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ACTA ARITHMETICA
XV (1969)

On the differences of primes in arithmetical progressions
by
M. N. Huxiey (Cambridge)

1. Imtroduction. It is & well-known consequence of the prime number
theorem that pn,,—Pn, Where p, denotes the nth prime number, is on
average about logp,; in particular we have

- 294;

B = limint 22278
00 IOgZ’n

1.

In 1940, after earlier results by Hardy and Littlewood and Rankin [6],
II, depending on a conjecture concerning the zeros of Dirichlet’s L-funec-
tions, Erdos [4] succeeded in obtaining the first unconditional impro-
vement on this inequality; he showed in fact that & < 1. The stronger
result B < 42/43 was subsequently obtained by Rankin [6], IIIL, IV,
and this was sharpened by Ricei [7] in 1954 to E < 15/16.

In a recent paper Bombieri and Davenport [2] succeeded in proving
a substantially better inequality; by means of an improved version of the
famous ‘large sieve’ .of Linnik and Renyi, they showed that

E<1@+V3) =.46650 ...
Further, they considered the limit

(11) B, = limint 2rtr—Pn
00 IOan
and proved that B, < r—4% for all r.

The first object of the present paper is to establish analogues of the
results of Bombieri and Davenport for the primes in an arithmetical
progression. Let %, I be given relatively prime positive integers with %
even, and for each positive integer r let B, be defined in analogy to (1.1) by

. Pryr—Pn
1.2 E, = liminf ————
(1.2) r = i oy Togpn
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where p, now denotes the nth prime in the arithmetical progression
with first term ! and common difference k. Our principal results may
be stated thus:

TEEOREM 1. For each positive imteger v we have

dr—1\
(1.3) Er<%(r—%)(1+( yr ) ):
and also
or_38, 1 1 Mﬂﬂ&}‘”

We can restate (1.3) for large r as

(1.5) B.<r—g+0Q),
and (1.4) as
(1.6) B, <r—3+0(1)n),

so that (1.4) is seen to be an improvement on (1.3) for large r. In fact
for r > 3 (1.4) is better; for » = 1 both results give the constant .46650 ...
found by Bombieri and Davenport, and for » = 2 (1.3) gives

E,<1.451 ...

and (1.4)
B,<1.461 ...,

so that (1.3) improves on (1.4) only when » = 2. We state it generally
as it is the natural extension of the result of Bombieri and Davenport
to the case r > 1.

The proof of (1.4) uses three different combinatorial ideas, two of
which have been isolated as Lemma 15 below. The first section of the
proof uses the methods of Hardy, Littlewood and Rankin, as also employed
by Bombieri and Davenport, but the exponential sum is formed with the
indices being every rth prime in the arithmetical progression with first
term I and common difference k. The argument proceeds in a similar
manner to [2], but the evaluation of the ‘singular series’ presents greater
diffietilty, and a large part of the present paper is devoted to this end.
I am grateful to Dr. Bombieri for the observation that the wse made
in [2] of the Hardy-Littlewood ‘circle method’ to obtain a lower bound
for a certain sum over primes is now a special case of the ‘large sieve’
developed in [1] and [3], and the result required may be quoted from
the results of [3].

Finally we discuss the problem of Erddés mentioned by Bombieri
and Davenport in [2]. By suitable modifications of our arguments we
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can prove, for example, that

i Prys—DPnysr  2r—1 ]/g s Tr
hﬂfflil.fg p(klogp, ~ 4 T g U —2}t< Y

a result better than the trivial upper bound afforded by E,.

The author wishes to express his thanks to Professor Davenport
for suggesting this problem.

2. Notation. We number the primes congruent to I(modk) as
D1y Doy Ps, --- In ascending order, and divide them into » classes, of which
the sth will consist of
Diy Dicry Pigory »ee

Any sum or product with (i) as a superscript will be understood to be
restricted to primes in the ith class. p will denote a general prime, We put

Hzn(1~ (pvll)z)’

»>2

and note that the product converges, and for each positive integer =
we write

(2.1 H(n):Hn(ﬁii).

pjn
D>2

We denote by u(n) and ¢(n) the usual Mébius and Euler functions, and
by d(n) the number of divisors of n. x?(n) will denote {u(n)}? and other
functions will be written similarly. (m,n) and {m,n} denote the highest
common factor and lowest common multiple of m, n respectively. m|n
means ‘m divides #’. We shall write as usual [z] for the integer part of
the real number z.

Let N denote a large positive integer. Writing L = logN for
brevity, we suppose that L >k We define X = N L. Puiting
e(z) = exp2rniz, we introduce the exponential sums

89(a) = 3 1ogpe(pa)

PN

and
1

Ula) = D) e(nka),
n=0
where h is a positive integer not exceeding L? to be chosen later. We note
that [U(a)|? is a Fejér kernel:
13

(22) (@2 = D (h—Inl)e(nka) =

Nn=-—h

sin?whka
sin?rka
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For any integer # we shall write
n
o) = o (),

and use the Ramanujan sum

cg(n) =

‘We define
r
Zoink) = ' >V logplogp’,

i=1 D,
for each positive integer n or for n = 0, where the summation is over
all pairg p,p’ both in the ith class with p'—p = nk and p’' < N; and
r :
Y,k = Y 301
i=1 8,9

over the same range of summation with the additional condition p > NL™.
We shall write Y(nk), Z(nk) for ¥,(nk),Z,(nk) respectively.

We remark finally that the constants implied by the O-signs and by
Vinogradov symbol < will always be absolute.

3. Lemmas. We now prove fifteen lemmas in preparation for the
proof of Theorem 1. Of these, the first ten constitute an application of the
large sieve method, the next three apply the upper bound sieve method
of Selberg as modified by Bombieri and Davenport in [2], and the last
two are combinatorial in character.

Lmmva 1. Let a,q denote relatively prime positive imtegers. Put ¢
=(q,%),q" =ql¢. Let wyq=0if (¢,¢")>1 and wgq = eq(atq' + al)
if (¢', @'} = 1, where t denotes a solution of the congruence tq’ —l(modgq").
Then
(3.1)

D7 eulam) = p(g") wa,

m

where the asterisk denotes summation over all m satisfying the conditions

(%) 1<m<q, m,g=1 and m =Il(modyq’).

Proof. Writing m = ng'+1, we see that the sum on the left of (3.1)
is given by Y6, (ang’ -+ al), where the summation is over alln with 1< n< ¢,
n

(g, ng'+1) = 1. The second condition can be written as (¢"', ng'+1) = 1,
since (¢’,1) = 1. By the properties of the Mébius function, the sum i8
given by

p(d)eglang' +al) = D D' u(d)eg(ang’ + al),

n dj(@”,ne +1) dg* m

i=m®
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where the second summation is over all » with 1< n< ¢ and ng' +1
= 0(modd). Since (¢’, 1) = 1, the congruence is soluble for n if and only
if (¢, d) = 1, and in the latter case, if %’ denotes any solution, all solutions
can be written as n'-n''d, where n' runs through a complete system
of residues modulo ¢''/d. Thus we can write the double sum in the form

eq(an’ ¢’ + al) Z #(d) Zeq(cm”dq').
@B "~
Now the second sum is given by 2 ega(n’’), since (a, ¢’ [d) = 1, and this
is 0 if ¢’ # d, and 1 if ¢'" = d. This implies the required result.

DEFINITIONS. Let a, ¢ be any pair of relatively prime positive integers,

a.nfd let m be any integer satisfying the conditions () of Lemma 1. We
define

()

Oim,q(n) = logn—

1 .
rp(g k)’
if n is a prime congruent to m(modg), and in the ith class; and

: 1

(%) —
[4 ! ?’b) - M
e rp(q"k)’

if n is not a prime of the 4th class, or does not satisfy the congruence
conditions. We write

.
oma() = D) efe(n),
i=1
and put

N
8% = D" eg(am) D) 6D, (n),
=1

m

»
Sa,q = Z'S'g,)q,
i=1

where the asterisk denotes summation over » satisfying the conditions

(*) of Lemma 1. We define
L _ 1 o\l
S Gt 0(2]),
bt i g7

AN — E
: (@,9)=1

<X
7
4= 249,
i=1

uig”)
p(g"k)
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the bar denoting complex conjugation. Finally we define the ‘singular
geries’ © by

a
pi(g") o (a) :
3.2 Ul—
(5.2) Z 9 (q”k) ; all’
(@,9)=1
where
(q) = |wgql,

a number clearly independent of the choice of reduced residue a.
LevMa 2. We have

r 1
(3.3) (N+ O(NL—“"’))wam )21 U(a)|*da
0
2
N

Proof. Theorem 1 of Bombieri and Davenport [3], with the numbers
@, taken to be the rationals a/g with ¢ <X in (0, 1], implies that

¢ Ni+H na\P 1 Ny® R
Z ane(—)l < (H¥4-X) E ae(na)| da.
<X a=1 'n=Nj+l g - 0 n=N;+1
(@,9)=1

Now 8 (a) U(a) is a sum of the form considered here, with H < N +2hk.
On recalling that o = N L', we obtain

% Sleliety

q<x a—1
(a,q)=1

1
< (V- 2hke)t2 4 N2 100 f 189 (a) U (a)|*da-
. 0

Dividing the primes of class + less than or equal to N which do not divide
¢ into residue classes to the modulus ¢; and noting that any non-empty
clags corresponds to a residue class congruent to I(modgq’), we obtain

S‘i)(q) 2 2()logpeq(ap —!—O(Z“log;p)

where the second sum is over all primes of class ¢ not exceeding N which
are congruent to m(modg). By the definitions above, we see that the

i=m®
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double sum may be written as

L
2 2 eq(an) (gﬁf, q(n)—l—m)

m  m=l

and by (3.1) of Lemma 1 we obtain
- a o
89 (—q-) = Skt N Qay,
where for brevity we have written

#(g") ey
(g k)

a,q =

This gives

s‘”(g)‘ 188,12 +9NERS§,')QD,,Q+NZ]QMIZ—I—O(NL ),

! g0 (j‘ﬁ)
RV

logg < L.

on noting that
NL
<._

and

Thus by the definitions above we have

U(ﬂ) 8 (ﬁ)2 > Nzl‘z(él”,)lm(@
q q r*g*(q k)
since h << L% &k << L. Summing from ¢ =1 to #, we have (3.3).

DeFINITIONS. For each pair of relatively prime positive integers
m, ¢ satisfying (*) of Lemma 1 we define

2N . NI
+T“m+0( , )

N
Em,q = ; 10g19”' m ’

where the sum is over all primes p with p <N, p = m(modg), and
P = l(modk). We write
© B, = max"|B,,,
m

where the maximum is over all m satlsfymg (%) of Lemma 1.
LeMumA 3. We have

hzq",ch(q”)(Z(q”)Eq

p(q'"k)

(3.4) 4} <

X
b i)=1
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Proof. Noting that i
%
8o = 2 eq(am) By g

m

3 Snelof

(@9)=1

we can write

_ 2 u(q") B
& (0%
Going back to the definitions of w,, in Lemma 1 and to (2.2), we see
that the coefficient of By, is 0 if (¢/,¢'") > 1, and if (¢, ¢"’) =1 it is
h

D) (h—Inl)eg(m—tg'—14-nk),

N=—h

where ¢ is as in Lemma 1. Now for given n and for each m satisfying
1<m<q,(m,q) =1, m=1l(modyg’), we have

m—1itq¢' —l+nk = ug' (modq),

where 1 < < ¢/, and distinet « correspond to distinet m. Thus the sum
over m is in modulus at most

D, leg: (w1t
u=1

The well-known formula (c.f. [5], § 16.6)

ou(u) = Zdﬂ(%)
. dj(e,u)
now gives
- A
D log(w)1h2 < hz 2 d = he Zd 2 1< kg d(g"),
u=1 dj(a,u) alg”

U= o(modd)
which gives (3.4) on noting that [ B, gl <
Lemwa 4. We have the bound

D B, <NL™.
<X
(@', k)=1

Proof. I m =I(modq’), the congruences z = m(modq) and =z
= l(modk). posess @& solution o = @, and the equations (m,gq) =1,
.(k, ?) =1 imply that (a, ¢"%k) = 1, also that a complete set of solutions
is given by the congruence, class a(modg''%). Thus for given m satisfying
(*) of Lemma 1, if (¢'*, k) = 1, then B, , can be written in' the form

(3.5)

logp—

Pp=0a(modgk)
<N

N
p(¢'k)

i=m®
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We now divide all ¢ < X satisfying (¢', k) = 1 into sets so that two ¢
occur in the same set if and only if the corresponding ¢'’ are equal. It is
easily seen that there are at most d(k) elements in any one set. Hence,
noting that ¢"% < Xk < N'® L%, and applying Theorem 4 of Bombieri
[1] with A = 25, B = 98 and Z = N, we see that the mumber on the left
of (3.5) is at most d(%) VL~ ™. The required result follows since d(k) < k< L.

LeMMA 5. We have
4| € NL~°.
I* we have from (3.4)

(3.6)

Proof. Since h <

g ule)ale)E
4] <€ .
A< S ; #(d")
g3

By Cauchy’s inequality, the sum over g is at most

q'2dx(g") o 2]/
Do RIRLEL
(@ k) =1

Now observing the trivial estimate

NL
| By € —+ PR
we deduce from (3.5) that the second sum over g is at most N> L™ /g (%)
Tor the first sum we use the estimate d(k k) (loglog X )*(log X)*, which is
easily proved. Combining these estimates we have (3.6).

The next four lemmas are concerned with the evaluation of the
‘gingular series’ & and with the arithmetical function H (nk). We prove
first :

LemMMA 6. Suppase R is a positive integer. Then
2 Lt (logR-{—O(logL))
o= .

Proof. We define a multiplicative function b, by b, =1 and

(3.7)

_r if wisa pi'ime and ntk,
w(n—1)
by, = 0 if  is a prime dividing %,
—by if m is the square of a prime p,
; 0 it is divisible by the cube of & prime number.
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Then we have, as is easily verified,

D) by = (ny %) =1,
dmn
and also
Sb -0 (lfglf,’—ﬁ) = 0(u ).
U
T>U

00
Hence writing B = > b,, We have
r=1

LA . 1/3 -
=, 2 e Pl

7
(r,,}cTil z;l:zzi)Rl * (uukiR
R
1

—B 2 +0(1) = B%'M 2 —+0(1)

(uk) =1 ! u=0(modd)
—BZ——(I 0g 7 +0(1 ))+0<1)

Ak

o(k) i u(d)logd
=B —k-logR+0(log10gk)-— Z B

T
= ‘p—k) {log R+ O(logk)).

By considering the Euler product for B, we see that B = 1, and the results
follows.
LeMMA 7. We have

(3.8) | Z uE( Jo(g)  logX+ O(logk) )

& “k N (k)

Proof. Since w(g) is zero unless (¢, %) = 1, we may assume that
this latter condition holds. The sum on the left of (3.8) is now

3y

where the second summation is over all ¢’ < X/¢ with (g", %) = 1.
From (3.7) the inner sum is given by

o(q) (k)

pETFEA (0 q——{-O(logk))

i=m®

and the lemma follows since
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elg) =
'k

Lenmma 8. For each positive integer u we have

U

' _lﬂ klogu(loglogu)?
(39) 2 =5y o [FEUTEE )

Proof. Since % is supposed even, the definition (2.1) of H{(nk) give

H(nk) = H(k) n(ﬁ:;) = H (k) Zr(d),

DR i
@, l»; 1 dain

where we have written z(d) for the multiplicative function

it (d, k) =1,
{ p]d (p—a

it (d,k)>1
Now we have

uzf() Zr(d 21—2 ( )).

n=1 dn
n =l o(modd)
‘We have
loglogd)?
(d) < Z(Oi;gi < logu(loglogu)?,
d<<u asu

S0 _ o olceer)
d %
d<u
where T = ):: 7(d)[d can be expressed as
d=1
1 (p—1)2 k

1 = - ,

n( +p(p—2)) [ 2= = =t

(B,])=1 Dtk

using (2.1) again. The equation (3.9) is now easily - verified.
Levma 9. We have
1 kL h*k (hk(logL)ﬂ)

3.10 =
(819 "2 gk k) #*(k)
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Proof. From (2.2) we see that

E‘U(q) Z(h [n]) Zeq(nka)hhxp +22 (h—m)eq(nk).
=

- N=—n =1
(@,9)=1

(@@= L
Also for 1 <n

< h we have

2/,; w(q cq(nk) { w?( _|_0( nl )}
=X (") ?(k) '12.:1: z(q DZ); ©*(q)
(2,2 =1
The error term here is plainly ‘
» (loglogX)ﬂ)
e ————= .
O( o e
Further, the infinite series is given by
2 ;u "Yegrr (nk) 51 ().
qll) ._J

otk
@’ k) 1 !

Since ¢y (nk) = @(¢’) it ¢'|nk, the second factor is
Dlolg) =
¢k

Since also ¢,(nk) is given by p—1 if p|n but p{k, and by —1 if p{ak,
it follows by virtue of the arithmetical properties of these multiplicative
functions that the first factor is
)15
- (p—1)

[][e+
pink

Dtk

cp(nk) ): ( 1
-1y l:,! 1

DN

H(nk)

_ 20(H)
)=

The sum of the infinite series is therefore 2¢(k)H (nk), and substituting
in the definition (3.2) of &, we obtain
u
2 2

U=1 n=1 9<X

h-1
# " e(dolg) (q qu(q w(q) R

#*(g" )0y (mhk)
IIL +2 TR A Y

P*(g"" k)

Y (3.8). The result is now easily verified using (3.9), since
logX = $L+0O(logL).

i=m®
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LeMMA 10. We have

NI?
rk

(log L)®
I

(3.11) 22(7»—n (nk) > (22— (——%)HO(

)

where 1 is defined by
bk = 2p(k)L

1
Proof. Since ofe(ma)da is 1 if m =0 and 0 otherwise, we have

Z [ 189(a)? | U(a)|2da = 1Z,(0)+ (h—n) Zo(nk).

ﬁM:

By the prime number theorem for arithmetical progressions we have
NL Ny
*ls)
(k) o(k)

the sum being over primes » < N with p = l(modk). By (3.10)

Zaogmuoaognv)

(log Ly*
L

= (?.H—%A—l—o(

L2
and (3.3) and (3.6) give

>) k'

—100 (’L) 2 3 = J\T
(140 >§fo AT =22 10 2],
On rearrangement we have (3.11).

The reader will note that Lemma 10, which is the analogue of
Theorem 1 of [2], already implies H,<#— %, since for 1> r—3% the
right-hand member of (3.11) is positive for all large W, and so the sum
on the left cannot be O(L?) as N — oo which it would be if Py »—p,
< (r—3%)p(k)L only finitely often.

‘We now apply the sieve method of Selberg, as modified in [2], to
obtain an upper bound for ¥ (nk), defined in Section 2, where n denotes
any integer with 1< n\2h We shall require the fo]lomng notatlon

DrrINTTIONS. For each posmve integer m we write

(m) = Em)m (%)

dim

We put B = NI and define
7= 3" w()p(r),
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where the accent denotes summation over all positive infegers r with
r <R and (r, nk) = 1. Further we write

p(r) 1 ()
=T 2

the summation being over all m for which m < Rfr and (mr, nk) = 1.
Note that A(r) is defined for all positive integers 7, the sum over m being
taken as 0 if r >R or if (r,nk)>1

For each positive integer ¢ we define

7o 11N+
YT e(g)

the summation being taken over all primes p <N with p = a(modg),
and 1iN denoting the usual logarithmie integral function. We define

further
By = max |Hg,
a

the maximum being over all integers o with (@, ¢) = 1.
LeMMA 11. We have

VA{de
(3.12) Y(nk)gnNZ Z% +B,
& g

where d = {d,, d,} and
B= |Z > }.(’dl)/l(clz)|E,§,k.
7))

Proof. We observe first that for each prime p > NL™* (> R) we have
DIMd) =a(1) =1.

amp

o) = 3)( S aa),

©»odn
the summation being over all primes p with NL™* < p < N, p = l{modk)
for which p—nk is a prime p’ satisfying NL~* < p' < p. This gives

Then by definition

@),

n o d|m

Y (nk) <

where the summation is over all positive integers. m with m < N+ nk,
m = l(modk) and m—nk prime. The sum can be written as

33 Ma@aa) = > D adid) Y 1.
dy  dg

m djm dypm
m=0 (mod d)

i=m®
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Since (d, nk) = 1, and m—nk is a prime congruent both to — nk(modd)

and to [(modk), the final sum over m is the number of primes in a certain

residue class to the modulus d% which do not exceed V; hence at most it is
N

m-l—iEﬂJcL

This proves (3.12).
LeMvA 12, We have

(3.13) 2 Z A(d) M2 =%,
4

dy

and
logR
T em (nk)

(3.14) +0((loglognk)?).

Proof. The equations are given by (53) and (54) of Bombieri and
Davenport [2] on taking {nk for », R for z and noting that 3nk < I* < R
and H(}nk) = H (nk).

LevmmA 13. We have

NH (nk) logL
(3.15) Y (nk) < YE (8—]— ( 7 ))

and for each integer w with 1 <u<h

13

' é(h—u)zw h2kNlogL
3.16 (h— .
(316 D (h=m Y(nk) < = ( () L7 )

Proof. As in Lemma 15 of [2], noting that kR?< NV:L~%, we
obtain B <€ NL~%. Hence by (3.12),(3.13) and (3.14), and the ine-
qualities n < 2k <2L% k < L and

H(nk) <

we have

H(nk)liN( ((loglogL)"))
Tk < g 2TO\ T 1 ’

and (3.15) follows since
logR = } L+ 0(logL)

and

N N
iV == =
iy = +0(L2)
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" Now (3.16) is easily obtained by means of (3.15), (3.9) and the identity

h h—1 »

D (h—n)H (nk) = 3 N H@k).

T=U r=uU N=U
We now have all the machinery required for the proof of (1.3). For
(1.4) we need further arguments of a combinatorial nature.
LeMMA 14. Suppose that for some ¢ >0 we have
¢NH (nk)
p(k)L*
Suppose that we have a set II of pairs of primes, the number of pairs in the
set mnot emceed-ifng mN [{p(k) L}, with both members of any pair (p,p’)
satisfying p =p' = l(modk) and NI < p <p'<N. Let Y'(nk) be the
number of pairs with p’'—p = nk. Then if h; Ic = hiop(k)L for i =10,1, 2,
where hy = hy > by and

(3.17) Y (nk) <

2m
(3.18) To—hy >,
we have
Ry 2
logL)*\} ¥
(3.19) (ho—m) X' (nk) < {(lo—ll)m—-—w-b» Lo (Qg—))}—.
= [ L k
Proof. We have
By hg—1 u ry
D (hg—m) T (nk) = > 3T (k) + (ho— ha) D Y (k).
n=hy u=hy n="~h; N=hy

We divide the range for « in the first sum into < hy and « >

the integer ks is given by
’ o(k) L
=[5 255
2m
Ay = )*1"!‘ T+0( (

@)
o(k)IL) )’

so that by (3.18), 4, is less than 1,. For values of  less than kg we observe
that ¥'(nk) does not exceed Y (nk) and use (3.17), so that an upper bound
for this part of the sum can be deduced from one for the corresponding
sum with Y'(nk) replaced by H (nk). By (3.9) we have

hy, Where

corresponding to

h3—1 u h3—1

2 ZH(n )< 2 oo E) {w—hy+1+ 0(logu(loglogu)?)}
U=hy N=Nhy
k 1 logh,(loglog h,)?
20y 2 oM (H'O( by ))

i=m®
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For % > hy and for the second sum we use

u°

Y'(nk) < cardinal of T ——— my

&~ o(k)L

We may replace each h; by Aip(k)L/k with an error at most O((logL)2/L)
times the sum in which it occurs. Hence combining these results, we
have (3.19).

LemmA 15. Suppose that we have (3.17) and also
(8.20) 2¢(k) L < ch k&, -
and for NL™* < p, < pir < N we have

(3.21) Piyr—Pt = i k.

Then for any h < L* we have
h
(3.22) 2 (h—n) Y (nk)
n=1
(r—1)(2h—hy) N
p(k) L
Proof. From (3.21) we have

N n) Y (nk) = ngax (O hi— Pu kpt)

2, =

=1
where the asterisk denotes that the maximum is replaced by zero unless
both the primes p;, p, satisfy NL * < p,< p, < N. Since py—p: > ik
if u—1 > r when this condition holds, we may write the sum as

(r—1)2N Ir N (log Ly?
ek(r-+1) ( kL2 )

r—1
max® (0, hy— p—t“k;?i)

8=1 14

We now group the terms in pairs, taking s with r—s, so that the whole

sum becomes
r--1
tIPI
8§=1 ¢
where

Prys—

pt+r_fpt+s)
k k ’

M,; = max* (0, hy— )+max (0; hy—

Clearly M,; is an integer between 0 and hy inclusive. If Mg ;= hy—
where m > 0, then one of three possibilities holds: that the second term
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is zero and py .—p; = mk, or that the first term is zero and p, =Dty
= mk, or that neither is zero and p¢,,— Pt = (hy-+m)k. The total number
of pairs (s, #) for which M = h;—m we call »(m), so that for 0 < m < i,
we have »(m) < (r—1) Y(h k+mk)+2Y (mk), and also

hy r~1 T
Jrm)< X 31<r—1)
m=1 8=1 =1

where T is the number of primes congruent to I(mod%) which do not
exceed N. We put
==

- [2]3 @ (k)
u =
% we use (3.17) and (3.9)

)
)

by the pr'Lme number theorem in arithmetical progressions. We now have

noting that by (3.20) we have u < ;. For n <
a8 in Lemma 14, so that

log LY

(1 + 0( (log L)

jv(m)< T

For w < n < b, we use

(r+-1)cknN
22 (k) L

Nomy<r—n1 < L0
@(k)L

m=1

k-1 n
Ms = (h"" )= v(m)
> (r1) ckn N ((1ogL)2)) (r 1)1\7(1 0(i))'
T4 2¢%(k) L2 (1+0 L +n=u+1 (b L +o1Z

We now sum over n and note that the errors involved in replacing %41
by % and h;—1 by h; can be absorbed into the error term, so that our
upper bound is

w?(r+1) kN (log L)? (r——l)(hl—~u)('r— )( (logL )
ST (1+0( I ))+ Ty v [
Substituting

S e [ |

we have (3.22) in the case h, =
hy

2 (h—h) ¥ (k) <

n=1

h. The general case follows since

(h—hy) (r—1)T.

bm@
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4. Proof of Theorem 1. Tirst we prove (1.3). We suppose that

_p'IL-)-r“pn = hqk

whenever NL* < p, < pn,r < N. We first make the trivial observation

(¢.1) Z,(nk) = L?Y,(nk) (1+o<1°gL))+0(%)_

L
We now have from (3.11)

logI)®\\ NI -
(zﬁ—w—auo((—‘)gf)—))«W <2 N t—nyz,

22@-

2, [Y (nk) (1+0(1°gL))+0(j;)]L=.

We note that Y,(nk) =0 whenever 1< < Iy—1 and use (3.16) to
estimate the sum from %, to h, so that the rlght -hand side above does
4(h—h )2 kN

not exceed
logL
() (1+0( 7 ))+0(

Hence writing %k = Ap(k)L, bk = 2,0(k) L we have

h2N
I

(4.2)

2
4”1—11)2?1’—(7—%M+0(aoim )
Choosing the integer % to make

4\ I

) )+0(¢(k>L)’

& choice which ensures.that the right-hand member of (3.11) is posfmve,
80 that we know that i, < 1, we can now deduce

1 dp—1\12
21<—2-<r—%>(1+( =) )4—0(

from the quadratic inequality (4.2). Since

=§w—@@+(

(logL)*
)

B, < limsupl,,
- Nosoo

we have (1.3). L
‘We obtain (1.4) similarly, using the ecase r = 1 of (3.11):

1 (logL)*\\ NL* x B
(12_51_1,0( = )) <2 1Z%k)(h n)

Acta Arithmetica XV.4 %

=
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and by virtue of (4.1) we may replace the right-hand side by

1

logL BN
2L22(h—fn)Y(nk)(l—|—0( Oi ))+0( - )

No==1

‘We suppose that (3.21) is satisfied for some hA;, which we may choose
to be smaller than the integer & which makes

=ww17r+11‘)1/Z : ( k )
3(r+1) (k)L

Suppose first that h, satisties (3.20). We split the sum over n as above
into the ranges 1 to h;—1 and h,; to k. Noting that by (3.15) we may
take the ¢ of (3.22) to be 8-+0(logL/L), we apply (3.22) to the first and
(3.16) to the second range for » to obtain the following upper bound
for the sum over n:

(r—1)(2h—h)NL (r—1)’NLI*  4(h—hy)?kN

2r—1 1 T
T+z((2’ Y

(k) Y g (k)
AN (log L)® (hzkl\TlogL) ZLZ__ZE)
+0( A ) 0 ¢ (k)L (Lz
This becomes
NI? - (r—1)z ((1ogL)2))
7—(4(%—@ D@ =R gy YO

when we substitute for », and k. As above we substitute the value of 1
to get a quadratic inequality. Noting that A— 4, is positive when we take
the square root, we have
5r—3 1

. +T6—(9(2r—1) —

3(dr2—17r-+11) )1/2 0( (logL)Z).
r+1

L
If on the other hand (3.20) is satisfied for no such hy, we have the stronger
inequality

C(43) <

logL)

1
31<z +0( 7

We conclude that if %, is chosen so large that (4.3) does not hold, thenr
(3.21) must be false for this &,. Hence our choosing %, < k was no restrie-
tion, and : ' : ‘

B < imsup4,,.

which gives (1.4).
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5. A problem of Erdés. Let

F, = liminf max Zrts " Pris—1
o 1<s<r @ (k)logp,
It is clear that

(5.1) Py < B,—(r—1)T

1

and we consider the problem of obtaining numerical upper bounds for
F,. In the case r = 2 this represents a problem of Erdos. As is indicated
by (5.3) below, stronger results can be obtained conditionzl on the hy-
pothesis By > 0. There is a wealth of combinatorial arguments available.
Theorem 2 below gives two results connecting F, and B,; relations can
be obtained between ¥, and any other F; or B if desired. Of the results
below, (5.2) is the better in the case when E, is small, but (5.8), being
linear in B, is stronger for certain larger values of B,. In particular (6.2)
implies 7, < 1.3624 ...
THEOREM 2. We have

274 = +§ {r(3r—2)—16(r— 1) B ¥,
and if By >3 we have

(5.2) F<

o0) £ <22 Horigry M@

" r—1)E,.

Proof. We prove first (5.2). Suppose that out of every 7 consecutive
differences Pny1—Dny +evy Pugr—Dnipr_y, ab least one exceeds h,k if
Pn > NL~* Consider the set JI of pairs (p;, p) of primes with NI~ < P
<Pr <N and py—p; < hok. Then for (pe, pr)eZl, we have ' —t<r— 1,
and for s =1, 2,...,7—1, the number of pairs (pn, Pnts) Which belong
to 7 is at most a proportion 1—s/r+o(1) of the number of possible values
of n. Hence by the prime number theorem in arithmetical progressions,
IT has at most

r—1

s N r—1 : N
§(1_7+0(1))(p(k)1?=( 2 TO(l))qJ(k)L

members. In applying Lemma 14 we can therefore take

m=3(r—1)+o(l).

I

If b,k is the minimum difference py— p; of the members of such a pair,
then &% = 4,p(k)L, where A, may be taken to be B+ o(1). After (1.3)
we have E; < 4, so that (3.18) is certainly sa,tisﬁefl if

Ay > (r4-3)/8,
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noting that by (3.15) we may take ¢ = 8+o0(1) in (3.17). Choosing the
integer h, so that h, = A,@(k) L, where

1y = }r—H+1V3{r(3r—2)—16(r—1),}*" +- 0 (log L/L),
and noting that for » > 2 we have 1, > 4,, we have satisfied all the hy-
potheses of Lemma 14, and hence (3.19) gives

hy hy
D (hy—n) Y (nk) = D (hg—m) ¥ (nk)

N=hy
g(uo—mw—n _ (2 _FO((long)) y
2 32 L k
‘We use (3.16) with 4 = hy+1, h = hy, so that
By ¥
2 (ho—mn) Y (nk) < (2(10—-12)2—{—0(1)) T
T=hg+1

We now apply (3.11) with » =1 and h = kg

Ty
NI?
(fi—thot0(1) =<2 ) (hy—m)Z(nk)

N==]
g

<2 D (he—n) L2 (nk) {1 +0(1))+ O (BN L),
n=1

where we have used (4.1) to transform to the sum over ¥ (nk). Substituting
for the sum over n, we see that

A= Fe+0(1) < 4(Rg— A)* -+ (r—1) (Ae— Ay) —(r—1)2/16 +-o(1).
Tf we substitute the values of 4, and 2;, We see that any choice of #, which
makes )
(r+3)8 <A< Ay
must make A, < F.(N), where
Fo(N) = 3(r—3)+3V3{r(3r—2)—16 (r— 1) A,}*+ 0 (1).
Since 1, < (r-3)/8 certainly makes /12~ < B (W) if r = 2, we have
F. < limsup 7, (),

N—oo
which gives (5.2).
; . For (5.3) we suppose first that Pap1— Pr 8 at least u, & for p, > NL %
clearly we may assume u;k = (B, +o0(1)) p(k) L, and that out of every
r consecutive differences Pn.;—Pn, ..., Puyr— Pniry With p, > NL™
.ot least one exceeds w,k = up(k)L. Suppose now that 1<s<r—1.

i=m®
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The proportion of differences p,,.—p, which are less than Un o+
+{s—1)u,k out of the DPairs (pu, Pa,s) With NL™* < pp < Puype <N is
at most 1—s/r+o0(1), and for each of these Pnis—Pn 6Xceeds su k. We
can therefore divide those pairs with p, .—p, < bk, where hk = Jp(kYL
(we shall discuss the choice of 1 below) into two classes, of which the
first, I7,(s), has at most

8
(1_7+0(1))<p(k)L

members, for each of which
Puys— Pu = Uk,

and the second, II,(s), has at most

(5 +om)
7’{“0() o (WL

members, for each of which

Prps—Dn = (8—L)u b+ u k.
If now

(5.4) z—u—(r—l)m}i(l—i),

4 r

we can satisfy (3.18) for each class I7,(s) and I7,(s), and for 1 < s r—1
we have (in the notation used in the proof of Lemma 15)

2 max™ (0‘, h— —-——pMs];—p")
n

<—{(A—SE1) (1—5—) -%(1——) —i«(}.—(s——l)El—y)——%-s—: +0(1)}
N sy r?—2rs—2s?

where we have written
v = u-+(r—1)E,.

We note that any other difference py—p, with NL™* < p;<pr < N
and ¢'—1%>r must exceed ugh = (E,+o(1))<p(k)l}. Clearly we have

B> utr—1)B+o(1).


Pem


390 M. N. Huxley

By (3.16) of Lemma 13 we have

h
* Pr—DP¢
g E — < _E —
max (O,h 7 )\ (h—n)Y (nk)
¢ [3 =g

2 (h— ug) kN
@* (k) L*

{L+o(1)

<2 Bty

the result being trivially true also if u, >k, that is,-if B, > 1. We now
apply (3.11) with » = 1, so that

h

(Az_gz+o(1))iv§i< 2 Z‘ (h—m)Z (nk),

=1

and by (4.1), the right-hand side is at most

o

(h—n) L2 Y (nk)(140(1)) + O (R NL™?)

3
[
A

Now since
h

D th—m) Yk = Z Zma,x (

n=1

’

Y Lt )
T r

the right-hand side is at most

r—~1
NL2 Y sy r2—2rs + 252
{2 a; (1—7 — —07'2—) + 4 (24— B2+ 0(1)}
2(r—1)(2r—1)

NIL? .
=% {("—1)(21—1*)— +4(1—Er)2+0(1)}-

3er?
After (3.15) we may take ¢ to be 8-+o0(1). We now have the inequality

(r—1)(2r—1)
127

(6.8) A—(r—3A<4(A—E)2+(r—1)(A—»)— +o(1).

Since » = (r—1)E,+ 4, we may regard it as a parameter at our disposal,
since ‘u is subject only to )

ﬂ¢(k)L<NL Day -

l_Iip MAX (P 41— <y Prgr—DPngr—) .
"

i=m®
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We take 4 to be
3 4
=5yl

and deduce that

(5.6) (r—1)p—

(r—1)(2r—1) }1/2
1or ) +o(1),

B<r—t+ {%((r—%)z—(r—lw— w)} " o).

12y
Since v < B, we have
3 3 (r—1)(2r—1)\}*2
vST— g +{Z((r—g)2—(¢~~l)v—~ — )] Tow

which gives » < v»,, where

5r—3 1 4(r—1)(2r—1) )‘/2

a = o —gr— T X

(56.7) Yo 3 —|—8( r2— 6r p. +o(1)
We note that since we can write v, as

5r—3 + 1 ((S'r 7y 923 4)112 ”

— —P e — = 0
8 8 T B
we have
vy >1r—%,

and thus

vo—(r—%) > 1_12

Hence by (5.6) and (5.7) we have

1(3 —1)(@2r—1)\\"*
r=3 (— (21— =210 (f——)lgf—l)) +o(1)

1
= %("0—‘ _%))"‘0( >g+o(1) > 71‘(1‘_‘—) B,
provided that H, > 2/9, so that (5.4) holds with » = »,. It follows that
if v is a little larger than »,, then (5.5) fails for the corresponding value

of 2, but (5.4) still holds. We conclude that

Fr<vgto(l),
and hence deduce (5.3).
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ACTA ARITHMETICA
XV (1969)

Approximation to real numbers by algebraic integers
by

H. Davexporrt (Cambridge)
and WorrecANG M. ScamipT (Boulder, Colo.)

1. Introduction. The problem of approximating to a real numbet
£ by algebraic numbers was investigated by Wirsing [2]. He proved thae
if » > 1 and £ is not an algebraic number of degree at most n, there arr
infinitely many algebraic numbers a of degree at most n which satisfy (*)

1) |6—a] € H(a)™®+92,

where H (a) denotes the height of a. The constant implied by the notation
< depends on n and & but its dependence on & is of a simple na.ture
In the case n = 2 we showed [1] that the result holds with H(a)™® o
the right, and this is best possible.

In the present paper we investigate approximation to a real number
£ by real algebraic integers a.

It is instructive to consider first the case n = 2, even though this
is every simple. In the first.place, if £ is rational there are infinitely many
quadratic integers a satisfying

(2) 0< [f—a| <H(a)™
For there are infinitely many integer pairs =,y satisfying
0< |84+ totyl <1
and if we put #-+tzty = (f—a)(t—d')
(a—a)’ = &' —4y = (26+2)"+0(1).
Without loss of generality we can suppose that
[6—a|> 28+0|> |ul,
and as 0 < |(§—a)(é—a') <1, this implies that
0<|é—al <27,

we have

() Wirsing also gave an exponent slightly better than that in (I).
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