m

Now we can apply the Corollary to (20) and the objects $\overline{D}', N', z_0', z_1'$, and \mathscr{C}' where

 $\overline{D}' = \overline{D} - z_1 = \{z - z_1 | z \in \overline{D}\},\,$

N' is a sufficiently small neighborhood of zero, $z'_0 = z'_1 = 0$, and \mathscr{C}' is the translation of \mathscr{C} . Thus the conclusion of Proposition I holds here but for possibly new values of l and d.

References

[1] Ch. F. Osgood, A method in diophantine approximation, Acta Arith. 12 (1966), pp. 111-128.

[2] - A method in diophantine approximation (II), Acta Arith. 13 (1967), pp. 383-393.

NATIONAL BUREAU OF STANDARDS THE UNIVERSITY OF ILLINOIS

Reçu par la Rédaction le 29. 7. 1968

ACTA ARITHMETICA XVI (1969)

A method in diophantine approximation (IV)*

by

CHARLES F. OSGOOD (Washington, D. C.)

Introduction. In this paper we shall extend to functions of n > 1 complex variables some of the results of Part III of this series of papers (referred to below as Part III).

DEFINITION. By Z, Q, Q(i), and C we shall mean, respectively, the integers, the rational numbers, the Gaussian rational numbers, and the complex numbers. Throughout this paper t and z will stand for n-tuples of complex numbers.

By D^h we shall mean $\frac{\partial^{h_1}}{\partial z_1^{h_1}} \dots \frac{\partial^{h_n}}{\partial z_n^{h_n}}$, where each h_k $(1 \leqslant k \leqslant n)$ is a non-negative integer. Analogously we define D^j and D^o . We define D^{h+j} to be $D^h \cdot D^j$. We use D_k to denote $\frac{\partial}{\partial z_k}$ and θ to denote $\frac{\partial}{\partial z_1} \dots \frac{\partial}{\partial z_n}$. By |h| or |j| we shall mean $\max\{h_k | 1 \leqslant k \leqslant n\}$ or $\max\{j_k | 1 \leqslant k \leqslant n\}$, respectively.

If for some positive integer N, g(z) belongs to the N by N matrices over Q[i,z], then by $\deg_k g(z)$ we mean $\min_i \{i \geqslant 0 \mid D_k^{i+1} g(z) \equiv 0\}$.

We define a norm, $\|\cdot\|$, on matrices over the complex numbers by letting $\|$ matrix $\|$ denote the maximum of the absolute values of the entries of the matrix.

For each $1 \leqslant k \leqslant n$ choose X_k to be a bounded starshaped region about zero in C which shall remain fixed throughout this paper. Let L_k and Y_k denote the Riemann surfaces generated by $\log z_k$ over C and X_k respectively. Note zero is not in either L_k or Y_k . We shall regard $C - \{0\}$ and $X_k - \{0\}$ as being embedded in L_k and Y_k respectively. Set $L = \prod_{k=1}^n L_k$, $Y = \prod_{k=1}^n Y_k$ and $X = \prod_{k=1}^n (X_k - \{0\})$. Then $X \subset Y \subset L$. From now on any

^{*} This paper was written while the author was on a postdoctoral Research Associateship at the National Bureau of Standards, Washington, D. C. (This award is given by the National Bureau of Standards in association with the National Academy of Sciences and the National Research Council.)

function of z will be assumed to be analytic on Y unless the contrary is explicitly stated.

By a finite angular sector in Y_k we mean any set of the form

$$\{z_k | z_k \in Y_k \text{ and } -\infty < \gamma_k < \arg z_k < \delta_k < +\infty\}.$$

By any finite angular sector in Y we mean a cartesian product of finite angular sectors in the Y_k .

We say that a function f(z) has property Λ_k $(1 \le k \le n)$ if it is analytic on $X_k \times (\prod_{i \ne k} Y_i)$. We say that f(z) has property B_k $(1 \le k \le n)$ if it is bounded on every subset of Y of the form a finite angular sector in Y_k cartesian product a closed polydisk in $\prod_{i \ne k} Y_i$. We say that f(z) has property C if

$$f(z) = \sum_{l=1}^{n} g_l(z)$$

where each $g_l(z)$ has property A_l . We say that f(z) has the stronger property C_k (order j_k) if for some non-negative integer j_k

$$f(z) = D_k^{j_k} \sum_{l=1}^n g_l(z),$$

and each $g_l(z)$ has both properties A_l and B_k . If f(z) has property B_k let $E_k f(z)$ denote

$$\int\limits_{0}^{z_{k}}f(z_{1},\,...,\,z_{k-1},\,t_{k},\,z_{k+1},\,...,\,z_{n})\,\partial t_{k}$$

where the path of integration is the half open ray in Y_k from z_k to (but not including) zero. Let E denote $\prod_{k=1}^n E_k$. For any $t \in Y$ and all f(z) (analytic on Y by our convention) let $E_{k,t}f(z)$ denote

$$\int\limits_{t_k}^{z_k}f(z_1,\,...,\,z_{k-1},\,t_k,\,z_{k+1},\,...,\,z_n)\,\partial t_k$$

and E_t denote $\prod_{k=1}^n E_{k,t}$.

As the reader may verify properties A_k , B_k , and C_k order zero are preserved under the action of E_k ; properties B_k and C_k order zero are preserved under the action of D_l if $l \neq k$ (use the integral representation, integrating about the perimeter of an appropriate closed disk in Y_l); properties A_k , C, and C_k are preserved under the action of each D_l . If f(z) takes values in C^N for some $N \geq 1$, we say that it has property A_k , B_k , C, C_k , or C_k order j_k if each of its component functions has the respec-

tive property. We note that for each $1 \leq k \leq n$ properties A_k and B_k agree in Y_k with the definitions of A and B given in Part III (where we worked in C^1).

DEFINITIONS. Let M denote the set of all scalar valued functions m(z) which are component functions of some N by 1 matrix valued function $\overline{m}(z)$ analytic on Y which satisfies a set of n simultaneous linear vector partial differential equations of the form

$$\overline{m}(z) = \sum_{i} g_{i}^{(p)}(z) D^{j} \overline{m}(z) + e^{(p)}(z) \qquad (1 \leqslant p \leqslant n),$$

where each $g_i^{(p)}(z)$ belongs to the N by N matrices over Q[i,z]; each $e^{(p)}(z)$ is an N by 1 vector valued function with property C; for every $0 \le l$, $p \le n$ $(j_p - \deg_p g_j^{(p)}(z))j_l^{-1} \ge n+1$, if $l \ne p$; and each $\deg_l g_i^{(p)}(z) \le j_l$. (Our convention is that $e/0 = +\infty$ if e > 0 and, of course, 0/0 is undefined.) We call $\overline{m}(z)$ a "carrier" of m(z). If Q(i) is replaced by any finite extension field of Q(i) in the above definition we obtain the same set of functions. To see this choose a basis $1 = \omega_0, \ldots, \omega_s$ of the extension field over Q(i) and replace (1) by a similar system of equations (with coefficient matrices having entries belonging to Q[i,z]) in the column vector valued function $\tilde{m}(z)$, where $(\tilde{m}(z))^T = (\omega_0 \overline{m}(z), \ldots, \omega_s \overline{m}(z))$.

Let M_k be the set of all m(z) in M possessing a carrier $\overline{m}(z)$ with property B_k and a set of corresponding $c^{(p)}(z)$ each having property C_k . One may verify that applying D_l to a set of equations of type (1) gives a set of equations of type (1) in $D_l\overline{m}(z)$. (Use $\deg_l g_l^{(p)}(z) \leq j_l$ here.) Thus if $m(z) \in M$ then $D^h m(z) \in M$ for each h.

EXAMPLE. Consider the function

$$F(z) = \sum_{\alpha \geqslant 1, \beta \geqslant 1} \frac{z_1^{4\alpha} z_2^{5\beta}}{(4\alpha)! (5\beta)! (\alpha - 1)! (\beta - 1)! (\alpha + \beta - 2)!} \cdot$$

Set

$$G(z) = F(z)(\log z_1)(\log z_2).$$

It is true then that

(i)
$$G(z) = D_1^4 (\frac{1}{4}z_1 D_1 - 1) (\frac{1}{4}z_1 D_1 + \frac{1}{5}z_2 D_2 - 2) G(z) + c^{(1)}(z)$$

and

(ii)
$$G(z) = D_2^5(\frac{1}{5}z_2D_2 - 1)(\frac{1}{4}z_1D_1 + \frac{1}{5}z_2D_2 - 2)G(z) + c^{(2)}(z),$$

where $c^{(1)}(z)$ and $c^{(2)}(z)$ are the terms obtained when the respective differential operators partially differentiate the $(\log z_1)(\log z_2)$ factor at least once, with respect to either variable. As may easily be verified both $c^{(1)}(z)$ and $c^{(2)}(z)$ have properties C, C₁, and C₂ for any allowable X_1 and X_2 ; further G(z) has properties B₁ and B₂ for all allowable X_1 and X_2 .

The required inequalities hold in equations (i) and (ii), so G(z) belongs to both M_1 and M_2 . We shall take up this example again after presenting the theorems of this paper.

DEFINITION. Let R'_k $(1 \le k \le n)$ denote the set of all functions $r(z_k)$ which have property A_k and which satisfy an ordinary linear homogeneous differential equation with coefficients in $Q[i,z_k]$ that has a regular singular point at infinity. (In Part III where we had $n=1, R'_1$ was denoted by R'_{Y} .) Again regular points are considered regular singular.

By Theorem I of Part III E_k' is a ring under addition of functional values and convolution product $(*_k)$ where

$$r_1(z_k) *_k r_2(z_k) = \int_0^{z_k} r_1(z_k - t_k) r_2(t_k) \partial t_k,$$

and the path of integration is the ray from zero to z_k . Also R'_k is a ring under addition and multiplication of functional values. Further one may replace Q(i) in the definition of R'_k by any finite extension field of Q(i) and obtain the same set of functions. (For proofs see Part III.)

Notation. Let R_k^* denote $R_k'(\delta)$ where δ is a formal multiplicative identity.

THEOREM I. Each set M_k , for $1 \le k \le n$, is a unitary R_k^* module under addition of functional values and $*_k$ product.

DEFINITIONS. Suppose that f(z) is analytic on X. Let $A_k f(z)$ be defined on Y by $\int (D_k f(z)) \partial z_k$ where the path of integration is any path lying in X_k , which is closed at z_k , and which winds once about zero in the positive direction. Let

$$\Delta f(z) = \Delta_n \dots \Delta_1 f(z) \equiv \int \dots \int \partial f(t) \partial t_1 \dots \partial t_n$$

for the appropriate set of paths. (Note that the order in which the Δ_k operate is immaterial.) It is immediate that $\Delta E_i f(z)$ is independent of $t \in Y$. The reader may verify that if f(z) has property C then $\Delta f(z) = 0$.

For each positive integer v let $(p_0, ..., p_v, q)$ denote a general v+2 tuple of Gaussian integers with $q \neq 0$. Pick $m(z) \in M$ and a any algebraic point $(\alpha_1, ..., \alpha_n)$ in Y.

Theorem II. There exist a positive integer v and a positive real number c that either

$$\Delta E_l^u m(a) = 0$$

for all sufficiently large positive integers u, or

(ii)
$$\max_{0 \le l \le 0} \{ |\theta^l \Delta m(\alpha) - p_l q^{-1}| \} \ge |q|^{-c}$$

for all sufficiently large |q|.

Further if $f(z) \in M$ we may choose one ordered pair (v, c) which suffices in (ii) above for each m(z) of the form $D^h f(z)$.

Naturally case (i) above is not very interesting. We present in Theorem III two different sets of assumptions on $f(z) \in M$ which make option (i) of Theorem II impossible for any m(z) of the form $D^h f(z)$.

Notation. Below let

$$z^{\gamma} = \prod_{k=1}^n z_k^{\gamma_k} \quad ext{ and } \quad z^{\delta_i} = \prod_{k=1}^n z_k^{\delta_i,k}.$$

THEOREM III. (i) Suppose that

$$f(z) = c(z) + z^{\gamma} \left(\varepsilon + \sum_{i} z^{\delta_{i}} w_{i}(z) \right)$$

is an element of M, where c(z) has property C; ε is a nonzero complex number; the above sum is finite; each $w_i(z)$ is bounded on every cartesian product of finite angular sectors in the different Y_k ; the γ_k are each non-negative, non-integral, real numbers; and the $\delta_{i,k}$ are each non-negative real numbers such that every $\sum_{k=1}^{n} \delta_{i,k}$ is positive. Then case (ii) of Theorem II holds for all m(z) of the form $D^h f(z)$.

(ii) Suppose that

$$f(z) = c(z) + z^{\gamma} \left(\varepsilon \log z_1 \ldots \log z_n + \sum z^{\delta_i} w_i(z) \right)$$

is an element of M; that c(z) has property C, $\varepsilon \neq 0$ is a complex number; the above sum is finite; each $w_i(z)$ is bounded on every cartesian product of finite angular sectors; the γ_k are positive integers; and the $\delta_{i,k}$ are nonnegative real numbers such that every $\sum\limits_{k=1}^n \delta_{i,k}$ is positive. Then case (ii) of Theorem II holds for any m(z) of the form $D^h f(z)$.

(iii) If in (i) or (ii) of this theorem $c(z) = \sum_{l=1}^{n} g_l(z)$ where each $g_l(z)$ has property A_l and is bounded on each cartesian product of finite angular sectors, then case (ii) of Theorem II holds for every m(z) belonging to $D^h(R_1^**_1 \dots *_{n-1} R_n^**_n f(z))$ for any h.

Example (continued). We see that

$$\Delta G(z) = (2\pi i)^2 F(z).$$

Also

$$G(z) = \frac{z_1^4}{4!} \cdot \frac{z_2^5}{5!} \left(\log z_1 \log z_2 + z_1 w_1(z) + z_2 w_2(z) \right)$$

where $w_1(z)$ and $w_2(z)$ are bounded in any product of finite angular sectors. Since $c(z) \equiv 0$ we have also that each element of $D^j(R_1^**_1F(z)*_2R_2^*)$

is a $\Delta m(z)$ for which case (ii) of Theorem II holds. By Lemma IV (b) of Part III

 $D^{h}D_{1}^{4}D_{2}^{5}(R_{1}^{*}*_{1}F(z)*_{2}R_{2}^{*}) = D^{h}(R_{1}^{*}*_{1}D_{1}^{4}D_{2}^{5}F(z)*_{2}R_{2}^{*})$

$$=D^{h}\left(R_{1}^{*}*_{1}\left(\sum_{a,\beta>0}\frac{z_{1}^{\beta\alpha}z_{2}^{\beta\beta}}{(4a)!(5\beta)!a!\beta!(a+\beta)!}\right)*_{2}R_{2}^{*}\right),$$

so ease (ii) of Theorem II holds for each of these $\Delta m(z)$.

Section I. We shall show that each M_k is closed under +. Suppose that $m_1(z)$ and $m_2(z)$ belong to M_k and have earriers $m_1(z)$ and $m_2(z)$, respectively. Let $\overline{m}_1(z) + \overline{m}_2(z)$ denote a row vector valued function whose component functions are all possible sums of the form, a component of $\overline{m}_1(z)$ plus a component of $\overline{m}_2(z)$. It will now follow that, where the column vector $\overline{m}(z)$ is defined (using block notation) by

$$(\overline{m}(z))^T = (\overline{m}_1(z)^T, \overline{m}_2(z)^T, \overline{m}_1(z) + \overline{m}_2(z))$$
 (*T* denotes transpose),

 $\overline{m}(z)$ satisfies a set of equations of type (1). To see this simply write out simultaneously, in terms of matrices multiplying derivatives of $\overline{m}(z)$, the equations of type (1) satisfied by $\overline{m}_1(z)$ and $\overline{m}_2(z)$ as well as the equations for each component of $\overline{m}_1(z) + \overline{m}_2(z)$ (obtained by addition). Thus M_k is closed under +.

LEMMA I. Let $1 \leq k \leq n$.

- (i) If $g(z_k)$ has property A_k and f(z) has property B_k , then $g(z_k)*_k f(z)$ is defined and has property B_k .
- (ii) If $g(z_k)$ has property A_k and f(z) has both properties B_k and A_l (for any $1 \le l \le n$), then $g(z_k) *_k f(z)$ has property A_l .
- (iii) If $g(z_k)$ has property A_k and f(z) has property C_k order zero, then $g(z_k) *_k f(z)$ has property C_k order zero.

Proof. (i) In Part III (see Observations in the Introduction) we showed this result when n equaled one. Thus $g(z_k)*_k f(z)$ is analytic in z_k on Y. Since

$$\int\limits_0^{z_k}g(z_k-t_k)f(z_1,\,\ldots,\,z_{k-1}\,,\,t_k,\,z_{k+1}\,,\,\ldots,\,z_n)\,\partial t_k$$

converges uniformly if $(z_1, \ldots, \hat{z_k}, \ldots, z_n)$ belongs to any closed polydisk in $\prod_{i \neq k} Y_i$ it follows that the convolution product is analytic in z on Y. That the product has property B_k follows immediately.

(ii) For l = k = 1 this was shown in the Introduction to Part III under Observations. By this previous result and by uniform convergence in $(z_1, \ldots, \hat{z_k}, \ldots, z_n)$ we are through if l = k. If $l \neq k$ we need to know

that properties B_k and A_l together imply that f(z) is bounded on any set of the form (a finite angular sector in Y_k)×(a closed disk about zero in X_l)×(any closed polydisk in $\prod_{i\neq k,l} Y_i$). The desired result for $l\neq k$ would then follow by uniform convergence. We see this needed consequence

then follow by uniform convergence. We see this needed consequence of properties B_k and A_l by choosing a path $\gamma = \gamma(t)$ in $X_l - \{0\} \subset Y_l$ of the form $r \exp(2\pi i t_l)$, $0 \le t_l < 1$, where r is a positive real number larger than the radius of our previously given disk in X_l , and writing f(z) as

$$(2\pi i)^{-1}\int\limits_{\gamma}f(z_1,\ldots,z_{l-1},t_l,z_{l+1},\ldots,z_n)(z_l-t_l)^{-1}dt_l.$$

Now a finite number of closed disks in Y_l cover the locus of $\gamma(t)$ so we easily obtain our upper bound.

(iii) If $f(z) = \sum_{l=1}^{n} g_l(z)$ where each $g_l(z)$ has properties A_l and B_k then

$$g(z_k) *_k f(z) = \sum_{l=1}^{n} (g(z_k) *_k g_l(z))$$

where each $g(z_k) *_k g_l(z)$ has properties A_l and B_k by parts (i) and (ii) above. LEMMA II. Suppose that $g(z_k)$ has property A_k and f(z) has property B_k . Then:

(i) $z_k(g(z_k)*_kf(z)) = (z_kg(z_k))*_kf(z) + g(z_k)*_k(z_kf(z));$

(ii)
$$D_k(g(z_k)*_k f(z)) = (D_k g(z_k)) *_k f(z) + g(0) f(z)$$
, which equals $g(z_k) *_k (D_k f(z)) + g(z_k) f(0)$,

if $D_k f(z)$ has property B_k ; and

(iii) $D_k z_k (g(z_k) *_k f(z)) = (D_k z_k g(z_k)) *_k f(z) + g(z_k) *_k (D_k z_k f(z))$ if $D_k f(z)$ has property B_k .

Proof. This is Lemma IV of Part III in slightly different notation.

After introducing some additional notation we shall state a Proposition which will be shown to imply Theorem I.

Notation. Let m(z) be an element of M_k with a carrier $\overline{m}(z)$ which has property B_k and satisfies equations (1) where each $e^{(n)}(z)$ has property C_k order β . Let $b = \max\{\beta, \max\{j_k | j \text{ appears in (1)}\}\}$. Now b > 1, since if $l \neq k$,

$$\left(j_k - \deg_k g^{(k)}(z)\right)j_l^{-1} > n+1 \geqslant 2$$

Let $r(z_k)$ denote an element of R'_k . From Lemma I of Part III we recall that for some non-negative integer a and collection of $p_j(D_k)$ in $Q[i, D_k]$, with $\deg p_j(D_k) \leq j$ for each j, we have

(2)
$$(D_k z_k)^a r(z_k) = \sum_{j=1}^a p_j(D_k) (D_k z_k)^{a-j} r(z_k).$$

30

Note that operating on (2) with $D_k z_k$ gives another equation of type (2) only with a+1 replacing a. Therefore we shall assume $a \geqslant 1$ in what follows.

PROPOSITION. Suppose, (i) $\overline{m}(z)$ vanishes at $z_k = 0$ to the order b; (ii) $D_k^b \overline{m}(z)$ has property B_k ; (iii) each of the $c^{(p)}(z)$ has property C_k order zero; and (iv) the inequalities $(j_p - \deg_p g_p^{(p)}(z))(j_l + a - 1)^{-1} > n + 1$ hold if $p \neq l$; then $r(z_k) *_k m(z)$ is in M_k and there exists $\overline{m}(z)^*$, a carrier of $r(z_k) *_k m(z)$, such that $D^b \overline{m}(z)^*$ has property B_k .

Proof that the Proposition implies Theorem I. Suppose that m(z) belongs to M_k and has carrier $\overline{m}(z)$ which satisfies equations (1). For each $1 \leq p \leq n$ we write equation p of (1) in the form $\overline{m}(z) = q^{(p)}\overline{m}(z) + e^{(p)}(z)$ where $q^{(p)}$ is the appropriate differential operator and, of course, each $c^{(p)}(z)$ has property C_k . Then for each $q \geq 1$

$$\overline{m}(z) = (\varphi^{(p)})^q \, \overline{m}(z) + c_q^{(p)}(z) \qquad (1 \leqslant p \leqslant n)$$

for an appropriate set of $e_q^{(p)}(z)$ with property C_k order βq . If for the operators $\varphi^{(p)}$, $(j_p - \deg_p g_f^{(p)}(z)) j_l^{-1} \geqslant \mu > n+1$ (when $p \neq l$) and $\deg_l g_l^{(p)}(z) \leqslant j_l$ (always) then the corresponding inequalities hold for the $(\varphi^{(p)})^q$, and we have for each term in $(\varphi^{(p)})^q$ that

$$(\text{degree in } D_k - \text{degree in } z_p) \geqslant q.$$

(To see this latter statement note that we must have $(i_p - \deg_p g^{(p)}(z)) > 1$ in (1) for each $1 \le p \le n$.) Let a be as in equation (2). Then in the set of equations

$$\overline{m}(z) = (\varphi^{(v)})^q \overline{m}(z) + c_q^{(v)}(z) \qquad (1 \leqslant p \leqslant n)$$

we have for each term of each $(q^{(p)})^q$ that if $l \neq p$

(degree in D_p – degree in z_p)(degree in $D_t + a - 1$)⁻¹

$$\geqslant (\mu^{-1} + (a-1)q^{-1})^{-1} > n+1$$

when q is sufficiently large. Therefore, without loss of generality, we may assume that in (1) we have

$$(j_p - \deg_p g_j^{(p)}(z))(j_l + a - 1)^{-1} > n + 1$$
 when $p \neq l$.

Since each $e^{(p)}(z)$ has property C_k order $\beta \leq b$ there exist a set of $f^{(p)}(z)$ with property C_k order zero such that each $e^{(p)}(z) = D_k^b f^{(p)}(z)$. Integrating each term of equations (1) with respect to z_k and using integration by parts repeatedly we obtain

$$(3) \qquad \left(E_k \,\overline{m}(z)\right) = \sum_j \left[\sum_{l \geqslant 0} \left(-1\right)^l \left(D_k^l g_j^{(p)}(z)\right) D^j E_k^l \left(E_k \,\overline{m}(z)\right)\right] \\ + D^{b-1} \left(f^{(p)}(z) + E_k^{b-1} g^{(p)}(z)\right) \qquad (1 \leqslant p \leqslant n),$$

where each $g^{(p)}(z)$ is independent of z_k and, therefore, has properties A_k and B_k , hence property C_k order zero. Then $D_k^{b-1}(f^{(p)}(z)+E_k^{b-1}g^{(p)}(z))$ has property C_k order b-1 for each $1 \leq p \leq n$. After simplification we see that (3) is a system of equations of type (1) in $E_k\overline{m}(z)$ satisfying $b \geqslant \max\{j_k|\ j$ appears in (3)}. We may continue the above procedure until we obtain a set of equations of type (1) in $E_k^b\overline{m}(z)$ where $b \geqslant \max\{j_k|\ j$ appears in any of those equations}; $E_k^b\overline{m}(z)$ vanishes to the order b at $z_k=0$; $D_k^b(E_k^b\overline{m}(z))$ has property B_k ; and each of the inhomogeneous terms of these equations has property C_k order zero. Applying the Proposition we obtain the result that $r(z_k)*_k(E_k^bm(z))$ is in M_k with a carrier $\overline{m}(z)^*$ such that $D_k^b\overline{m}(z)^*$ has property B_k . From Lemma II part (ii), it follows that

$$D_b^k(r(z_k)*_kE_k^bm(z))=r(z_k)*_km(z)$$

which belongs to M_k , since M is closed under differentiation. This completes the proof.

Proof of the Proposition. By $\{(D_k z_k)^{\gamma} r(z_k)\}_{k} \overline{m}(z)$ we shall mean the row vector of all convolution products of the form $(D_k z_k)^{\gamma} r(z_k)$ times a component of $\overline{m}(z)$ for each $0 \le \gamma \le a-1$. Let $\{D_k^z r(0)\} \overline{m}(z)$ denote the row vector of all ordinary products of the form $D_k^z r(0)$ times a component of $\overline{m}(z)$ for $0 \le \varepsilon < a+b$. Using matrix block notation, we consider the column vector $\overline{m}(z)^*$ defined by

$$\left(\overline{m}(z)^*\right)^T = \left(\left(\left(D_k z_k\right)^{\gamma} r(z_k)\right) *_k \overline{m}(z), \left(D^* r(0)\right) \overline{m}(z)\right)$$

which we must show satisfies a system of equations of type (1). We need only use our equations (1) in order to rewrite the bottom block of rows n different times (for $1 \leq p \leq n$) as a sum of terms of the proper sort for a system of equations of type (1) in $\overline{m}(z)^*$.

Now to consider the top block of rows. Without loss of generality we choose $((D_k z_k)^{\gamma} r(z_k)) *_k m(z)$ for some $0 \le \gamma < a$, as a typical term and must rewrite it n times as a sum of terms of the proper sort in $\overline{m}(z)^*$. First convolute, using $*_k$, the function $(D_k z_k)^{\gamma} r(z_k)$ term by term with each of the n scalar equations that we have in which m(z) occurs on the left-hand side. The resulting inhomogeneous terms all have property C_k , since the $c^{(p)}(z)$ all have property C_k order zero, by Lemma I (iii). We observe that all D_l 's and z_l 's in the second factor may be brought outside of the convolution products, if $l \ne k$. By Lemma II (i) each z_k in the second factor of the $*_k$ product may either be brought out of the convolution product or placed immediately to the left of $(D_k z_k)^{\gamma} r(z_k)$ inside of the convolution product. By Lemma II (ii) and our assumption that $\overline{m}(z)$ vanishes to the order $b \ge \max\{j_k \mid j \text{ appears in (1)}\}$ at $z_k = 0$ we see that every D_k appearing next to an element of $\overline{m}(z)$ in a convolution product may be taken outside of the product. Now the first factor of

a typical convolution product is of the form $z_k^\lambda(D_kz_k)^\gamma r(z_k)$ where $0 < \lambda < \sigma$ and $0 \leqslant \gamma < a$. (Recall that $\deg_i g_j^{(p)}(z) \leqslant j_i \leqslant b$ for each l,j, and p.) Also, since $\deg_i g_i^{(p)}(z) \leqslant j_i$, there must exist at least λ more factors of D_k than z_k outside of the convolution product. Using $D_k z_k = z_k D_k + 1$ repeatedly we may suppose that each factor of D_k outside of the convolution product appears to the right of each factor of z_k and there still must be at least λ more factors of D_k than z_k outside of the convolution product. By Lemma II part (ii) and the fact that z_k^{λ} vanishes to the order λ at $z_k = 0$ we may move D_k^{λ} inside the first factor. Now $D_k^{\lambda} z_k^{\lambda} (D_k z_k)^{\gamma} r(z_k)$ equals a sum of terms of the form $(D_k z_k)^q r(z_k)$ where $0 < q < \lambda + \gamma < a + b$. If $0 \leqslant \varphi < a$ then, as we shall show, we have a proper sort of differential operator acting on a component of $\overline{m}(z)^*$ and need proceed no further. Clearly φ lying in this range makes the convolution product a component of $\overline{m}(z)^*$; if we lump together those factors of D_t and z_t inside of the convolution product and those factors outside of the convolution product, we see that degree in D_l $(l \neq k)$, degree in z_l $(l \neq k)$, and (degree in D_k – degree in z_k) have remained unchanged during the above manipulations while degree in D_k has been possibly decreased. Recall now that we convolute equations from (1) with $(z_k D_k)^{\gamma} r(z_k)$ where $\gamma < a$; thus, degree in D_k outside of the convolution product (i.e. j_k) lies, inclusively, between zero and its previous value plus a-1. Now looking outside of the convolution product, (degree in D_k – degree in z_k), degree in D_t $(t \neq k)$, and degree in z_t $(t \neq k)$ are unchanged. Then by our assumption that in (1)

$$(j_p - \deg_p g_j^{(p)}(z))(j_l + a - 1)^{-1} > n + 1$$
 if $l \neq p$

we have that the required inequality

 $(\text{degree in } D_p - \text{degree in } z_p)(\text{degree in } D_l)^{-1} > n+1, \quad \text{ if } \quad l \neq p,$

holds here.

If $\varphi \geqslant a$, then, by using an equation of type (2) for $r(z_k)$ with $(D_k z_k)^{\varphi} r(z_k)$ appearing on the left-hand side and afterwards other equations with lesser powers of $(D_k z_k)$ appearing on the left-hand side, we can express $(D_k z_k)^{\varphi} r(z_k)$ as a sum of terms of the form $D_k^{\theta}(D_k z_k)^{\xi} r(z_k)$ where $0 \leqslant \xi \leqslant a$ and $0 \leqslant \delta \leqslant \varphi - \xi \leqslant a + b - \xi \leqslant a + b$. If $\delta = 0$, this puts ξ in the desired range. Suppose $\delta \geqslant 1$, then by Lemma II part (ii) we may bring D_k^{θ} outside of $(D_k^{\theta}(D_k z_k)^{\xi} r(z_k)) *_k m(z)$ if we include "correcting terms" of the form $(D_k^{\theta}(D_k z_k)^{\xi} r(z_k)) *_k m(z)$ if we include "correcting terms" of the form $(D_k^{\theta}(D_k z_k)^{\xi} r(z_k)) *_k m(z)$. For the terms where D_k^{θ} has been brought outside we have that the degree in D_k outside of the convolution product is at most a-1 larger than in the original term from (1); (degree in D_k

degree in z_k) has not decreased; and both (degree in D_l) and (degree in z_l), $l \neq k$, are unchanged. Thus the terms are all right.

The "correcting terms" have degree in D_l and degree in z_l unchanged from the original term in (1) if $l \neq k$, while (degree in D_l —degree in z_k) has increased by at least $\delta - 1 - \varepsilon \geq 0$, which is all to the good, and degree in D_k has increased by at most $a - 1 - \varepsilon \leq a - 1$. Thus we are through.

Section II.

Proof of Theorem II. Suppose that f(z) belongs to M and has carrier $\bar{f}(z)$. Choose $t \in Y$. One may check by differentiating that the following equation holds for a set of $g^{(r)}(z)$ independent of z_k

$$(4) \qquad (E_{k,t}\bar{f}(z)) = \sum_{j} \left[\sum_{l \geqslant 0} (-1)^{l} (D_{k}^{l} g_{j}^{(p)}(z)) D^{j} E_{k,t}^{l} (E_{k,t}\bar{f}(z)) \right] + \\ + (E_{k,t} c^{(p)}(z) + g^{(p)}(z)).$$

Now each $E_{k,t}e^{(p)}(z)$ has property C, since property C is preserved under $E_{k,t}$ (use uniform convergence) and each $g^{(p)}(z)$ has property C (since it is independent of z_k). (The reader may wish to compare equations (3) with equations (4). The fact that $\bar{f}(z)$ is not assumed to have property B_k necessitates working with $E_{k,t}$ not E_k .)

Equations (4) are a set of equations of type (1) in $E_{k,t}\bar{f}(z)$. Evidently we can apply $E_{k,t}^u$ where u is any positive integer and obtain a system of equations of type (1) in $E_{k,t}^u\bar{f}(z)$. We write out the actual equation obtained so as to demonstrate that the coefficient functions are matrices over Q[i, z, u]. Let

$$\binom{a}{b} = \frac{a!}{b!(a-b)!}.$$

Then

Acta Arithmetica XVI.1

$$\big(E^u_{k,l}\bar{f}(z)\big) = \sum_j \left[\sum_{l \geqslant 0} \left(-1\right)^l \binom{u+l-1}{l} \left(D^l_k g^{(p)}_j(z)\right) D^j E^l_{k,l} \big(E^u_{k,l}\bar{f}(z)\big) \right] + c^{(p)}_u(z)$$

 $(1 \le p \le n)$ where each $c_u^{(p)}(z)$ has property C. Obviously then we can write equations of type (1) in

$$E_t^u \bar{f}(z) = \prod_{k=1}^n E_{k,t}^u \bar{f}(z)$$

with coefficients in the matrices over Q[i, z, u]. Next applying D^{ω} where $\omega_1, \ldots, \omega_n$ are non-negative integers we obtain equations of type (1) in $D^{\omega}E_t^n\bar{f}(z)$ with coefficients in the matrices over $Q[i, z, \omega, s]$. Let

$$\Gamma = \max\{|j| \mid j \text{ appears in this equation}\} \geqslant 1.$$

We define T to be $\theta^{n\Gamma}$ and T^{-1} to be $E_t^{n\Gamma}$. Setting $u=n\Gamma s$ above we have above a system of equations of type (1) in $D^o T^{-s} \bar{f}(z)$ with coefficients in

the matrices over $Q[i, z, \omega, s]$. Recall $\Delta c(z) \equiv 0$ if c(z) has property C. Applying Δ term by term above we obtain a homogeneous set of equations of type (1) in $\Delta D^{\omega} T^{-s} \bar{f}(z)$ with coefficients in the matrices over $Q[i, z, \omega, s]$. (Also we note that $\Delta T^{-1} D^{\omega} = \Delta D^{\omega} T^{-1}$ and $\Delta T^{-1} T = \Delta T T^{-1} = \Delta$.)

We shall demonstrate shortly that for each non-negative integer l, $\Delta D^{\omega} T^{-(s+l)}$ (any component of $\bar{f}(z)$), may be expressed as a linear combination over the Noetherian ring $Q[i, \omega, s, z]$ of the objects $D^{f} \Delta D^{\omega} T^{-s}$ (some component of $\bar{f}(z)$), where $0 \leq |j| \leq nI$. It will then follow by the ascending chain condition on finitely generated modules over a Noetherian ring that for some non-negative integer γ there exists an equation of the form

(5)
$$\Delta D^{\omega} T^{-(s+\gamma)} f(z) = \sum_{l=1}^{\gamma} P_l(\omega, s, z) \Lambda D^{\omega} T^{-(s+\gamma-l)} f(z),$$

where each $p_i(\omega, s, z)$ belongs to $Q[i, \omega, s, z]$.

We shall next demonstrate a slightly stronger statement than we actually need; namely, that for each non-negative integer *l* the quantity

$$\Delta D^{\omega+j} T^{-(s+l)} \bar{f}(z), \qquad 0 \leqslant |j| < nI',$$

may be expressed as a linear combination (over the matrices with entries in $Q[i, \omega, s, z]$) of the different

$$\Delta D^{\omega+j} T^{-s} \bar{f}(z), \quad \text{where} \quad 0 \leqslant |j| < nI^*.$$

If we obtain the desired identity for l=1, then this identity plus the one obtained from it by substituting s+1 for s throughout enable one to handle the case when l=2, etc. Therefore, without loss of generality, we need only treat the case where l equals one. We shall show that

$$\Delta D^{\omega+j} T^{-(s+1)} \bar{f}(z), \quad 0 \leqslant |j| < nI',$$

may be expressed as a linear combination (over the matrices with entries in $Q[i, \omega, s, z]$) of the

$$\Delta D^{\omega+j} T^{-(s+1)} \bar{f}(z)$$
, where $nI \leqslant |j| < 2nI$.

We consider our equations of type (1) in $\Delta D^{\alpha} T^{-s} \tilde{f}(z)$. Substitute $\alpha + j$ for α and s+1 for s in these equations. Now choose the equations where p=1. This gives us a way of expressing $\Delta D^{\alpha+j} T^{-(s+1)} \tilde{f}(z)$ as a linear combination of terms of the form $\Delta D^{\alpha+j} T^{-(s+1)} \tilde{f}(z)$, for a new collection of j, where (i) no j_l has decreased, (ii) 0 < the increase in $j_1 \le I$, and (iii) the (increase in j_1) (the increase in $j_1)^{-1} > n+1$, if $l \ne 1$. (Use the definition of Γ and the inequalities satisfied by any equation of type (1).) Using equations of this type repeatedly we may write our original

term as a linear combination of terms where

$$n\Gamma \leqslant j_1 < (n+1)\Gamma$$
 and $j_1 < n\Gamma + (n+1)(n+1)^{-1}\Gamma = (n+1)\Gamma$, if $l \neq 1$.

Now use our equations with p=2 to obtain a linear combination of terms such that $n\Gamma\leqslant j_2<(n+1)\Gamma, n\Gamma\leqslant j_1$, and $j_l<(n+2)\Gamma$, if $1\leqslant l\leqslant n$. In general, before stage p we have $n\Gamma\leqslant j_l$ if l< p and each $j_k<(n+p-1)\Gamma$ for $1\leqslant k\leqslant n$. We obtain after the pth stage, $n\Gamma\leqslant j_l$ if $l\leqslant p$ and each $j_k<(n+p)\Gamma$ for $1\leqslant k\leqslant n$. Setting p=n we have our desired identity. Thus (5) holds.

If we substitute α for z in (5), and substitute $h+(\gamma+\delta)(1,\ldots,1)$ for ω we obtain, for nonnegative s, δ , and h_k

(6)
$$\Delta T^{-s} \theta^{\delta} D^{h} f(\alpha) = \sum_{l=1}^{\gamma} q_{l}(s, h, \delta) \Delta T^{-(s-l)} \theta^{\delta} D^{h} f(\alpha).$$

(Recall $\Delta \theta^{\delta} D^h T^{-s} = \Delta T^{-s} \theta^{\delta} D^h$.)

We wish to show that without loss of generality we may take the $q_l(s, h, \delta)$ to be in $Q[i, s, h, \delta]$. Since $[Q(i, a):Q(i)] < \infty$ it follows from (6) that the various $\Delta T^{-s} \theta^{\delta} D^h f(a)$ belong to a finitely generated module over the Noetherian ring $Q[i, s, h, \delta]$; therefore, an equation of type (6) holds but with the $q_l(s, h, \delta)$ in $Q[i, s, h, \delta]$. We shall assume in what follows that the $q_l(s, h, \delta)$ in (6) belong to $Q[i, s, h, \delta]$.

Suppose case (i) of Theorem II does not hold for $D^h f(z)$. Then there exists $0 \le \delta < n\Gamma$ such that an infinite number of the $\Delta T^{-s} \theta^{\delta} D^h f(\alpha)$ are nonzero. Set $d = \max_{l \le \gamma} \{ (\deg_s q_l(s, h, \delta)) l^{-1} \}$. Replace γ , the upper bound of summation in (6), by $\mu = \mu(\delta, h)$ where $q_{\mu}(s) \ne 0$ as a function of s. Writing $q_l(s)$ for each $q_l(s, h, \delta)$, $1 \le l \le \mu$, we have from (6)

$$arDelta T^{-s}\, heta^\delta D^h f(lpha) = \sum_{l=1}^\mu q_l(s)\,arDelta T^{-(s-l)}\, heta^\delta D^h f(lpha) \quad ext{ where } \quad q_\mu(s)
ot\equiv 0.$$

We wish to show that for some $K_1(h, \gamma)$ which may be taken to be larger than or equal to one

$$|\varDelta T^{-s}\,\theta^{\delta}D^{h}f(a)|\leqslant \big(K_{1}(h,\,\gamma)\,s^{-1}\big)^{n^{2}Ts}$$

for each $s \ge 1$. Since $\Delta T^{-s} \theta^{\delta} D^h f(a)$ is independent of the choice of t we set t = a. For an appropriate $\tilde{a} = (\tilde{a}_1, \ldots, \tilde{a}_n)$ lying over a in Y

$$|\Delta T^{-s} \theta^{\delta} D^{h} f(\alpha)|$$

$$= ((sn\Gamma - 1)!)^{-n} \Big| \int_{a_{1}}^{\tilde{a}_{1}} \dots \int_{a_{n}}^{\tilde{a}_{n}} [(a_{1} - t_{1}) \dots (a_{n} - t_{n})]^{sn\Gamma - 1} \theta^{\delta} D^{h} f(t) \partial t_{1} \dots \partial t_{n} \Big|$$

if $s \ge 1$, for some appropriate $K_1(h, \gamma)$. Theorem II now follows immediately from the next lemma, whose hypotheses we next give.

We suppose that F(s) is a function from the integers to the n by 1 matrices over C; that F(s) is nonzero for an infinite number of positive integral s; that

$$F(s) = \sum_{j=1}^{\mu} q_j(s) F(s-j)$$

where each $q_i(s)$ is an n by n matrix with entries in Q[i, s], and the determinant of $q_{\mu}(s) \not\equiv 0$; that $d = \max\{(\deg q_{j}(s))j^{-1}\}$; and that if $s \ge 1$, $||F(s)|| \le (K_1 s^{-1})^{As}$ for some $K_1 > 1$ and A > 0. (Recall ||matrix|| is the maximum of the absolute values of its entries.) Let P_k (0 $\leq k$ $\leq \mu - 1$) denote an n by 1 vector of Gaussian integers and q denote a nonzero Gaussian integer.

LEMMA III. For each $\varepsilon > 0$ there exists $e(\varepsilon) > 0$ such that

$$\max_{0\leqslant k\leqslant \mu-1}\|F(-k)-P_kq^{-1}\|\geqslant c(\varepsilon)|q|^{-(1+d/A+\varepsilon)}.$$

Proof. We shall first show that without loss of generality we may assume that $q_{\mu}(s)$ is nonsingular if $s \ge 0$. Clearly if s is larger than some appropriately chosen $s_0 \ge -1$ then $q_n(s)$ is nonsingular. If we substitute $s = (s_0 + 1)$ for s above then the conclusion of the lemma holds, but for the function $F(s_0+1+s)$. This easily implies the desired conclusion for the function F(s), if we use the relation

$$F(s) = \sum_{j=1}^{\mu} q_j(s) F(s-j)$$

repeatedly to express $F(s_0+1), \ldots, F(s_0-\mu+2)$ as linear combinations of $F(0), F(-1), ..., F(-\mu+1)$ over Q[i]. Set $W'(s)^T = (F(s)^T, ..., F(s-\mu+1)^T)$. We have then

$$W'(s) = \varphi'(s)W(s-1)$$

for some μm by μm matrix with entries in Q[i, s]. Choose a positive integer K_2 such that $K_2q'(s)$ has entries in Z[i, s] (Z denotes the integers).

Then set $W(s) = K_2^s W'(s)$ and $\varphi(s) = K_2^s \prod_{i=1}^s \varphi'(j)$, so we have, if $s \geqslant 0$,

$$W(s) = \varphi(s)W(0).$$

The entries in $\varphi(s)$ are in Q[i,s] and $\varphi(s)$ is nonsingular if $s \ge 0$. Now $\|\varphi(s)\| \leq (K_1's)^{ds}$ for some $K_1' > 1$, as can be seen by recursively substituting for F(s-j) in the relation $F(s) = \sum_{j=1}^{n} q_j(s) F(s-j)$ to obtain the relation $W(s) = \varphi(s)W(0)$. Without loss of generality we may choose a new $K_1 > 1$ such that

$$||W(s)|| < (K_1 s^{-1})^{ds}$$
 if $s \geqslant 1$, and $||\varphi(s)|| \leqslant (K_1 s)^{ds}$.

Define P by $P^T = (P_0^T, \dots, P_{n-1}^T)$. We shall show that $||W(0)-Pq^{-1}|| \geqslant |q|^{-(1+d/\lambda)-\varepsilon}$ for all sufficiently large |q|.

We write

$$W(s) = \varphi(s)(W(0) - Pq^{-1}) + \varphi(s)Pq^{-1},$$

so

$$\varphi(s)(W(0)-Pq^{-1}) = -\varphi(s)Pq^{-1}-W(s)$$

which implies that

$$\|\varphi(s)(W(0)-Pq^{-1})\| \geqslant \|\varphi(s)Pq^{-1}\|-\|W(s)\|.$$

Now if $P \neq 0$, $\|\varphi(s)Pq^{-1}\| \geqslant |q|^{-1}$, since $\varphi(s)$ is nonsingular for all $s \geqslant 0$ and the entries of P are Gaussian integers. Thus

$$\|\varphi(s)(W(0)-Pq^{-1})\| \geqslant |q|^{-1}-(K_1s^{-1})^{As}, \quad \text{if} \quad s\geqslant 1.$$

Choose s, sufficiently large that $(K_1s_1^{-1})^{4s_1} < |2q|^{-1}$, and take it to be the first such positive integer. Since $K_1 > 1$ we have $s_1 > 1$ and

$$(\mathbf{K}_{1}s_{1}^{-1})^{As_{1}} < |2q|^{-1} \leqslant (\mathbf{K}_{1}s_{1}^{-1})^{A(s_{1}-1)}.$$

Observe that $-As_1(\log s_1 - \log K_1)$ is asymptotically equal to

$$-\Lambda(s_1-1)[\log(s_1-1)-\log K_1].$$

Thus given $\varepsilon_1 > 0$ there exists a positive integer N such that if $s_1 \geqslant N \geqslant 1$ we have

$$(K_1 s_1^{-1})^{As_1} \geqslant (K_1 (s_1 - 1)^{-1})^{A(1+s)(s_1 - 1)}$$

and, from (9) and our choice of s_1 ,

$$(10) (K_1 s_1^{-1})^{As_1} \geqslant |2q|^{-(1+s_1)}.$$

If $s_1 \leq K_1$ then (9) can not hold. Thus $s_1 > K_1 > 1$. For $s_1 > K_1$ the extreme left-hand side of (9) decreases in a strictly monotone manner to zero as $s_1 \to \infty$. Therefore, if we restrict ourselves to values of q which satisfy $(K_1N^{-1})^{MN} > |2q|^{-1}$ we must have $s_1 > N$ and may use (10). Also we require that $K_1^2 < (K_1^{-1}s_1)^{s_1}$. Now we have

(i)
$$\|\varphi(s_1)(W(0)-Pq^{-1})\| \geqslant |2q|^{-1};$$

and

(ii)
$$\|\varphi(s_1)\| \leqslant (K_1 s_1)^{ds_1} \leqslant [K_1^2 (K_1^{-1} s_1)]^{\theta_1 \theta_2},$$

where $\theta_1 = As_1(1+\varepsilon_1)^{-1}$ and $\theta_2 = d(1+\varepsilon_1)A^{-1}$, which along with (10) gives

(iii)
$$\|\varphi(s_1)\| \leqslant |2q|^{\theta_2(1+s_1)} \leqslant |2q|^{\theta_3},$$

where $\theta_3 = dA^{-1}(1+\epsilon_1)^2$. Thus

(iv)
$$||W(0) - Pq^{-1}|| > |2n\mu q|^{-\theta_4},$$

where $\theta_4 = 1 + dA^{-1}(1 + \varepsilon_1)^2$, if $P \neq 0$ and |q| is sufficiently large. By hypothesis there exists some $s \geq 0$ such that $F(s) \neq 0$; hence, $W(0) \neq 0$, so

$$||W(0) - 0g^{-1}|| = ||W(0)|| > 0.$$

Now setting $dA^{-1}(1+\varepsilon_1)^2 = dA^{-1} + \varepsilon$ inequality (iv) is seen to imply the conclusion of the lemma.

Section III.

Proof of Theorem III. (i) We shall assume the negation of the desired statement and obtain a contradiction. Since $AD^h E_t^a e(z) = 0$ we may assume e(z) = 0 in what follows with no loss of generality. Recall

$$\Delta E_t^u D^h f(z) = \Delta D^h E_t^u f(z)$$

is independent of the choice of $t \in Y$. Since

$$f(z) = z^{\nu} \left(\varepsilon + \sum_{i} z^{\delta_{i}} w_{i}(z) \right)$$

we have, using the hypotheses, that f(z) is bounded on

$$X = \prod_{k=1}^{n} (X_k - \{0\}) \subset Y.$$

We restrict t to X and let $t \to (0, ..., 0)$. This defines E'' f(z) as an improper integral and, by continuity, we have

$$\Delta E_t^u D^h f(z) \equiv \Delta D^h E_t^u f(z) \equiv \Delta D^h E^u f(z)$$
.

Under our assumption above we must have that

$$\lim_{u \to \infty} (a_1^{h_1 - u} \dots a_n^{h_n - u}) \Gamma(\gamma_1 + u - h_1 + 1) (\Gamma(\gamma_1 + 1))^{-1} \times \dots \times \Gamma(\gamma_n + u - h_n + 1) (\Gamma(\gamma_n + 1))^{-1} A D^h B^h f(u) = 0$$

 \mathbf{or}

$$(11) \qquad \left(\prod_{i=1}^{n} (1^{\gamma_i}-1)\right) \varepsilon + \lim_{n \to \infty} \sum_{i} \Gamma(\gamma_1 + u - h_1 + 1) \left(\Gamma(\gamma_1 + 1)\right)^{-1} \times$$

$$\dots \times \Gamma(\gamma_n + u - h + 1) (\Gamma(\gamma_n + 1))^{-1} a_1^{h_1 - u} \dots a_n^{h_n - u} \wedge D^h B^n z^{n + h_1} w_i(a) = 0.$$

If we show that the limit in (11) is zero then we will have obtained the desired contradiction since $\prod_{i=1}^{n} (1^{n_i} - 1)\varepsilon \neq 0$. Now each $w_i(z)$ is bounded

on X, so one may obtain an upper bound depending on u for the absolute value of each term in the (finite) sum under the limit sign. Using this estimate, along with the easily proven result that $\prod_{n=1}^{\infty} (1-a_n) = 0$ if each $a_n \ge 0$, $\lim_{n \to \infty} a_n = 0$, and $\sum_{n=1}^{\infty} a_n = +\infty$, we see that limit is indeed zero. This contradiction proves part (i).

(ii) Again we may assume that $c(z) \equiv 0$ and again we have

$$\Delta E_t^u D^h f(z) \equiv \Delta D^h E_t^u f(z) \equiv \Delta D^h E^u f(z).$$

Now if $u \geqslant |h|$

$$D^{h}E^{u}(\varepsilon z^{\gamma}\log z_{1}\ldots\log z_{n}) = \varepsilon \{\Gamma(\gamma_{1}+1)(\Gamma(\gamma_{1}+u-h_{1}+1))^{-1}z^{\gamma_{1}+u-h_{1}} \times \ldots \times \Gamma(\gamma_{n}+1)(\Gamma(\gamma_{n}+u-h_{n}+1))^{-1}z^{\gamma_{n}+u-h_{n}}\}\log z_{1}\ldots\log z_{n}+c_{1}(z)$$

where $c_1(z)$ has property C. Thus if $u \ge |h|$,

$$\begin{split} \varDelta D^h E^u f(z) &= (2\pi i)^n \varepsilon \Gamma(\gamma_1 + 1) \big(\Gamma(\gamma_1 + u - h_1 + 1) \big)^{-1} z_1^{\gamma_1 + u - h_1} \times \\ &\dots \times \Gamma(\gamma_n + 1) \big(\Gamma(\gamma_n + u - h_n + 1) \big)^{-1} z^{\gamma_n + u - h_n} + \varDelta D^h E^u \Big(\sum_i z^{\gamma + \delta_i} w_i(z) \Big). \end{split}$$

The same type of argument as before goes through now.

(iii) We wish to show that if $r(z_k) \in R_k^*$ $(1 \le k \le n)$ then $r(z_k) *_k f(z)$ has the same properties as those which were hypothesised for f(z), which will suffice to prove (iii) in light of parts (i) and (ii). Recall $r(z_k) = r_1(z_k) + \eta \delta$ where $r_1(z_k)$ belongs to R_k' , η belongs to C, and δ is the formal identity. We note that if $m_1(z)$ and $m_2(z)$ both satisfy the hypotheses of (i) (or (ii)), for $\gamma^{(1)}$ and $\gamma^{(2)}$ respectively, and $\gamma^{(1)} > \gamma^{(2)}$ (in the sense that each component of $\gamma^{(1)}$ is larger than or equal to the corresponding component of $\gamma^{(2)}$ with inequality holding at least once) then $m_1(z) + m_2(z)$ satisfies the hypotheses of (i) (or (ii)) for $\gamma^{(2)}$. Thus we need only show that if $r_1(z_k) \in R_k'$ then $r_1(z_k) *_k f(z)$ satisfies the same hypotheses as f(z), but for a larger value of γ . Obviously we may assume $r_1(z_k) \not\equiv 0$.

Each $r_1(z_k) *_k g_l(z)$ is defined for every $1 \leqslant l \leqslant n$ and has property A_l by Lemma I part (ii). Further, boundedness on each product of finite angular sectors (in the different Y_k) follows immediately. In what follows without loss of generality we take $c(z) \equiv 0$. If

$$r_1(z_k) = a_s z^s + z_k^{s+1} r_2(z_k)$$

where s is a positive integer and $a_8 \neq 0$ we have

$$r_1(z_k)*_k f(z) = a_s s! E_k^{s+1} f(z) + (z_k^{s+1} r_2(z_k)) *_k f(z).$$

In case (i) above $E_k^{s+1}f(z)$ is of form (i) with $z^yz_k^{s+1}$ replacing z^y and $c(z)\equiv 0$. In case (ii) we obtain the result that $E_k^{s+1}f(z)$ is of form (ii) with $z^yz_k^{s+1}$

replacing z^r and e(z) bounded on each product of finite angular sectors. Finally in each case

$$z^{-\gamma}z_h^{-(8+3/2)}[(z_h^{8+1}r_2(z_h))*_h f(z)]$$

is bounded on every product of finite angular sectors. This proves Theorem III.

References

- Ch. F. Osgood, A method in diophantine approximation, Acta Arith. 12 (1966), pp. 111-128.
- [2] A method in diophantine approximation (II), Acta Arith. 13 (1967), pp. 383-393.
- [3] A method in diophantine approximation (III), this volume, pp. 5-22.

NATIONAL BUREAU OF STANDARDS UNIVERSITY OF ILLINOIS

40

Reçu par la Rédaction le 29, 7, 1968

ACTA ARITHMETICA XVI (1969)

A general class of sieve generated sequences

by

M. C. WUNDERLICH* (De Kalb, III.)

There have been a number of recent investigations (see bibliography) into the density of sequences of integers which are generated by a sieve process. The sieve was always set up to be stochastically similar to the sieve of Eratosthenes, but with the exception of Buschman's [2] recent formulation of the sieve, none of the sieves were stated with enough generality to include the sieve of Eratosthenes. Thus, the theorems which were obtained were only of intrinsic interest, and did not make any real progress toward a new sieve proof of the prime number theorem if such a proof is indeed possible. In this paper, the author describes a sieve process in a very general context so that the prime number sieve as well as the lucky number type sieves can be described. Conditions are then obtained which imply that the sequence generated is prime-like, that is, the sequence $\{a_n\}$ satisfies $a_n \sim n\log n$.

1. The sieve process. The sieve process which generates the sequence $A = \{a_n\}$ can be completely described by a nested sequence $A^{(1)} \supset A^{(2)} \supset A^{(3)} \ldots$ where each $A^{(l)}$ is itself a sequence of positive integers which we will denote by $\{a_k^{(l)}\}$. We will take $A^{(1)}$ to be the sequence of all integers greater than 1 so that $a_k^{(1)} = k+1$. $A = \{a_n\}$ is then the set theoretic intersection of the $A^{(l)}$. For each $n \ge 1$, we will let the sequence $\{s_n(k)\}$ describe the elements eliminated at the nth sieving in the following way: Let

$$a_{s_n(1)}^{(n)} < a_{s_n(2)}^{(n)} < a_{s_n(3)}^{(n)} < \dots$$

be the elements contained in $A^{(n)}$ but not in $A^{(n+1)}$. Thus the sequences $\{s_n(k)\}$ completely determine the sieve process.

We will furthermore assume the following conditions:

- (a) $s_n(1) > n$.
- (b) For each $n, s_n(k) \sim ka_n$.

^{*} The research for this paper was supported in part by NSF grant GP-7331 at the State University of New York at Buffalo.