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ACTA ARITHMETICA
XV (1969)

Approximation to real numbers by algebraic integers
by

H. Davexporrt (Cambridge)
and WorrecANG M. ScamipT (Boulder, Colo.)

1. Introduction. The problem of approximating to a real numbet
£ by algebraic numbers was investigated by Wirsing [2]. He proved thae
if » > 1 and £ is not an algebraic number of degree at most n, there arr
infinitely many algebraic numbers a of degree at most n which satisfy (*)

1) |6—a] € H(a)™®+92,

where H (a) denotes the height of a. The constant implied by the notation
< depends on n and & but its dependence on & is of a simple na.ture
In the case n = 2 we showed [1] that the result holds with H(a)™® o
the right, and this is best possible.

In the present paper we investigate approximation to a real number
£ by real algebraic integers a.

It is instructive to consider first the case n = 2, even though this
is every simple. In the first.place, if £ is rational there are infinitely many
quadratic integers a satisfying

(2) 0< [f—a| <H(a)™
For there are infinitely many integer pairs =,y satisfying
0< |84+ totyl <1
and if we put #-+tzty = (f—a)(t—d')
(a—a)’ = &' —4y = (26+2)"+0(1).
Without loss of generality we can suppose that
[6—a|> 28+0|> |ul,
and as 0 < |(§—a)(é—a') <1, this implies that
0<|é—al <27,

we have

() Wirsing also gave an exponent slightly better than that in (I).
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whence (2). It is also plain that the right hand side of (2) cannot be

improved to o(H(a)), since |&4 &w-+y| has a positive lower bound.
If £ is irrational we can do better than (2). By theorems of Minkowski

and Hurwitz, there are infinitely many integer pairs =z, y satisfying

0< €+ oty <lal™.

The same argument as abové gives infinitély many algebra
of degree at most 2, satisfying
(3) 0<|é—af <H(a)™
This is best possible if £ is any quadratie irrational, for then if &+ fxty
is not 0 we have

1€+ &ty > 1§+ oty > ol

where ¢ denotes the algebraic cbnjugate of &
Similar considerations for general » show that in order to assert
a result of the form

egers a,

0 < [f—al =o(H(e)™)

for an infinity of algebraic integers. a of degree at most n, we must exclude
the possibility that £ is an algebraic number of degree at most k.

In the case n = 3 we prove: -

THEOREM 1. Suppose that & is meither rational nor a quadratic irrat-
sonal. Then there are infinitely many algebraic integers o of degree at most 3
which satisfy

(4) 0<|f—af <H(a)™
where
(5) — 1(3+V5) = 2.618...

For general n we prove:

THEOREM 2. Suppose that n > 3 and that & is not an algebraic number
of degree at most (n—1). Then there are infinitely many algebraic integers
a of degree at most n which satisfy

(6) 0 < |é—a| <€ H(a)BOM,

It will be seen that if # = 3 the exponent is —2, and so the result
is then inferior to that of Theorem 1. The exponent ig still —2 if #n = 4.
‘We prove in Theorem 4 (§ 4) that in the case n = 4 it is possible to geb
the exponent —3.

‘We have no reason to think that the exponents in these theorems are
best possible.

i=m®
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It will be clear from the earlier discussion of the case » = 2 that
the problem is essentially that of finding a small value of the non-homo-
geneous linear form

(5] "y £n‘1+wl E By
in terms of maxX(|@gl, ..., [%n_zl). We need also that the derived linear
form

nE A (— D)y £

shall be large, but (rather unexpectedly) this condition, which presented

the main difficulty in our paper [1], gives no serious trouble here.
The natural way of attempting to find small values of the non-homo-

geneous form (7) is as follows. We consider the convex body defined by

8) [ & s A | < BT,

and we denote by 7y, ..., 7, the successive minima of this body, in the
sense of Minkowski. If we can find large values of R for which 7, has
a good upper bound, we can deduce a small value of the form (7).

By the principle of duality (or ‘transference) a good upper bound
for 7, corresponds to a good lower bound for 7}, the first minimum of the
body which is polar to (8). This body is defined by

) 90 €™ —ym| < B

and we have to seek values of B for which these inequalities- do not have
a particularly small solution.

The preceding considerations serve to explain why Theorems 1 and 2
above are derived from the following results.

THEOREM la. Suppose & is neither rational nor a quadratic irrational.
Then there are arbitrarily large values of X such that the imequalities

(10)

max(|Zoly - .oy [Tn_s]) < R,

yol < B*, (m=1,..,n—1),

ool < X, |mé—a| < o X, |mE—m| < X,

where ¢ s a suitable positive number depending on &, have no solution in
integers Ty, %, %z, not all 0.

THEOREM 2a. Suppose that n = 3 and that £ is not an algebraic number
of degree at most ¥(n—1). Then there are arbitrarily large values of X such
that the inequalities :

(1) o] < X,  [mE"—@nl < X" (m=1,..; "—1)7

where ‘
y=[(n—1)1"

and ¢ is a suitable positive number depending on n and &, have no solution
in integers @y, ..., &Tn_1, not all 0. '
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For the sake of symmetry, we prove an analogue of the last result
for the polar reciprocal body, though we shall make no use of it. Thig
is as follows.

THEOREM 2b. Suppose that n = 2 and that & is not an algebraic number
of degree at most n—1. Then there are arbitrarily large values of X such
that the inequalities

(12) B £ o By < X, ppl< X (m=0,...,0—23),

where ¢ is a suitable positive number depending on n and &, have no solution
N INGEGers Loy ...y By, N0t all 0.

In the proof of Theorem 2a, we shall make use of the following result,
which may be of independent interest.

THEOREM 3. Suppose that 1 < h << m, and let ay, a,, ..., o be integers
with no common factor throughowt. Let Yo, Yi, ..., Ym be indeger points
in h dimensional space which span the whole space and which satisfy the
recurrence relation
(13)

Yt oYt tayin =0 (0<i<m—p).

Suppose that all hxh determinants formed from any h of the wvectors
Yo, ...y Ym have absolute values at most Z. Then

(14) y lanl) K ZY,

2, Deduction of Theorems 1,2 from Theorems la, 2a.

LeMMA 1. Suppose that n > 2, that & is real, and that 1 > 0. Suppose
that for some ¢ > 0 there are arbitrarily large values of X such that the ine-
qualities

(1)

max (||, |, ...

20| KX, |@ot™—wnl <X (m=1,...,n—1)

have mo solution in integers @y, ..., %,_y, not all 0. Then there are infinitely
many algebraic integers o of degree at most n which satisfy
(16) 0< |é—a| < H(a) YA,

When 4 = 0—2 = }(—1+4V3) we get 141" — 6. Thus Theorem 1a
implies Theorem 1. Slmﬂaﬂy when A = [}(n—1)T" we get 144"
= [}(n+1)], and Theorem 2a implies Theorem 2. ‘

Proof of Lemma 1. We may assume that ¢< 1. Let X be one
of the large numbers specitied in the enunciation, and let

an Y = XC+0m,
Let K(Y) be the parallelepiped defined by
(18) 20l ST, | —2u| < ¥P (m=1,...,n—1).

i=m®
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Then the first minimum of K(Y), say 7,(Y), satisfies

(19) n(¥Y)=eY™?,
where

_ n
(20) e=775

For in the contrary case there would be a non-trivial solution of
n(NY <Y = X,
<Y < e¥ 70 =X

[@e] <
|2g €™ — | 1<<m<n—1),

which is contrary to the hypothesis.
The polar body K*(Y) of K(Y) is defined by

1 &7 o m E b < T
21)
2| <Y (m=1,...,n—1).
It follows from (199, by Mahler’s theorem on polar reciprocal bodies,
that the nth successive minimum 7 (¥) of K*(Y¥) satisfies
(22) m(¥)< e Y.

By the definition of successive minima, there exist » linearly in-
dependent integers points

a® = (af), of", ..., af))) (G =1,...,m),
satisfying
(23) @ & o) <o X,
lpRl<e, T (1< m< n—1),
for i =1,...,n Put

pQl _m(t) ET _|_w(‘)
PO = (n—1)a), 2. .

There exist real numbers 0y, ..., 6, satisfying

(24) b+ .. 0 =0 (m=2,3,..,n—1),
(258) nE" 14 PO 4 A0, P™ = e | PO 4 | PP,
(26) B 0, LM 4 0, L™ = (n-1)e, T,

since these are # non-homogeneous linear equations in n unknowns with
non-zero determinant. Let %, ..., %, be integers, not all 0, with

im0 <1 (E=1,...,n)
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and put
& = hae® . e,
Then « 0 and Dby (23), (24) we have
(O] < e, Y (mo=2,38,...,n—1).
By (23), (25) we have
YH L - (—1) B 8V
< T 2(IPO 4L [PM) < T
Finally, (23) and (26) imply that
0 < [+ 1 £ i) < (2 1)e YO
The polynomial

Q) ="+ ay_ 11" .. 3,
has height
Q) < ¥**e,

and by the preceding inequalities it satisfies
0<IQ(E) KT, Q&)= T ;

Since ||Q|| <€ Y**¢, the derivative of @ remains > Y'** in any interval
containing & whose length is small compared with 1. Hence @ has a real
zero o satisfying

0.< |E—a| € Yo mH-050 _ y-»,
Since H(a) < ||Q] <€ Y% the algebraic integer a satisfies
0< lE—al & H(a)—"/(1+e)_

The exponent here is n/(14¢) = 1+4~" by (20), and the result of the
lemma is established.

3. Proof of Theorem la. Suppose that :£ is neither rational nor
a quadratic irrational, and suppose that the inequalities

(27) ool < X,  |mb—al <X, (g & —ay| < X0

can be solved in integers z,, z;, %,, not all 0, for every large X. We shall
reach & contradiction if ¢ is sufficiently small, and this will prove the
Theorem. : ' '

For each real X >1 we consider the -set. of integer points
x = (&g, X1, ) With

1<n<X, [ é—m| <1, anz“wz‘gl-

i=m®
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Among them we choogse the unique point for which
max (|@&—al, % E—ua,))

has its least value, and we call this the minimal point corresponding to X.

Tt is obvious that if @ is the minimal point corresponding both to
X' and to X'’ it is also the minimal point corresponding to any X between
X' and X''. Hence there is a sequence of integers

IL<X, <...

such that the same minimal point corresponds to all X in the range
X; < X< X,y but to no X outside this range. If we denote this point by

®; = (%igy Tiry Bas)
we obviously have #; = X; and
(28) ;] < X,
If we write for brevity
L; = max (|6 §— @, 100 £ — Busl)
then obviously
(29) Ly > Ly > ...

The minimal point corresponding to X;.,—e, where ¢ is a small
positive number, is %;, and by our hypothesis we must have

T L < o( Xy —e)
Rince ¢ is arbitrarily small, this implies that
(30) Li< oX
LueMMa 2. For all sufficiently large i we have

Byg gy

(31) #0.

Ly Tig
Proof. X the result were false, we should have
WigBig = @
Since @, @4, % have no common factor, it follows that
By = ME, Ly = MM, By =1,
where m, n are integers. We have

(32) Im| = X3,
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Since [m(méE—n)| = |y é—ou| <€ Xif", we obtain
(33) imé—mn| < XX

The vectors ®;_;, #; are linearly independent, and therefore the
matrix i
Di_1,0 Pi—11 Pio1e
(wio L4y ) )
has rank 2. Since #;_;; and @, are distinet from zero, at least one of the
two determinants

Bi_10 DBi-11 Tiyy @ioval
(34) )

Ly @iy &gy Lig
is not zero. o .

Suppose the first determinant in (34) is not zero. This implies that
Xi_1,0 Fi-1,1
(35) ’ 0.
m n

By (30) we have
(36) 510 6— @1l < X0
Using (33) and (36) we obtain

| @i_10 Bi1,06— Biiaa

LXTPX X+ XTI < X0

m méE—mn

Sinee 0 > ;, this contradiets (35) if ¢ is sufficiently large.
The argument is similar if the second of the determinants (34)
is not zero. It is a consequence of (30) that

642
1106 — @510 < X3 b )

and one uses this in place of (36).
LeMMA 3. For all large i we have

(37) Xi71 < 20(1+18) X
Proof. We have, by (30),
loip & — @y | < e X5,
[ & — | < e (14 €) Xl
These imply that

Lig Py

< XA 1@l (L 1£) + wal) < 20(1+ 18) X X5

Liy iy
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The determinant on the left is a non-zero integer by Lemma 2, and the
result follows.

Levma 4. Suppose that @y, a;, %, are linearly independent. Then
(38) 66 X370 > XI2,
Proof. We have

|mi_1,o Di_a1 Ti_1n i1 Bi1,0E— @iy, Ti_1,0 £ Ti_1,9

Tio @y @iy =| @y @io £ — @y B30 & — ,
. . . . . 2

Tig1,0 Pigrn Pigae Dip10 Bip10E—Bip1y agr0E— Piy1,9

and the absolute value of the last determinant is
< 602Xi+1X5'B+2Xi—4Pl+2 = GGQXi_HzXa»BfS: V
by (28) and (30). On the other hand, this absolute value is at least 1,

and (38) follows.

LeMMA 5. For infinitely many i, the points L1, Xy mi;l are linearly
independent.

Proof. In the contrary case, there would exist integers not all Zero,
such that

a:&m + by + ez = 0
for all sufficiently large . But we have
@y = Emgy+ O (X1, @ = Eay+ O( ),
and on substitution we obtain
Big (6E°+DE+ a) < X

Since ¢£*+bf-+a is distinet from zero, the left hand side tends to in-
finity and the right hand side to zero, and we obtain a contradiction.
Completion of the proof of Theorem la. By Lemma 3 we
know that (37) holds for all large 4, and by Lemmas 4 and 5 we know that
(38) holds for infinitely many 4. Together these inequalities give

Xga_z)E < (602)"_2Xﬂ:'10)(9'2) < (602)9_2(20(1—1— lf]))s—a-X%MB-
Since (§—2)* = 3—0, this is impossible if ¢ is sufficiently small. This
gives the contradiction asserted at the beginning of this section.

4. The case n = 4. Before going on to the proofs of Theorems 2a
and 2b, which involve different ideas from those encountered so far, we
state and prove the result mentioned in § 1, relating to the case n = 4.

Acta Arithmetica XV.4 2
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THEOREM 4. Suppose that & is neither rational nor & quadratic irrational.
Then there are infinitely many algebraic integers o of degree at most 4 which
satisfy

0< [E—a] €H(a)™>.

THEOREM 4a. Let & be as in Theorem 4. Then there are arbitrarily

large values of X such thai the inequalities
ool < X, lmpé—m| < eX7M,
0y & — 0y < X, g E—y| < e X7,

where ¢ is a swilable positive number depending on &, have no solution in
integers %y, Ty, ¥z, T3 nOt all zero.

Theorem 4 follows from Theorem 4a in just the same way as Theorems
1 and 2 follow from Theorems 1a and 2a (see §2); if 4= % we have
1+47t =3,

We begin the proof of Theorem 4a by defining the sequence of minimal
points as in § 3, but of course taking now the least value of

max (|we §— 1], |20 E— ], [0 8 — ).

This least value may be attained at more than one point (if & is a cubic
irrational). We make an arbitrary choice, but read (29) with < in place of <.
In place of (30) we have

1Ll < o X
LeMMA 6. For all sufficiently large i, the mairiz
(wm @iy w«zz)
Lin Loy Dig
has rank 2.
Proof. The general lines are similar to that of Lemma 2. If the
matrix had rank 1, we should have
By = m°, @y =M, Gy =mnt, @p=1n,
whence |m| = Xi?. Since

{m? (m&—n)| = |mo € —wa| <Xl
we get
imé—n| < XX

‘We know that the matrix

(wi_x,o Bir1 Bioia %5_1,3)

Lio Ty iz Liz

i=m®
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has rank 2. Sinee each column vector is distinet from zero, one of the
three determinants

Tie1,0 i1 Bi11 Wioyn @1 P

’ )

Lig Ly gy Lig Lz Ziy

is not 0. We shall suppose it is the first; the proof is essentially the same
in the other cases. Thus we have

Tior0 Di-1
#0.
m n

Now |@1,0€—mi1y] <€ X7, and therefore

@iy Di10E— @i

m mEi—mn <X{2/3X;:{2Xi_l+X%/2XEIIS <X’i—116.

This gives a contradiction.
‘We define vectors y;, z; by
Yo = (Bio, Bixy Bip)y & = (Bur, Tiz, Tia).©
They are linearly independent by Lemma 6. '

LEMMA 7. Y5y, and 2, ore linear combinations of y; and ;.
Proof. We have

., 2
Wio Xy Lig Lig @ig & — @y Ty & — iy
i1 Pig Lig = |®n @iy E— iy iy &
. . . ) + 2
Tip1,0 Pip1,r Pt Ziy1,0 Piy1,0 E— Piy1, mi+1,05 — Tiy1,

LOX, XX < ot
If ¢ is sufficiently small, the determinant iy zero, and therefore y;, 2, Ysi1

are linearly dependent. Since y;, #; are linearly independent, the result
follows for y;.;, and similarly for z;,,.

Completion of the proof of Theorem 4a. By Lemma 7, the
vectors

Yiy iy Yig1ry Rigry A

all lie in the same rational linear subspace. Hence there exist integers
a, b, ¢, not all 0, such that

&gy - by + éwiz =0
for all sufficiently large 4. As in the proof of Lemma 5, this implies that
ol lo&"+ b +al < Xipff.
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Since & is neither rational nor a quadratic irrational, we obtain a con-
tradiction on making 4 — oo.

5. A lemma on polynomials. Let P = P(?) be a polynomial in one
variable, not identically zero, with integer coefficients and of degree at
most n. By Gauss’s Lemma,

P =PP,... P,

where P, ..., Ps have integer coefficients and are irreducible over the
rationals. We recall the well known inequalities

(39) 1Pl L [Pl - .- 1Pl < NP,

where ||P| denotes the height of P. In particular there is a K = K(n)
such that every irreducible factor P; of P satisfies

(40) I1P:lt < K (m) || P]].
LevmMA 8. Let P, Q be polynomials, not identically zero, with integer

coefficients and of degrees at most n. Suppose that P and @ have no common
polynomial factor other than a constant. Then, for every &,

(41)  max(|P(&)], [Q(&)]) = (2n)!)~ (14 1&M") " max (|2, QD)™ .
Proof. Write

P(t) = ayt® +a ' +...+ap, where ~a, #0 and p<mn,

Q) = byt? +- b, 1% ...+ b;, where b, #0 and g<n.

By hypothesis, the resultant of P () and @ (t) is not zero, and so has absolute
value at least 1. The resultant is given by Sylvester's determinant:

Gy O ...
G ... a
0 p ¢
a ... ap
by by be
By by
»
boo. By

i=m®
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It we multiply the (p-+-g¢—i)th column by & for i=1,...,p+g—1
and add all these multiplied columns to the last column, the determinant
becomes

G G ... G E1P(g)
WG ... 6 ETP(E)

% P(&)

by by ... by &1Q (&)
by ... b, &72Q(¢)

by Q)

The entries in the last column are at most (14 |£" ")max (1P(&)], 1Q(8)]},
in absolute value, and the other entries have absolute values at most
max (||P], Q). Hence the determinant has absolute value at most

(@2n)! (14 1€ max (P (€)], 1 (&)])(max (P[], Q)"
This proves (41).

6. Proof of Theorem 2b. Since the proof of Theorem 2b is mueh
simpler than that of Theorem 2a we give it first. The basic idea of the
proof is due to Wirsing [2].

It will be convenient to replace n by n-1 in the statement of the
Theorem. Hence we suppose that n>1 and that & is not algebraic of
degree at most n. We shall assume that for every large X the inequalities

(42)  [@oE e F ] < X7, jpnl <X (m=0,1,...,n—1)

have a solution in integers ®, ..., @s, not all zero. Eventually we shall
reach a contradiction if ¢ is sufficiently small.

In what follows, the constants implied by the notation < will be
independent of ¢. However, we shall assume that 0 < ¢ < 1, and therefore
the estimate ¢ <€ 1 will be valid.

The hypothesis can be reinterpreted as saying that for every large X
there is a polynomial Py, not identically zero, with integer coefficients
and degree at most #, namely

Px(t) = 28"+ ...+ ¥,

which satisfies

(£3) IPx (&) <X, ||Pxl| < X.


Pem


406 H. Davenport and W. M, Schmidt

We shall prove that this is impossible if ¢ is small. The proof is by
induction on n, so we may assume that either » =1 or that » >1 and
that the case n—1 has already been established.

We distinguish two cases.

Case 1. There exist finitely many polynomials Ry, ..., R; with
integer coefficients such that all the polynomials Px with X large ave
divisible by one at least of Ri,..., REa.

We then write

Px = PYPY,

where P9 is a prc;duct of polynomials R; and where PP has no factor

R;. There are only a finite number of possibilities for PY, and since &

is not algebraic of degree at most n, we deduce that
P (&) > f(e),

where f(¢) may depend on c. Hence

PR < flo~ X",

For every large X ‘there is a polynomial P, not identically zero and
of degree at most n—1, which satisfies (44). This is obviously impossible
if =1, and it is contrary to the inductive hypothesis if » > 1, since

(44) IPRI < X.

O XM = o (XY,

This settles Case 1.

Case 2. Given any non-constant polynomials Ry, ..., B with integer
coefficients, there are arbitrarily large values of X for which Px is not
divisible by any of Bi,..., Rs. . )

In this case there is a sequence XM < X® < ... with limit infinity
sueh that the polynomials Px@, Px(), ... have no common factor. Let

Pxiy = PPPP ...

be the factorization of Px() into irreducible polynomials with integer
coefficients. By (39) and (43), one at least of the factors, say P, will
have the property thatb
(48) PO @) < PP
Hence there are infinitely many distinet irreducible polynomials P
satisfying (45). In particular, [P — co.

The inequality [[Px|] €.X in (43) means that ||[Px| < ¢; X for some
constant ¢; independent of ¢. Let ¢ be large, and take

X = 3 K ()PP

h‘l"I@
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There is a polynomial Px with
(46) Px (&) <elPPIT™*, 1Pl < K (n)~ P
Tt tollows from the definition of K (n) that §Z¢ is not a factor of Px, and
gince PV ig irreducible this means that Px, P{) have no common factor.
‘We have ) _
max (||PP]], |Pxl) = 1P{|,
max([PY(&)], IPx(£)l) < ¢ [[PO|+.

This contradicts Lemma 8 if ¢ is sufficiently small. The proof of Theorem 2b
is now complete.

7. Beginning of the proof of Theorem 2a. As with Theorem 2b in the
last section, it will be convenient to replace n by n--1 in the statement
of the Theorem. Thus we suppose that # > 2 and that £ is not algebraic
of degree at most $n. We shall assume that for every large X the ine-
qualities

47) el < X, b —dm| <XV (m=1,..,0),
where
(48) k= [$n],

have a solution in integers , ..., %, not all zero. Eventually we shall
reach a contradiction if ¢ is sufficiently small.

Again the constants implied by the notation < will be imdependent
of ¢, and again we shall suppose that 0 <e¢<<1.

We define a sequerice of minimal points as in § 3. Bub now there may
be more than one integer point in the region

léa‘géX, [wogm—wm‘gl

(m=1,...,n)
for which
Max (|2 &E— Baly -nny [0 " — Tnl)

attains its least value. Tf so, we choose the one which comes first in some
fixed ordering of the integer points, and call this the minimal point
corresponding o X. There is a sequence of integers X; < X, <C... such
that @, = X;, and 2 is the minimal point corresponding to every X
in X; < X < X;,. Putting

(49) Ly = max (|mg&—Taly - oy [0 " —Binl),
we have I, > L,>... By our assumptions concerning (47), we have
{50) Li<e gl , v
for large 4. This is the analogue of (30).
Put :
log X;
(51) ]G,,; = {]C m},
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where {a} denotes the least integer > a. We have
(52) 1<k <k.

Lumma 9. Suppose that ¢ is small in terms of n and & Let i be large,
and write x; = y. Then the matriz

Yo Y2 Yn—re;
(53) Y Y Ys . ?/n—k,htl
Yoy Yryrr Yrppo Yn

has rank at most k;.
Proof. We have to prove that every subdeterminant of order I+ 1
is zero. A typical such determinant is

Yio Yn Y,
Yigr1  Yi1 © Vi1
Yigrky Yiraky -+ Yingtk,
717, r; =70
Y E— Y, & Yio— Y,
717, Jre;~70
Yiorr &7 5~ Y & Yior1 — Ytz

==

éfki“io

R N~Toy. o ) .
Yigrky €1 Yigrhy— Yirary --- Yiasoy = Yot les

The entries in the first column have absolute values < X;, while all the

other entries are < oX7{*. It follows that the determinant has absolute
value .

< MX X < o,

by (51). If ¢ is sufficiently small the determinant has absolute value less
than 1 and is therefore zero.

8. A recurrence relation. In what follows, h; denotes the least integer
in1 < by < k; with the property that the matrix

Yo © Ynon;
(54) Y1 Y2 . y’n—lzﬁ-l
Yng Ynger o-o Yn
with y = ; has rank < ;. We have
(55) 1<k <k <h.

bm©

. common factor, such that
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It should perhaps be remarked that the matrix (54) is not in general
a submatrix of (53).

The matrix

Yo Y1 Ys o Ynohgr1
(56)° ¥ Y2 Ys Yn—nyr2
yh,i— 1 fl/h,i .”/hi.).l + Yn

has rank %;. This follows from the minimal property of h; if k; > 1 and
is obvious if k; = 1. Define Z; to be the maximum absolute value of any
hi X b subdeterminant of (56). The argument used in the proof of Lemma 9
shows that

(87) Z; & XiX;f’{'f“l”k <X%—(h¢'—1)/7c.

Since the matrix (54) has rank < h;, its rows are linearly dependent.
Hence there exist integers af’, af?, ..., a?}g, not all zero and with no
0 i< n—h.

(58) for

‘Write

afy;+ a'gi)?/iﬂ +... +a$2(‘/7'+h¢= 0

vy laf)).

ot = max laf’],

Lemma 10, o < X",

Proof. Denote the column vectors of the matrix (56) by w,, 2, ...
«euy Wy, Where m = n—h;-+1. By (58) we have

afwi+ awy .o aflwra, =0 (0<j<m—hi).

Since h; <% = [4n], we have m—h; > 1.

By Theorem 3, which will be proved in §§ 11 and 12, we have

a(i) <Z%/(m“hi+1) — Z%./(n-2hi+2)’

and this is .
< Xm0l (n—2hi+2) ,

by (57).
Since 1 < I < k < $n, the function

1—(h—1)[k
n—2h;42,

a8 a function of A;, is decreasing. Hence it attains its maximum when
h; =1, and this maximum is 1/n. Thus

a® < letma

and this proves Lemma 10.
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9. The construction of certain polynomials. The equabion
ayo+ afy, ...+ alys, = 0
is a particular case of (58). Since y stands for a;, we obtain
a wiy+ a0 my + ...+ af)wa, = 0.

Substituting
1< m< by,

Ban = E" w10+ O(XH),
as in earlier arguments, we obtain
ol (af) €%+ ..+ o) <€ oD X"
From Lemma 10 and the fact that |z,| > X; we get
(59) jaf) 4. o)l K XL
We have X;> X{* from the definition of J; in (51).
gives'

Thus (59)

lafl) €' 4.+ aff)] < min (X700, Xy ki-ki /by
Putting
(60)
and defining a polynomial P;(¢) by
(61) Pi(t) = af)t'i+...+af,

we can restate the result in the following form.
LEMMA 11. For every i there is a polynomial P;, not identically zero,
with integer coefficients and of degree at most Ky, which satisfies

1
3= X"

(62) IPy(£)] <€ min(T7™ "0, Y-l
and
(63) |1Pi] < Y.

10. Completion of the proof of Theorem 2a. We shall prove that the
situation described in Lemma 11 leads to a contradiction.
Let k, be the least integer in 1 < %, < & such that

(64) ki =T

infinitely often. For every large ¥ there is a subscript ¢ with ¥;< Y
< Y.y, and on putting @ = P; we obtain the following as an immediate
consequence of Lemma 11.

LemmaA 12, For every large Y there is an imteger k(XY) in

(65) L<EY)<E

i=m®
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and o polynomial Q, not identically zero, with integer coefficients and of
degree at most It (Y), which satisfies

(66) 1Q(&)] K Y-CHO-FEHNE 0] L T

LeMMA 13. There are infinitely many irreducible polynomials P with
integer coefficients, not identically zero and of degree at most Ty which satisfy

(67) IP(&)] <[Pl

Proof. If this were false, all the irreducible polynomials P of degree
at most %, would have

|P(£)] > [P t2-E,

This holds for the possible finite number of exceptions because k, < %
< $n and & is not algebraic of degree at most %n.
The polynomials P; of Lemma 11 with k; = %, are products of irrve-
dueible polynomials:
P, =PyPy ...
‘We have

IPi(£)] = [P (£)Pia() ..l > (1Parll |Pasll )" HE > [Py 7200,
On the other hand, (62) and (63) imply that
IP(&)] < 1Py,

and we have a contradiction (with a large margin).
We can now complete the proof of Theorem 2a. Let P be an irre-
ducible polynomial with large height ||P]| which satisfies (67), and put

Y = i E(m) P,

where ¢, is sufficiently large in relation to the implied constant in the
inequality ||Q| € Y in (66). By Lemma 12 there is & polynomial @ of
degree
HY) =1,
say, with
Q&) < P,

By the definition of K (n), the polynomial P is not a factor of @, and there-
fore P, @ have no common factor. We have

max ([P, 12l) = |21,

19 < X (n)~" (1P

and since

n—2+4nlkz= (n—1) (K [k)—1+n/k > (n—1) (& [k)— (1/%),
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we have .
max ([P ()], [Q(&)]) <€ [P~ ¥+,

Now &' <k<1in, and hence
o —1— (k' —k + 1)k < 2K —1—2(nk'— %' +1)/n
= (2k' —n—2)/n < 0.
We therefore obtain
(max (|IP], 1@~ max{|P(£)l, 1@(&)) < [P == E (1), -

Since both P and @ have degree at most &', this contradicts Lemma 8.
The proof of Theorem 2a is now complete, apart from the need to prove
Theorem 3.

11. Identities involving determinants. We recall the hypotheses of
Theorem 3. Yo, Y1, ..., Ym are integer vectors in h dimensional space
which span the whole space, and 1 < h < m. They satisfy the recurrence
relation

@Y+ oY+ F oY =0 (0<i<m—7),

where a, ..., @, are integers with no common factor throughout.

If only one of the a; is different from zero, this one must have the
value 41, and the conclusion is trivially true. We may therefore assume
that at least two are non-zero. We define [ to be the largest suffix for
which a; s 0, and have 1 <1< h. By the recurrence relation, y; lies in
the space generated by ¥, ..., y—;. Further, by repetition, we see that
Yi; Yis1y -+ Ym—ny le in the space generated by ¥, ..., Yi—1-

It follows that if I = & the whole space is generated by ¥o, Y1, .+, Yp—1-
On the other hand, if 7 < & the vectors

Yoy oovy Yr—1y Yme by lgry ooy Ym

generate the whole space.
We define the determinant

D(vyy coeyw)

of order h as follows. If I = h it is the determinant formed with the column
vectors Yo, ..., Yy i 1<k it is formed with the column vectors

Yoyseooy Yopy Ymenytyry ooey Ym
In either case we have
(68) ‘ D(0,1,...,1—1) #0.
We shall investigate D(»,...,) only in the range

o<y <m—nh+tl,
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and in fact it vanishes outside this range.
LEMMA 14, Write v = max(v, ..., ). We have
69) @Dy, o, m) =Py ey milagy ..., ) D(0,1, ..., 1—1),

where P(vi, ..., wlag, ..., &), for fized »,...,v, is a polynomial in
Gy, - .-y O WIth imteger coefficients and every monmomial

@

a%“ e afl

in P with non-zero coefficient satisfies

(70) Jotht- i =»—(1-1)

and

(1) o+ (=1t tir = (r+o ) =04 4+ (1))

This polynomial is identically zero if two of the v; are equal, and it changes
into itself or minus itself if vy, ..., v; undergo an even or an odd permutation.

Proof. We proceed by induction on » = max(»,...,v). There
is nothing to prove if » < I—1. Suppose the result has been proved for
»< ¢t where ¢ is an integer >1—1. We have to prove the result when
» =1+1; and we may clearly assume that

. <l < <y =1t+1.
By the recurrence relation,

alyvl = — a’l—lyvl—lm LR %'yvl—l-
Hence

v—141
ap D('Ill, ...,'Vl)
t1—-1 111—-1
= ——al_lal" _D('Vl,...,’111_1,111—1)—...—-%11:1 D(’l’l,...,wz_l,’l‘l—-l).

Using the inductive hypothesis, we can substitute for each D on the
right from (69), and this gives us the form of P(v,...,vla, ..., a).
It is a sum of terms

(72) - — @I Py g, i),

where i goes from 1 to I. By induction, each term is homogeneous of
degree

14— A% (vy, -y Vig, H—0) - MAK (¥, oy 2oy 11— — (I—1)
= y—(I—1).
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Hence (70) holds. Further, a typical term in (72) has
lju’|‘(l—1)j1+--~+jl—1
= (I~ (=) 1+ 1+ F ot u—i) = (0+ 1+, 4+ (1~ 1))
= e y— (014 (I—1)).

Hence (71) holds. The final clauses of the lemma merely reflect the prop
erties of determinants.
LeMMA 15. Suppose that 0 <L i <l. The polynomial(®)

Pi=P0,1,...,i—1, m—h-+i+1,...,m—h+1)
is of the type
(13) Py = a4,

where Q; is homogeneous of degree m-+1—h and each term in Q; contains
one at least of the variables i1, ..., 4.

Proof. Tt is easily seen that
e e it
PO,1, . i1,00 1,0 0) = —a;

this follows from the induetive relation applied to the Ith column of the
determinant. Now consider

(74) P(0,1,...,i—1,i+8,...,l4+5—1).

The same consideration shows that this is equal to

—aP(0,1,...,i—1,i48—1, ..., l+8—2)

plus terms which are multiples of one of a, ..., ;_;. It follows by in-
duction on s that (74) has a term <4 aj and that the other terms are multiples
of one of ay,...,a,_;. By (70) and (71) these terms are also multiples
of one of a;,i,...,a;. The lemma follows on taking s = m-1—h.

12. Proof of Theorem 3. The proof of Theorem 3 is now completed as
follows. By the two preceding lemmas we have

(75) @ rD(0,1, ..., i—1, m—h+i+1,..., m—h-+0)
=P1;(a0, ceey al)D(’O, ceey Z——'l)
for 0 < i< 1, where P; is of the form stated in (73).

(?) The bracket indicates a block of consecutive integers.
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It follows that the integers e **! divides each of
Pi(do, caey al)D(O, cany l—l)

for ¢ =0,...,1—1. This imples that it divides D(O0,...,I—1). For
suppose that p is a prime such that

Do, ceny Pl@iga, but P‘r“i-

Then p divides @;(ay, ..., a;) but not a*+*®, and hence cannot divide
Pi(au, ey al).

We have proved that
(76) @+ Do ,..., 1—-1),
and this implies that
(77) /" < 2,

since Z is an upper bound for the absolute value of the determinant D
and this determinant is not 0, by (68).
(75) in conjunction with (77) gives

[Pi(tgy ooey a)| < | D0, vy t—1, m—b+i+1, ..., m—bh+1)| < Z,
whence
(78) lag" " < Z+ 1Qi(ag, ...y @)

T all of |ag|, ..., |&;| are at most ZY™+~™ there is nothing to prove.
Otherwise, let ¢; be the largest subseript in 0 < ¢ <1 with

e, "+ > 2,
let ¢, be the largest subsecript with
Gy > |ty
and so on. We have ¢, > ¢ > ... > ¢ ‘and
' (G| > oo > [ag,| > ZYHM,
|te)] = max(jagl, ..., lal). 7
Now apply (78) with ¢ = ¢; where j > 1. We obtain
lag, " K Z+1Qq; (00, -y @) KZ+|e,_,| lag™ ",
whence

(79) g, " L lag_, | 10g, ™"
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Finally apply (78) with ¢ =6 < . We obtain
(80) lae1|m+1—h < Zl/(m+1~h) I“ﬂtlm_h'

The inequality (79) with j =1¢ gives |a,| < |a,_,|. The same ine-
quality with j = t—1, together with [a,,| <lag_,[, gives |a,_,| < |ay, ,|.
Continuing in this way we obtain

[ v, < e, <£... < e, | -

Using this in conjunction with (80) we find that |a,,| < Z"™+-7,
This completes the proof of Theorem 3.
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