 .
dz < XFE,

v

=

Since X < hECV?, Y41 <k, it follows from (30) (cf. the proof of
Lemma 4) that the valuation of the double sum on the right of (31) is
s

at most ¢ ® . Hence

8
—-H
+e 5.

»

w

SRy
I,

By similar estimates to those given in the proof of Lemma 4, it is easily
verified that for those # satisfying |2|, = |17, we have

£
»

B()ly > pt~ D p—wly, 29" D) <1,
and thus estimating the integral we see that
L}
‘ (w) V(;~2)X(1 SN EH.
| B

Now X < hkt-Y2 ¥ 41 <k, whence it is clear (cf. again the proof

y—2)X(I"+1)

-
of Lemma 4) that ¢ ° < p~ , and 80

< zp‘(u_z).\'(lq. n,

But, using the estimates

X > kR YLk, B <p

we conclude that
(32)

—1)4-1
_‘(;mhlaas(T ) .

|qj(w)‘1: <€
The inequality (29) now follows easily from the integral formula
(ef. [1], Theorem 8 of Appendix)
wd (w)

9;(0) = j! ——mrdw (G=0,1,...),

4,0
where A4 denotes an element of Dn satisfying |/1|,, =

LEMMA 6. Let ty,...,14, be integers with absolute values at most T,
and let .

W = t,loga+...+tlogas.
Then either W =0 or

Wiy = (e 4™')~
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Proof. Let a; (1 < j < n) be the leading coefficient (supposed positive)
of the minimal polynomial of ¢; or o * according as & > 0 or #; << 0. Then
w = a1, g (.. dn—1)
is an algebraic integer in K. Further, any of its complex conjugates,
obtained by substituting arbitrary complex conjugates for ay, ..., q,,
has absolute value at most eh A*! (cf. [3], § 3). Tf W s 0, then w = 0,

and thus (4) implies that
leoly > (i A%)
Hence, on using (3), we obtain
(Wl > (a7 a™ | Wy = fwly > (cfy 4% ~7
and this completes the proof of Lemma 6.
LevuA 7. Let dyy ..., dw be any m =2 numbers in Q,, and let

gy oy O be m distinet numbers in 2, with |y, <1 (1 <4 < m). Let
m

g(2) denote the function Y diexp(w;z). Then
i=1
m

max 19:(0)Ip > max |ds|,
o cm—1 1<igsm

(w;—

wy) !

[z
where g;(z) denotes the j-th derivative of g(z).
Proof. For each suffix ¢+ with 1 <i <

defined by the equation

m m
[T =0 /[] 0
i=1 I=1
. 11 1220
It is clear from this definition that

m, let the numbers o; be

m—1

— E 7
=0

(33)

= if i f,
2 o) = :
1 if =7,
whence
Mm-1 M— n
2 ;39 (0) = 2 C’jizdfa)f =
J=0 7=1

Thus we have

max I.‘]:r (0)lp =

max [of
Joax i) max ol

But since |wil, <1, it is evident from (33) that

1/”—1 wl)jp 1<igm).
l;ém

On combining these last two estimates, we obtain Lemma 7,

max |oylp
oM 1

i=m®
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TWe can now derive a contradiction and thereby complete the proof
of Theorem 4. Define

Ly Ly,
Y(z) = 2 yp (Agy vony An) V%0l
A1=0 An_o .
and recall that @(z) = Lo{2). Then
I Ln
W (0)— _2 Py o W) —o ) (5 =0,1,..),
Ay=0 2,,,,:0

where, for Dbrevity, we have written

w(d) = Mhlogay+...+Llogan, v(A) =y dogas+...+yu_1logan ;.

Now
(A — 0 (A |y = alpl Ly [0 (Y ...

o
B i=12..,

—fH

2

oA <e

the last inequality being valid by virtue of the estimate |§], <e
derived earlier from (8) and the fact that |u(A), <1, [p(d), <1, and
|)p << 1. It follows that

'gH
D;(0)], < e

|P;(0)— (j=10,1,...)
and Lemma 5 implies that, for j =0,1,...,
]
o oge(r—D)+1 —SH e(z—1)+1
(3)  1%5(0)], < max o0 T gl

(cf. the proof of Lemma 4).

On the other hand, Lemma 7 can be applied to the function ¥(z)
to give a lower bound for one of the |{¥;(0)|,. The w; of Lemma 7 are
then just the 1,loga;+...+ A,loga,. Hence the factor w;— w; appearing
in Lemma 7 is a linear form in logay, ..., loga, with integer coefficients,
which are not all zero, and which have absolute values at most L < k'™°
< H. Thus by the hypotheses of Theorem 4, w;— w; # 0 whenever i # I,

and so Lemma 6 implies that
(011A‘L )" .

lwi— wily ==

This inequality, together with the estimates

L<E™ Ljdogd < 28", (Li+1)...(Lp41) < 2"E* 1,
1D (Aayoovy Mn)lp = 67,
allows us to deduce from Lemma 7 that
(35) max [¥;(0)]p = e,

o0<f<<(Ly +1)... (L +1)— 1


Pem


298 J. Coates

But n < te(r—1)+1+41%e, and so (34) and (35) are contradictory for
sufficiently large H. Thus (10) cannot be valid, and this completes the
proof of Theorem 4.

V. Proof of Theorem 1. The purpose of this section is to show that
Theorem 1 is a consequence of Theorem 3 of the present Ppaper and
Theorem 3 of [3].

We first show that it suffices to establish a modified form of Theo-
rem 1. I assert that we can assume that the coefficient of 4™ in the hinary
form f(x,y) of Theorem 1 is equal to 1. For, denoting this coefficient
by a, we see that a = 0 since f(x, %) is irreducible. Therefore if we put
X =ax, ¥ =y, we have a" 'f(z,y) = F(X, Y), where F(X, ¥) is an
irreducible binary form of degree n in which the cocfficient of X" is equal
to 1. If now =,y are integers, with (,y,p,... s =1, satistying the
equation (1), then plainly ’

P(X[b, Y[b) = " 'm[b",

where b denotes the largest integer, comprised solely of powers of p, ..., 2,
which divides both X and Y. Since (X/b, ¥ /b, p; ... ps) = 1 and b, heing
a divisor of a, is bounded above by |a|, then we can clearly deduce Theo-
rem 1 for the binary form f(w,y) from the corresponding result for
F(X, Y).

We also make a modification in the equation (1). Recall that m
is the largest integer, comprised solely of powers of p,, ..., ps, which
divides m. Suppose that m = pf ... pfs, where e, ..., 6, are non-neg-
ative integers. Dividing each of these exponents by =, we have m

= plt, pfspflm p;m , where dy, ..., ds, e, ..., 6; arve integers such that
0<Ld; < n for 1 <4 < s. Thus, if we define
¥ o= alpt g,y = ylpip®  w = mipl gl
it is clear that (1) can be written in the form
(36) fla'yy') = m.
Here the integer m’ has the important property that
[ |p, 2p®Y (1<igs),

and, as this property is needed for our later arguments, we shall hence-
forth consider the equation (36) rather than the original equation. Of
course, ' and ' are now rational numbers, but their denominators are
composed solely of powers of p,, ..., p,.

Before. proceeding to our principal argument, we introduce more
notation and reeall several facts from algebraic number theory. Pub
o=s+1, and let | |, , ]| lr,, ..., | |, denote respectively the valuations

i=m®
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[ 1y ] lpyye-es | lng Of @, the field of rational numbers. In a similar nota-
tion to that used before, let . denote the completion of the algebraic
closure of the completion of @ with respect to | |, Thus, in particular,
&, is the field of complex numbers. Plainly, f(a',y’) will factorize in
each £, into a product of linear factors of the form

(37) f@,y) =@ —dy). (@ —dVy) (A <i<o),
where o, ..., ™ are distinet elements of £,.. Let & Dbe the number

field W]ll(h is obtained by adjoining « = ul” to Q. Clearly the n sub-
fields of £, , which are isomorphie to &, are the fields which are obtained
by mdjmmng the % numbers of? (1 <j < n) to Q. If £ is any element of
R, we shall denote by £ the image of & nnder that embedding of ] in
£,, which is defined by mapping « to af.

Since f(z',y’) is irreducible over Q, & will have degree n over Q.
Thus there are at most n valuations of & extending any given valuation
of @, and hence there will be at most no elements in the set § = {| |y, ...

o5 | In} of valuations of & extending the set s = {| |n,...,| |»} of
valuations of @. It will be assumed that the reader is familiar with the
fact (cf. [8], p. 30) that every valuation | |y of ! extending the valua-
tion | |, of @ is given by

[Elg = 1E0,  (£eR)

for some fixed, but not in general unique, superscript j. In particular,
frequent use will be made of the well known equations

(38) Dlng =n, []1e = 15060,

Rirg Rirg
where ny denotes the degree of the completion of & at | | over the
completion of @ at | |,,, and both the sum and the product are taken
over all valuations of & extending | |, (cf. § II).

The S-units in & will play a fundamental role in our proof, and we
now state their main properties. By definition, an S-unit 5 is an element
of & whose valuation is equal to 1 for every valuation of & not in 8. Thus,
by the product formula, we have

11«&
[ s =
ReS

It is well known (cf. [8], p. 77) that the following generalization of Dirichlet’s
unit theorem is valid for S-units. There are g—1 S-units, which we
shall denote by 7, ..., %,_,, With the property that the determinant

loginily, ... loglne—ilm,

10g|"]1im9_1 10g["7¢—1\m9_1
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is not zero. Further, #,, ..., 7,1 ¢an be chosen so that not only is 4 0,
but also

(39) 14120y, |loglyly] <€ (L<i<e—1,1<5 <),

where O, €, denote positive numbers, which can be specified explicitly
in terms of #, the coefficients of f(a’, y'), and py, ..., ps. 1t should be
noted that, although explicit values for (', 0, are not given in [8], the
proof can easily be modified to obtain the more precise result.

We now come to the main argument. Throughout the following,
Uy, Oy, ... will denote positive numbers which can be specified explicitly
in terms of #, the coefficients of f, and p,, ..., ps. As remarked earlier,
we shall use the equation (36), rather than the original equation (1).
Thus «',y’ will denote rational numbers satisfying (36), whose deno-
minators are composed solely of powers of py, ..., ps. We put

f=ua—ay'
By the factorization (37), and the fact that f(z', y') = m’, we have
(40) 10O = m], (1< < o).

Multiplying these o equations together and using (38), we obtain

(41) [T =[] m,
=1

Hed
and, taking logarithms and again using (38), it follows that

(42) D nylog (¢ Bly) = 0,

e
a

where, for Lrevity, we have written ¢ for { [ jm'[,}'". Note that the

i=1
number on the right of (41) is precisely |m|/m; in the subsequent discus-
sion the equation (41) will play a similar role to the equation (40) of [3],
and it is this change from |m| to {m|/m which leads to the more general
form of Theorem 1.

Now I assert that we can find integers b,,..., b,., such that

y =it ... olest
satisfies

(48) log(p Iyly)l < 05 (L <<i'< o).

To prove this, we observe that, since 4 # 0, there exist real numbers
By, ... bo_y such that

—1),

A
IS

Z bj10g Iyl +1oglp™ 1Bly) =0 (1 <é

i=m®
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whenee, choosing integers by, ..., b, 1 so that |b;—Dbi| << 1/2 for 1 <4
< p—1, it is clear that the element y of & defined above satisfies

(44) log(p™ Iyl < (e=1)Caf2 (1 <i < g—1).

5

But, since 1),..., 1, ; are S-units, we have

NHESES T

ReS ReS

and so it follows from (41) that

(45) Naglog(g~' yly) = 0.
"RES’
Now (44) and (45) together plainly imply (43).
We next obtain an upper estimate for the height of y. Let

gl@) = dle—y) ... (@— "),

where d is an integer chosen so that this polynomial has relatively prime
integer coefficients. Since the denominators of #', ' are composed solely
of powers of p,, ..., ps, the valuations of g, and so also of y, are at most
equal to 1 for every valuation of & which does not belong to 8. Thus
there exists an integer d’, composed solely of powers of py,...,ps, with
the property that d'y is an algebraic integer in K. But d must divide d',
and therefore d is composed solely of powers of p,,..., s, whence

(46) al =[] ] al,.
T2

‘We now obtain a lower bound for the [, If h(z) denotes a polynomial
with coefficients in 2,,, we define |hly; t0 be the maximum of the valua-
tions of the eoefﬁment.s of h(z). Since | |,, is a non-archimedean valuation
for 2 <1 < o, the same argument as thmt used to prove the lemms of
Gauss (ef. [8], D. 25) shows that |kl = [hylr; | Pale, for any two poly-
nomials fy(x), hy(). Hence, applying this result to the polynomial

glr) = dw—yP) . (e—p) (2 <i <o),
we obtain that

k3
lglr, = |(11,£]']mzhx(1, ) (2 < i< o).
F=1

But |gl,, = 1 for 2 <7 < 0, since the coefficients of g(») are, by hy-
pothesis; relatively prime integers. Thus, by virtue of (43),

Al = 67" 397" (2 <i <o),
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and so it follows from (46) that

(47) Itli — )L(G—-l)(;a(p'n(uﬁl)‘

Now the minimal polynomial of y divides g(»). The roots of this minimal
polynomial are therefore a subset of piY, ..., »{”, and its highest coetfi-

cient divides d. Hence (43) and (47) clearly imply that the height of y
is at most Cu¢™. But by definition

L
" = ” [m |, = |m|fm,
g=1

and thus the height of y is at most C,|m|/m.
From the definition of y it is clear that

log|Bfyly, = —bilog|mly;—- .. —bp_110gIno_alw, (1 <J < o—1),
whence, solving these equations, we obtain
o—-1
O 45 B )
—i= 3 Elogilyly, 1<k <o),
F=1

where A4 denotes the cofactor of the element in the jth row and kth
column of the determinant 4. Thus, if H denotes the maximum of the
absolute values of by, ..., b,_;, at least one of the numbers

[loglBlyls,] (1 <j<o—1)

must exceed C;H. Let this maximum be given by j = J. Then, by (43),

|log (™" 1Bls,)] = [log|8/¥lw,|—|log (e~ " yln,)| = Cs H—0Ch,

and this inequality together with (42) plainly implies that there is a suffix
I, with 1 << I < g, such that

log (7" IBly,) < — (CsH—Cy)[(no—1). ,

But, as was remarked earlier, }/3],,:1 1,3(’)[” for some pair of indices ¢, j
Wlth 1<i<oand 1 <j<n, and thus we have gshown that

(48) log(p™ \ﬁ&”lri) < — (O H—03)/(no—1).

In particular, this implies that ||, < ™™ Yp, and so it follows
from (40) and the inequality |m'|,, > piy that

(49) 18, = Cepp= YD

for some superscript % # j. Let 1 denote any superscript other than &
or j. Sinee n >3, such a superscript certainly exists.

i=m®
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As an immediate consequence of the identity
(a(f)—-—af-j))ﬂ(ih)—(ag”—aéj’)ﬂ(]‘) = (a(}”)ma ﬁm

we obtain the equation

0y b
—l— g =
ayt a@e_ 1 Uy = ),

where .
k) 1)y pld), Ak
() — ) g

T mvm‘ﬁkm, )

\’ ) (k)

Ay = ~ T "Th Uy = e

. _
4 q )
by

mW—AMﬁ“’ (1 <g<o—1).

Now Dby virtue of the inequalities (43), (48) and (49) and the definition
of w, it is clear that

(50) 0 < fmly, < C’7?’ﬂ""nv])6"ﬁgﬂ.

Further, as it was shown earlier that the height of y is at most ¢, |m|/m,
it is easily verified (cf. [3], § 6) that

(51) log A < Oy(1+1og(imifm)),
where 4 denotes the height of «,. Also we have by (43)
(82) 01_0] < aglry < Oy

‘We are now in a position where we can apply either Theorem 3 of the
present paper or Theorem 3 of [3], according as @, is a p-adic field or
the complex field. In either case we shall deduce that

(53) H < max {0y, Cys(log(jml/m))*}.

Here ' = }(x+n(s+1)-41}, and » is the number specified in Theorem 1,
which we recall is assumed to be greater than n(s-+1)41. Before proving
this assertion, we observe that we can make the following simplification.
The inequality (50) can be replaced hy

Gy
(54) 0<lol<e *

Cg
for (53) is certainly true if (}799“’("‘”[711 > 1.

We now proceed to verify (53). We assume first that .Q, xs ‘1. p-adic
field. Let K be the number field Whlch is obtained by adj ommg oy oy
t0 @. Then K has degree at most #”, and is generated over @ by an element
6 with height at most ¢y, (cf. [12], p. 126). By making use of (39), & sim-
ilar argument to that given for estimating the height of y shows that
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each of ay, ..., g1 has height at most ;. Let p be the set of all algebraic References
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integers fin K S&ms{ymg lﬂ_r@ <1 . P thy' 131}:)1 (12 t 5 [11 W. Adams, Transcendental numbers in the P-adic domain, Amer. Journ.
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Math. 87 (1966), pp. 279-308.
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[3] A. Baker, Contributions to the theory of Diophantine equations. I. On the

=max {Cy, Cu1, ¢*2}, Then, by virtue of (39), (52), (54) and the fact that
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I’ replaced by Uyy veny Oy ) replaced by 03/2, and » replzuced by %', representalion of integers by binary forms, Phil. Trans. Roy. Soc., London, A 263 (1968),
’[iTlc’mczuhl::L the ine(mfﬂit,y # > p-+1 is valid since plainly ¢ < n(s-1). pp. 178-191; II. The Diophantine equation y* = w*+k, ibidem, A 263 (1908),
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pp. 193-208.
[4] E. Hecke, Theorie der algebraischen Zahlen, Leipzig 1923.
[5] K. Mahler, Zur .Approximation algebraischer Zahlen I, Math, Ann. 107

The assertion (53) then follows from the conclusion of Theorem 3 and (51).
We suppose next that Q,‘i is the complex field. Then, as above,

each of ay, ..., g, has height at most Cy;. Let A’ = max {Cu, Cy}. Thus, " (1933), pp. 691-730. )
by (52) (54) and the inequality »' > n(s+1)-4-1, it is clear that all the [6] — Zur Approximation algebraischer Zahlen II, ibidem, 108 (1933), pp. 37-55.
h;pot;u;%es ofLTheorem 3 of [3] are satisfied with ay, ..., a, replaced by [7} — Zur Approximation algebraischer Zahlen 11I, Acta Math. 62 (1934),

pp. 91-166.
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Uy, .0y Gy 6 TEPlaced by Cg/2, and x replaced by «'. Note that »">po+1 or
# >p-+ 2 according as ay,..., q, are or are not all real, since for these two

cases we have the respective inequalities o < n(s+1), o < n(s+1)—1. (1955), pp-pl-S?OA - o . _ _
asserti x follows from the conclusion of Theorem 3 of [3] [10] C. Biegel, Approzimation algebraischer Zahlen, Math. Zuitsclir. 10 (1921),
Thff ‘?iie)lhon (53) then pp. 173-213; = Ges. Abhandlungen I, pp. 6-46.
and (1) ; [11] A. Thue, Uber Anniherungswerte algebraischer Zahlen, Journ. Reine Angew.
We can now finish the proof of Theorem 1. By (39), (43), (53), we have Math, 1;5 (1909), Dp. 284. 305, 4 g 8
) b N—b,_ 7 logimimyy* g g [12] B. van der Waerden, Modern Algebra, New York 1953, Revised english
V/}s‘j){ri = ly%j)m |"I(12L) ' vas 77(91)_1,5 lfri < 0153 Trogdmifm) (1 St %0, 1 =] *W’) * edition.
Hence the identities B Added in proof. A note by A. I. Vinogradov and V. G. Sprindzuk (Mat.
(h)ﬁ(jL—«(l(j)ﬁ('h) ‘B(:j)_ﬁ(ih) . Zametki 3 (1968), pp. 3679-376) has recently been published concerning the equa-
z = f‘i__(*h___‘;_"_, y = “{h)_——(ﬁ A<i<<o;h+#]) ton f(z, y) = mpil ... p&%. The method of treatment outlined therein is different
ay ) a&” oy — a4 from that employed here and would scem to apply only under certain restrictive
imply that conditions.
g , Oyl i e
55) 2., < 0136019(l°g”m'/m’)”, 1%'lr; < Cpge plogtimHfm) 1<i<o). TRINITY COLLEGE
v Cambridge, England
But ,
6 e , S Regu par la Rédaction le 20. 6. 1968
o =of(p...0s), Y =yllps - p5), -

and thus, sinee (#,¥,P,...ps) =1 by hypothesis, it follows from (65)

that ) . ——
[P < Crpe BB (1 < <),

Applying (55) again, we obtain

e e ,‘,
le — lel Ipll . pss{ < Oig‘l6(&+1)C‘19(Ingmn|/m)) ,

e e g
] = 1B ] < O3 Castommin”

I (log(m|fm)*™™ < (s-+1)Cy, these inequalities clearly imply t]J_.a.t
max(|z|, ly|) < Oy, and so the conclusion of Theorem 1 is certainly valid;
and it is again obvious if (log(|m|/m)*™ > (s4+1)Cy. The proof of
Theorem 1 is therefore complete.

Acta Arithmetica XV.3
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