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Now we can apply the Corollary to (20) and the objects D, N, 2,2,
and ¥ where
D' = D2, = {p—2| 2e D},
N ig a sufficiently small neighborhood of zero, 2y = &, = 0, and ¥’ is the
translation of ¥. Thus the conclusion of Proposition I holds here but for
possibly new values of ! and d.
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Introduction. Tn this paper we shall extend to funetions of » >1
complex variables some of the results of Part IIT of this series of papers
(referred to below as Part III).

DEFINITION. By Z, @, @ (), and € we shall mean, respectively, the
integers, the rational numbers, the Gaussian rational numbers, and the
complex numbers. Throughout this paper ¢ and = will stand for n-tuples

of complex numbers.

ahl a}ln
By D" we shall mean B B where each A (1<<k<n)
i 1 n

is a non-negative integer. Analogously we define D’ and D°. We define

) . o a
DM to be D" D7, We use D, to denote — and 8 to denote — ... —a—-
Dz oz, Oz

By |h| or |j| we shall mean max{f| 1< E<n} or max{jp| 1< k< n},
regpectively.

If for some positive integer N, g(z) belongs to the N by N matrices
over Q[i, ], then by deg.g(z) we wmean min{i> 0| D' g(z) = 0).

We define a norm, || ||, on matrices over the complex numbers by
letting | matrix || denote the maximum of the absolute values of the
entries of the matrix.

For each 1 < k < » choose X, to be a bounded starshaped region about
zero in € which shall remain fixed throughont this paper. Let Ly and Yy
denote the Riemann surfaces generated by loge, over ¢ and X; respec-
tively. Note zero is not in either Iy or ¥5. We shall regard C— {0} and

b

X,—{0} as being embedded in Iy and ¥ respectively. Set L = Il L,
™ D) k=1
Y == [] ¥ and X = [] (X;—{0}). Then ¥ = ¥ < L. From now on any

=1 k=1

* This paper was written while the author wag on a postdoctoral Research
Associateship at the National Burean of Standards, Washingfion, D. C. (This award
is given by the National Bureau of Standards in agsociation with the National Academy

-of Beiences and the National Research Council.)
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function of z will be assumed to be analytic on ¥ unless the confrary
is explicity stated.
By a finite anguler scctor in Yj wo mean any sot of the form

{m) 2pe ¥y and —oo < pp < argay < dy << - oo},

By any finite angular sector in ¥ we mean a cartesian product of finite
angular sectors in the ¥j.

We say that a function f(2) has property Ay (.. = kol n) if i I8 analytic
on Xp X (H Y) We say that f{2) has progperty By (L < }'u s ow) i 11 s hounded
ik .

on every subset of ¥ of the form o finite angular sector in ¥y curtiesion
product a closed polydisk in [] Y. We sny that f(2) has property O if

it fe

where each (2} has property A;. We say that f(z) hes the stronger prop-
erty O (order j;) if for some non-negative integer fx
f(2) = Djp X (=),
=1
and each ¢(2) hag hoth properties A; and By.
If f(z} hag property B, let I, f(z) denole

A%

f Sy ooy Bcry by Rrry o0y @) My
B

where the path of integration iz the half open ray in ¥ from z to (but

n

not inelnding) zero. Let & (:'lenoter [ By. For any teY and all f(z) (analytic
23 )

on ¥ by our econvention) let Ek;f (2) denote

f F(Rey vy Bty By Blily vv vy o) O
iy

and B, denote H By,

Jom

As the reader may verity properties Ay, By, and ¢ order zcro arc
preserved under the action of Ey; properties By, and ¢ order zoro ure
preserved under the action of D; if 7 5% & (use the integral representation,
integrating about the perimeter of an appropriate cloped disk in ¥
properties Az, O, and G,c are pregerved under the action of each ;. If
F(2) bakes values in C¥ for some N > 1, we say that it has property Auy,
Br, 0, Oy, or C; order j; if each of its component functions has the respec-
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tive property. We note that for each 1 < %k < properties A; and By
agree in ¥y with the definitions of A and B given in Part III (where we.
worked in C1).

DEFINITIONS. Let M denote the set of all scalar valued functions.
m (2} which are component functions of some ¥ by ¥ matrix valned fune-
tion #(z) analytic on ¥ which satisfies a set of n simultaneous linear
vector partial differential equations of the form

(1) it (2) = 29‘”’ Diai(z)+ P (z)  (1<p<n),

where each ¢'({2) belongs to the N by N matrices over @[4,2]; each
AP (z) is an N by 1 vector valued function with property C; for every
0<lp<n (jp—degogf (R))ir = n+1, if 1 £p; and each degysf(2)
< j;. {Our convention is that ¢/0 = Joo if ¢ >0 and, of course, 0/0
is undefined.) We call m{z) a “carrier” of m(z). If @(i) is replaced by
any finite extension field of @(i) in the above definition we obtain the
game set of funetions. To see this choose a basis 1 = wy, ..., we of the ex-
tengion field over @ (¢} and replace (1) by & similar system of equations.
(with coefficient matrices having entries belongmg to QE, 2])
in the column vector valued funetion 7 (z), where (7 (z))" (a)om(z),
oy 0sTR(2)).

Let My be the get of all m(z) in 3 possessing a carrvier 7(z) with
property By and a set of corresponding o”'{z) each having property Ci.
One may verify that applying D; to a set of equations of type (1) gives
a seb of equations of type (1) in D;#(e). (Use degig™ (2) < j; here.) Thus
if m(e)e M then D"m(z)e I for each h.

Exawvpere. Consider the funefion

Fz) = A’
ol B IBA a— DI (F—1)T (a1 p—2)]

Set;
G(2) = F(z)(logz,)(logz,).
It is true then that

(@) G(2) = D} (321 Dy—1) (2, Dy 12, Dy— 2)6 (2) 4 ¢ (2)
and .
(i) G (2) = Di(eaDy— 1) {32, Dy +10,Dy—2)6 (2) + ¢ (2),

where ¢ (2) and ¢ (z) are the terms obtained when the vespective dif-
ferential operators partially differentiate the (logez;)(logz,) factor at least-
once, with respect to either variable. Ap may easily be verified both.
oV (2) and ¢®(2) have properties C, G, and C, for any allowable X,

and X,; further G(z) has properties B, and B, for all allowable X, and X,.
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The required inequalities hold in equations (i) and (i), so G'(z) belongs
4o both M, and M,. We shall take up this example again after presenting
the theorems of this paper.

DEFINITION. Let By (L < k< n) denote the seb of all functions r(z)
which have property Ay and which satisfy an ordinary linear homogeneous
differential equation with coefficients in ) [4,2,] that has a regular singular
point at infinity. (In Part I1I where we had » ==1, R, wan denoted by
R Again regular points are considered regular singular.

By Theorem I of Part LT Ry i8 & ving under addition of functional
values and convolution product () where

Zh
ry (o) #a Py (o) == f 7y (B ) 1o {te) Ol s
]
and the path of integration is the ray from. zero to 2., Also Ry is a ring
under addition and multiplication of functionnl values. Fwether one
may replace @i} in the definition of Ri by any finite extension field
of Qi) and obtain the same set of functions. (For proofy sce Paxt TIL.)

Notation. Let By denote Ri(d) where 4 i a formal multiplicative
identity.

TeroreM I. Bach set My, for 1 = k< n, is @ unitary Ry, moidule under
addition of functional values and %5 product.

DEFINTTIONS. Suppose that f(2) is analytic on ¥. Lot A,f (=) he defined
on Y by [(Def(2) 0z where the path of integration is any path lying
in X, which is closed at &, and which winds once about zero in the positive
direction, Let

Af(e) = du .o Agf(e) = [ o [ 67088 ... 01,

for the appropriate set of paths. (WNote that the order in which the
operate is immaterial.) Tt is immediate that AHEf(z) is independent of
i< ¥. The reader may verify that if f{z) has propexty C then Af(z) == (.

Tor each positive integer v let (Bg, ..., Py, ¢) denote a general v-+-2
tuple of Gaussian integers with g 4 0. Pick m()¢ I and « any algebraic
point (ay, ..., a,) in ¥.

TuroreM LI, There ewtst o positive integer © and a positive real number
¢ that either

{i)
Jor all sufficiently large positive integers u, or

(i)

AE?%((L) == ()

max {|0" dm(n) — g7} 2 g1

[E ]

for all - sufficiently large lg|.
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Further if f(z)« M we may choose one ordered pair (v, ¢) which suffices
in (i) above for each m(z) of the form D"f(z).

Naturally case (i) above is not very interesting. We present in Theo-
rem IIT two different sets of assumptions on f(2)e M which make option
(i) of Theorem IT impossible for any m(z) of the form D (z).

Notation. Below let

n

n
7 = l Iz}?ﬂ and z‘sf:”
Fem=l

k=1

TrmoreM IIL. (i) Suppose that
flz) = e(2)+ & (s+ Z zﬁ'iwi(z))

is an element of M, where c(2) has property C; ¢ is a nonzero complex number;

the above sum is finite; each w;(z) is bounded on every cartesian product

of finite amgular sectors in the different ¥y the v are each non-negative,

non-integral, real numbers; and the by are each non-negetive real numbers
n

such that every Y 83 is positive. Then case {ii) of Theorem X1 holds for all
k=1

m(z) of the form D"f(2).
(il) Suppose thal

flz) = e(z)+# (e;logzt1 . loga, 2 zaf’fw,;(z))

is an element of M ; that o(2) has property C, & 5= 0 is a complem nwmber;

the above sum is finite; each w:(z) is bounded on every cariesion prodiuct

of fimite angular sectors; the yp are positive integers; and the 8,5 are non-
n

negotive real numbers such thai every D) 8;x is positive. Then case (ii} of
B=1
Theorem LI kolds for any m(2) of the form Df(z).
"

(i) If in (i) or (ii) of this theorem c(2) = 3 qi(2) where each ;(2) has
i=1

property Ay and s bounded on each cartesion product of finite angular
sectors, thenm case {ii) of Theorem II holds for every m{z) belonging to
DMET*, oy Bawg f(2)) for any h.

BxaMrLE (continued). We see that

AG(2) = (2mi)2H (2).
Algo
& 5
21 By
=2 E (loga,log ey + 2114 (#) -+ 2aws ()
where w,(z) and w,(2) are bounded in any product of finite angular sectors

Since 6(z) = 0 we have also that each element of D"(Ri‘*lF(z)*zRﬁ)

G(2)
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is & Am{e) for which case (ii} of Theorem LI holds. By Lomma 1V (b
of Part TEI :

-DTL—D?-DQ(RT*LF(Z)*ER;‘] = I)I"(R?*LDTDQ-F(N”)*21‘,';)

L ’l{;"} ,

[ "14» - #le - ;
=D ([Iq *3 ( Z da) (BT alt A1 (a0 ff)l)*zhh‘]‘)"

w00 (
g0 case (ii) of Theorem IT holds for each of thesoe Am(z).

Sectiem I. 'We shall show that epeh My s closed under - Suppose
that my(2) and m.(e) belong to My and have earviers i, (2) and #iy(z),
regpectively. Tt My (=) + Fiy(2) denole & row voetor valued function whose
component functions are all possible rume of the form, a componoent of
i () plug a component of #,(e). It will now follow that, whore lhe
eolumn vector Ti(z) iy defined (using block notation) by

()" = (7 (2)7, Tale)", Ty () + 7y (8)) (T denobes transpose),
f(z) satisfies a set of equations of type (1). To see this sirply write out
simultaneously, in ferms of matrices mulliplying dervivatives of #i(z),
the equations of type (1) satisficd by 7%, (2) snd #7,(2) as well as the equa~
tions for each compoment of ¥, (#)-7.(2) (obtained by addition). Thos
My is closed under -|-,

Lemama 1. Let 1< hslm.

(1) If g(2x) has property Ay and f(2) has property By, then g(z) . (=)
s defined and has property By,

{ii) If g{=) has propeviy Ay and f(z) has both propertios By and Ap
(for any 1< n), then glm)*f(2) has property Ay

(111) If g(=p) has property Ay and f(2) has property Cy ovder zero, then
g () x5 f(2) has properiy Gy order zero.

Proof. (i) In Part IIX (see Obgervations in the Introduction) we
showed this result when n equaled one. Thus g(z)%.f(2) is wnalylic in
& on Y. Since

#
glar—)f2, ooy By, by B Ly ooy Bn) Oy
0
converges uniformly if (2,,..., 4, ..., 2,) belongs to sny closod polydisk

in @-I; Ik Y; it follows that the convolution product iy annlytic in 2 on V.

That the product has property Bj follows immediately.

(ii) For 1 = k =1 this was ghown in the Introduction to Part TIT
gpder Obsefvatlons. By this previous vesult and by uniform. convergence
(25, .00y %y .00y 22) We ave through if = k. I I o % wo need to know

icm
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that properties By and A; together imply that f(2) iz bounded on any
set of the form (a finite angular sector in ¥3) x{a closed disk about zero
in X;) x (any closed polydisk in [[ ¥;). The desived result for I = & would

itk

then follow by uniform convergence. We see this needed consequence
of properties By and A; by choosing a path y = »(#) in X;— {0} = ¥; of
the form rexp(2wify), 0 < & < 1, where r i3 a positive real number larger
than the radiug ef our previously given disk in X, and writing f(z) as

@)™ [ (20, +or 211, Ty 21y oo 20} (20— B
4

New a finite number of closed disks in ¥y cover the loeus of y(I) so we
easily obtain our upper bound.

(iii) If f(2) = D g:(#) where each ¢ (z) has properties A; and B, then
I=1
n

g(z) =i f () = ) (gle) 1 01(2))

I=1
where each g(z;)#+x¢g,(z) has properties A; and By by parts (i) and (ii) above.
Luvya 11, Suppose that gl{z) has property Ay end f(z) has property
Br. Then:
(1) 2l (o) =S (2) = (zicg(zk)) wif (2) + g (%) *r:(zkf(z))S
(1) Delg(a) #4f (2)) = (Dg(2)) #2f(2) +g(0)f(2), which equals

g (z) = {Dif (2)) + g ()£ (0),
if Dnf(2) has property By and
(iif) Dr2e (g(ze) #ef (2)) = (Drzug (2e)) 2 f (2)+ g (26) e { Deznf(2)) if Dif(e)
has property By. '
Proof. This is Lemma IV of Part IIT in slightly different notation.

After infroducing some additional notation we shall state a Irop-
osition which wili De shown to imply Theorem T.

Notation. Let m(z) be an element of M, with a carrier #i{z) which
has property By and satisties equations (1) where each ¢ () has property
Cy, order f. Let b = max{ﬁ, max {jx/ j appears in (1)}]. Now b > 1, since
if 1 5=k,

(jo— degeg® (=) i7" > n+1 = 2.

Let 7(z;) denote an element of Ri. From Lemma I of Part IIT we
recall that for some non-negative integer o and collection of py(I) in
i, D], with degp;{Dy) < j for each j, we have

(@) (Drew)r(a) = D) o5 (Da) (D)7 (2.
f=1
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Note that operating on (2) with Dyey gives another oquabion of fype (2)
only with a4 1 replacing a. Therefore we shall assumoe o0 L oin what
follows.

PROPOSITION. Suppose, (1) #i(z) vanishes at 2 == 0 lv the order by
(i) Di7i(z) has property By; (i) each of the M iz) has fuopwtg/ Uy order
zero; amd (iv) the inequalitics (f,— degy g () )(:Hl a— 17" b hold
if p =1 then v(z)*em(2) 45 in By and there ewists Hi(z Y, @ carrier of
{z) *pm(2), such that D'm(2)" has property By.

Proot thafi. the 1’] 01)()H'lbit)11 implieﬂ Theorem 1. Huppoyse

For ezuch 1sg p N wWe wmn:« mmmaun pof(l ( ) in tho fovm, #(z) == ™ i(e)-
) i ' - o .
+ e (2) where ¢* ix the appropriate ditfercntial operator and, of couse,
each ¢ (2) hag property Cp. Then for euch ¢ix 1

miiz) = (e F(2) P (2) (1= p en)
for anpa.pp‘xopnate seti of a”’( #) with. property Cp order fg. If for the npurd.
tors ¢, (j,— degy g (&) 57’ = 4 > n+-1 (when p + &) and deggl () < fq

(a.lwa;ys) then the corresponding inequalities hold for the (¢"% and
we have for each term in (p!)? that

(degree in Dy — degres in 2,) = q.

(To see this latter statement note that we mush have (i,--deg, ¢t (=) i L

n (1) for each 1< p < n) Let o be ag in equation (2). Then in the seb
of equations

mie) = ()T () + e (2) (Lspwn)
we have for each term of each (¢™)" that if I 5 p
(degree in D, — degree in z,)(degree in Dj-l-a—1)"*

2 la—1yg ) > nh L
when ¢ is sufficiently large. Therefore, without loss of generality, we may
assnme that in (1) we have

(Jo—degygf” (2) (it a—1)"" > m-1 when  p w& 1.

o Since each ¢”(z) has property Cp order § <. b there exist n set of
f®(e) with property ), order zero such that each () == DT z).
Integrating each term. of equations (1) with respect to 2, and wsing 111Le;;1'&b~
tion by parts repeatedly we obtain

(3)  (Bem(z) = jZ [ (-

+ DO () - HH g M) (L sip s n),

1y (_'Di, ¢ (2)) DR (J_?},ﬂ g (z))]

icm
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where each g™ (z) is independent of z; and, themfore, has properties Ay
and By, hence property Cj order zero. Then Dy '(f®(z)+ By g™ ()
has property Cp order b—1 for each 1< p < n After simplification we
gee that (3) is a system of equations of type (1) in Eym(z) satisfying
b= max{j; § appears in (3)}. We may continue the above procedure
otil we obtain a set of equations of type (1) in B (z) where b = max {j] §
appea.rs in. a,ny of those equations}; E;Gm(z) vanishes o the order & at

= (); Dk(E m(z)) has property By; and each of the inhomogencons
telms of these equations has property Cp order zero. Applying the Prop-
ogition we obtain the result that » (=) (E;,'m,(fv)) ig in M with a eanler
m ()" such that Dim(2)* has property By. From Lemma IT part (ii), i
follows that

Di(r () #xHim (2)) = r(2) ¥ m(2)

which belongs to M, since M is closed under differentiation. This ¢om-
pletes the proof.

Proof of the Proposition. By ((Dezx)#(e)#:7(2) we shall
mean the row vector of all eonvolution products of the form (Dyex) ¥ (24}
times a component of m(z) for each 0<y<a—1. Let [Dir(0))7(z)
denote the row vector of all ordinary products of the form Dis(0) times
a component of #(2) for 0<e<< ¢+ b Using matrix block notation,
we consider the column vector #i(e)* defined by

()" = ({(Des) i) =7 (2), (D7 (0) 70 (2))

which we must show satisfies a system of equations of type (1). We need
only use our equations (1) in order to rewrite the bottom block of rows
n different times (for 1< p < n) 28 a sum of terms of the proper sort
for a system of equationg of type (1) in ().

Now to consider the top block of rows. Without loss of generality
we choose ((I), z) (z,,)) #,m(2) for some 0 <y < @, a3 a typical term and
mugt rewrite it n times as a sum of terms of the proper sort in #( (2)*.
First convolute, using *z, the function (Dyeg) 7 (z) term by term with
each of the n scalar equations that we have in which m(2) ocours on the.
left-hand side. The resulting inhomogeneous terms all have property
Oy, since the ¢ () all have property Cj order zero, by Lemma I (iii).
‘We observe that all Dys and 2% in the second factor may be brought
outside of the convolution products, if I # %. By Lemma IT (i) each z-
in the second factor of the i product may either be brought out of the.
convolution product or placed immediately fo the left of (Di2) Yr(ze)
ingide of the convolution product. By Lemma II (ii) and our agsumption
that m(2) vanishes to the order b = max{ji| j appears in (1) )} at z =0
we see that every Dy appearing next to an element of #(z) in a convolution
product may be taken outside of the product. Now the first factor of
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a typical convolution produet is of the form 2 { D) r (%) where 05472
and 0 <y < a. (Recall that (legzgh‘;")(z) S qn b for each 1, ,7,' adud p.)
Also, sinee deg g () =< ji, there mukt exist atb 19:;}41.1 A nTe 1’.&(5'(;():1‘& of
D, than & outside of the convolution procluct_, U'ﬂmg Dz w2y -1
repeatedly we may suppose that each factor of 1 ou‘{;mdp of the (z.nnvnlu.
tion product appears to the right of each fictor of 2; and there still muast
be at least A more factors of Dy than 2 oulside of the eonvolution preduet,
By Lemma IT part (ii) and the fact that 2 v‘n.niﬁh_‘eﬂ ‘[vn_ ‘lih? otclor A ab
2, = (0 Wwe may move D} inside the first factor. Now Diee ( Dzl v (2)
equals a sum of terms of the form (Dya) vie) where 0 -2 - Aly~mal-b
£ 0 < p < @ then, as wo #hall show, we have a proper sorb of dlifforantial
operabor acting on & component of 'Fﬁ(z)* and noed procoed no further,
Clearly ¢ lying in this vange malkes the couvolulion produch o coms
ponent of (z)"; if we lamp together those Tectors of 1y aad g ins
side of the convolution product and those factiors putsido of the convoln-
tion product, we see that degree in Dy {14 k), degree in 2 (04 k), and
{degree in Dy — degree in &) have remained unehanged during the above
manipulations while degree in Dy has been. possibly decrensed. Recall
now that we convolute equations from (1) with (2p D) () where p << a;
thus, degree in D, oufside of the convolution product (iLe. ji) lios, in-
clusively, between zero and ity previous valae plus a-- 3. Now looking
outside of the convolution product, (degree in Dy — degroeo in 2, degree
in Dy (I s %), and degree in z (L £ k) are unchanged, Then by our
assumption that in (1)

(jp— degng? () (i a—1)"" > a1 il L
we have that the required inequality
(degree in D, — degree in z,) (degree in DYyt ad-l, i b AR,

holds hers.

If ¢ 0, then, by using an equation of type (2) for r(e) with
(Dr2)"r (2) appearing on the left-hand sido and sftorwards other equations
with lesser powers of (Dyz;) appearing on the lefi-hand sicle, we can express
(Dyer)"r (2} a% a sum of tevms of the form DR (D)o () whore 0 L
and 0 < d < p—0C << 0l b & a0, T 8 == 0, this puts £ in the douivad
range. Suppose d > 1, then hy Lexnma LT part (i) we may bring 1 ontwide
of (D}Z (Dpze) 7 (2 xpm(z) i we include “corvecting torms’ of the form,
{Dir(0) D" "*m(z), where 0 sl 6—1 < a-l-b (neglecting hoth coeffi-
clents in Q(3) and the differential operator which appenred in front of
{(Dh( Dy r{2)) xum(2)). For the terms where D% hak been hrought outside
we have that the degree in Dy outside of the convolution product is at
most 6— 1 larger than in the original term from (1); (degree in Dy -~

| oicm
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degree in 2;) has not decreased; and both (degree in .D;) and {degree in 2;),
l +# k, are unchanged. Thus the terms are all right.

The “correcting terms’® have degree in D; and degree in 2 unchanged
from the original term in (1) if I s %, while (degree in .D ; — degree in )
has increased by at least d—1— ¢ 0, which is all to the good, and degree
in I% has increased by at most ¢—1—e < a—1. Thus we are through,

Section. II.

Proof of Theorem II. Suppose that f{z) belongs to M and has
carrier f{z). Choose teY. One may check by differentiating that the
following equation holds for a set of g\ (z) independent of 2

(4 (Bd@) = Y[ X (—1){Dhe (=) D B o B ()] +

7 =0
+ (B o™ (2) + 5P (2)).

Now each ;6% (2) has property C, since property C is preserved under
B}, {use uniform convergence) and each ¢ (2) has property € (since
it is independent of z;). (The reader may wish to compare equations (3)
with equations (4). The fact that f(2) is not assumed to have property By
necessitates working with ., not E.)

Bquations {4) arve a set of equations of type (1) in B:f (2). Bvidently
we can apply i, where u is any positive integer and obtain a system of
equations of type (1) in Ef f(2). We write out the actual equation obtained
so as to demonstrate that the coefficient functions are matrices over

Q[i, 2z, u]l. Leb
o al
(b)= bla—b)!
Then.

BLfE) = 3 [ =0 (1) (ke e) D B ()| + o)

10

(1 < p<n) where each ¢”(z) has property 0. Obviously then we can
write equations of type (1) in

Bif(z) = [ [ B
k=1

with coefficients in the matrices over @[i, 2, 1], Next applying D” where
@y, ..., 0, are non-negative integers we obtain equations of type (1) in
D“BY}(z) with cocfficients in the matrices over Q[%, 2, w,s]. Let

I — max{|j|| j appears in this equation} > 1.
We define 7 o be 6" and 77" to be ', Setting u = nl's above we have
above a system of equations of type (1) in DT f(z) with coefficients in

Acta Arithmetica XVil . 3
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the matrices over Q[i,2, m,s]. Recall do(e) 1= 0 it ¢(z) has property ..
Applying A term. by term @bove we obbain a homoegenaons sot of cquations
of type (1) in AD" T f(z) with coctficients in tho malrices over
Qli, 2, 0,s]. (Also we note that AT VB v ADTT Y and AT s
ATT™! = A.)

We shall demonstrate shortly that for cach non-negative integer f,
AD® T-6+9 (any component of f(2)), may e expressod s o linear combing-
tion over the Noetherian ring ¢4, w, &, 2] of the objects wApe-s
(some component of f(e)), where 0« [j| <<l It owill then follow
by the ascending chain condition on finitely gonerated modules over
a Noetherian ring that for some non-negative infeger p there oxisbs
an equation of fhe form

"
() AD TN () = 3 Pif, 4, ) ADL T O (2),
il
where each pi(w, ¢, =) belongs to §{¢, w, s, 2]
 We shall next demonstrate a slightly stronger statement than we
actnally need; namely, that for each non-negative integer I the quantity

AD*H ), 0 il < nl,

may be expressed as a linear combination (over the matrices with entrvies
in @4, w, 5, 2]} of the different

ADCH Iy,  where 0 = 3] <l

If we obtain the desired identity for I == 1, thon thiy idendity plus the
one obtained from it by substituting ¢--1 for & throughout enable one
to handle the case when I = 2, etc. Therefore, without lows of penerality,
we need only treat the case where I equals one. We shall show that

ADmMTW(&H)jM(z)’ 0 J] =< nl’,

may be expressed as a linear combination {(over the matricos with enfrics
in @i, w,s,2]) of the

AD® 1 1--(5~-I*l')l]".—'(z) , W]‘l.ﬂ"l'@ nl 'y !j‘ w 2%['\"

We consider our equations of type (1) in ADT *f(z). Bubstitube
w47 for m and s--1 for & in these equations. Now choose the oquations
where p ==1. This gives us a way of expressing AD™ P E7 () ng
a linear combination of terms of the form ADH 7G40 F(z), for o new
collection of j, where (i) no j; has deereased, (ii) 0 < the increase in j; = [y
and (iii) the (inerease in j,) (the increase in j;)™* = n--1, it I # L (Use
the definition of I" and the inequalitios gatisfied Ly any equation of type
(1).) Using equations of this type repeatedly we may write our original
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term as a linear combination of terms where
al" <4< (n+1)T and j < al+m+1}n+1)"7 7 = (n+1)I7, i T #1.
Now use our equations with p = 2 to obfain a linear combina-
tion of terms such that »l <j, < w-+1)T, nl' <y, and f; < (B+2) 1,
if 1<l n In general, before stage p we have nl'<f; if I < p and
each §, < (m+p—1)1 for 1<<hk<n We obtain after the pth stage,
wnl << § i 1< p and each ji << (n+p)f for 1< k<C n Setfing »p = n we
have our desired identity. Thus (5) holds.
If we substitute « for z in (5), and substitute k4 (p4+6)(1, ..., 1)
for w we obtain, for nonnegative s, 6, and iy

)
(6) AT D"f(a) = D qls, b, 6) 4T~D 6 D"f(a).
i=1

(Recall AF°D*T—* = AT*¢° DY)

We wish to show that without loss of generality we may take the
qi(s, k, 8) t0 be in Q[4, s, b, 6]. Since [Q(¢, a):¢ (4)] < oo 1t follows from
(6} that the various AT~ 8° D"f(a) belong to a finitely generated module
over the Noetherian ring @[4,s, k, §]; therefore, an equation of type (6)
holds but with the ¢;(s, %, 8) in @[¢, s, &, d]. We ghall agsume in what
follows that the g(s, kb, 8) in (8) belong to Q[4, s, h, 61

Suppose case (i) of Theorem IT does not hold for th(é). Then there
exists 0< 8 < nl" such that an infinite number of the AT ™°6°D"f{a)
are nonzero. Set d = glax{(degs mis, b, 0)Ji7*}. Replace y, the upper

=7

bound of summation in (6), by x = ©(8, #) where g,(s) # 0 as & function
of s. Writing g,(s) for each ¢(s, b, 6), L <1< s, we have from (6)
I3
AT 6" D'f(a) = D q(s) AT V6 Df(a)  where  g,(s) # 0.
I=1

We wish to show that for some K, (%, y) which may be taken to be
larger than or equal to one :

AT 6 D*fla)| < (Ko, )87

for each s> 1. Since AT~ °0°D"f(a) is independent of the choice of ¢ we
set 1 = o. For an appropriate & = (&, ..., &) lying over ain ¥

| AT 0° D" f{a)|

= ((snl'—1) 1)~“[ f 1 - fn[(alwtl) e (t— )T D () Oty . Oy

< (B (b, s,

it s > 1, for some appropriate K, (%, ). Theorer IT now follows immedia-
tely from the next Jemnma, whose hypotheses we next give.:
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We suppose that F(s) is o function from the integers to the » by 1 '
matrices over ¢; that F(s) is nonzero for an infinite number of positive

integral &; that
"

Fis) = D a(s)F(s~3)
Frel
where each ¢(s) is an n by n matrix with ontries m @{,s], and the
determinant of ¢,(s) # 0; that d == n;mx[(degq; iy and that it

s> 1, [P} < (I8~ for gome Ky > 1 and A 0. (Recall [matrix|
iy the maximum of the absolute values of it entrlon.) Lot Iy (0 =0k
< p—1) denote an » by 1 vectior of Gausvian integers and ¢ denote o non-
zero Goussian integer,
Lemma ITL For each & > O there ewists ¢(&) = O suoh that
max (k)= Prq || 5 ale) gl A,
Iszloerp—1
Proof. We shall first show that without loss of generality we may
assnme that ¢,(s) is nongingnlar if ¢ 2= 0. Clearly if s is larger than gome
appropriately chogen s,z —1 then g,(s) is nonsingular. Tf we substitute
§—(s,-1) for s above then the conclusion of the lemma holds, but for
the function F{s,+14-s). This easily implies the desired conclusion
for the function F(s), if we ude the relatiouw

.’u
B(s) = ;‘:msww—:ﬂ
1epeamed1y to express F(sy-+1), ..., F'{8;— p-+2) ag linear cembinations
of F(0), F(— 1) 1f{~,u -1) ovor Qi)
Set W'(s (r(s oy F (8 p-+1)"). We have then

Wiis) = ¢ (8) W (s—1)

for some pm Dy pm matrix with entries in @4, §1 Choose n positive
integer I, such that I, (8) has entries in Z ﬁ a] (/ donotes the integers).

_“Th_en set W (s) = 1] ¢ V’{s) and g(g) == ” ¢’ (§), #0 wo have, if 830,

Ws) == () W(0).

The ent:r:iesr ilzeqa(s) are in Q[fé, #] and @(s) iy nongingulur if § 3= 0, Now

Jkp(eHl << (B 8)™ for some K =1, a8 con be keen by recursively subsli-

i s » . T E “

tuting for M (s—j) in the relation F(s) == > gls )Jf'(uw)) to oblain the
Fe

relation W(s) = @(8)W{0). Without loss of .g(mm ality wo may choose
- new K, >1 such thaet

(W< (Hs™)™ i s>1, and []qn(s){lae;_.(’[f,s)da-
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Define P by P* = (Py,..., Py ). We shall show that
W (0)—Pg Y = g~ *+%4=*  for all sufficiently large |gl.

We write _ : .
Wis) = @(){W(0)—Pg )+ ¢(s)Pg,
80

g(s}(W(0)—Pg') = —o(s)Pg™" —W(s)

which implieg that
lig () (W (0) —Pg ")l = ()P | — [ W ().

Now it P # 0, |lp(s)Pg | = lgi™", since g(s) is nonsingular for all ¢ 6
and the entries of P are Gaussian integers. Thus

lp(s)(W(0)—Pg )l = lgI 7" — (Eus™H%, it s=1.

Choose s, sufficiently large that (K,s7')* << 12977, and take it to
be the first such positive integer. Since K, > 1 we have s; > 1 and

(9 (Ko7 ')™ < 12¢)70 < (K7 )@Y,
Observe that — As,(logs,—logkK,) iz asymptotically equal to
— A(s;—1)[log(s;—1)—log K,].

Thus given &, > 0 there exists a positive integer & such thatif s, > N> 1

we have
(K1 1181 > (.K ( 1)—1)A(1+5)[81w1),

and, from (9) and our choice of s,
(10) (Fysy)™™ 2 12g] 0.

Tf s, < K, then (9) ean mot hold. Thus s, > K, > 1. For & > K, the
extreme left-hand side of (9) decreases in a strictly monotone manner to
zero as s; — oo, Therefore, if we restrict ourselves to values of g which
satisfy (K, N~ > |2¢/™" we must have s; >N and may use (10).
Algo we require that K < (K7 's,)". Now we have

iy lp (s) (W (0)—Pg )il = 124175
and
(if) lip (82)]] < (Ha8)%1 < (B (BT s) 1,

where 8; = As,(L+4&,)"" and 6, — d(1+e,}4~", which along with (10)
gives

(i) lp (sa)]] < 129720+ << 12417,
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where 8, = dA7 (1 eg)% Thus
(iv) W (0) g > 12npgl ™,

where 0, = 14+dA7 (1422 it P~ 0 and |¢| s sufficiently lurge. By
hypothesis there exists some & 5= 0 such that F(s) # 0; henee, W{0) 6’
50

[ {0)—0g™|| == |W(0)]] =- 0.

Now setting &A™ (L4 2)% = dA "} inequality (iv) i8 Keen to imply
the conclusion -of the lemma. i
Section III.
.Proof of Theorem IIX. (i) We shall wssume the negation of the
desired statement and obtain a conieadiction, Sinee AN Hfa(z) 20
we may assune ¢(g} == 0 i what follows with no loss of generlity, Roowll

is independent of the choice of t< ¥, Sinco

flz) = z“'(a»% Z z"\f't,ls,l(z))

7
we have, uging the hypotheses, that f{=) is hounded on

[
Xe=Jlx—{he v,
It onl
We restrict ¢ bo X and let £ — (0, ..., 0), Thiy defines & f(2) as an improper
integral and, by continuity, we have o

AT f(2) 2 ADMHf(2) < ADM I (2).
Under our assumption above we must have that

1 Fog— Iﬁan*’ . 2] E 1 o -
1}1{2(“11 YT My U by 4 ]-)(f (1l l)) b
o XD (bt Ry R 1) (D | 1)) A ot F'f () == 0
or ‘
k3

(1) U-[ {17 e 1)) G—ngiizl‘w(hmlm T 7’*1, 11 )‘[v(% . i)) Ty

=1
e X A - 1) {I‘(?-n.'{‘ 1)),_1(&1%& et DR Mgy (et} w25 00,

If we show that the limit in (11) 8 zexo then wo will have obiained

R

the desired contradiction since [T (1"~ 1)e # 0. Now cach w, (s) is hounded

{zl

icm
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on X, so one may obtain an upper bound depending on # for the absolute
value of each term in the (finite) sum under the limit sign. Using this
estimate, along with the easily proven result that [[ (1—ay) == 0 if each

=1
a, = 0,limg, =0, and D'y, = oo, We see that limit is indeed zero.
A—>00 =1

This contradiction proves part (i).
(ii) Again we may assume that ¢(z) = 0 and again we have

ABYDMf(2) = AD" B f(2) = AD*EB*f(2).
Now if « > |bj

DB (s ogzs ... Loga) = e{T(y,-+ DT (yy-bu—hy+ 1)) 71
oo X Dy (g + =R+ 1))_127”““_]’“} logz, ... loga,—+¢.(2)
where ¢, (2) has property C. Thus if % = [h],
ADVE f(z) = (@mi)" el (p,+ 1) (T lpy +w—hy 1)) 20 x
e XDy 1) (Db = By - 1)) Fnretn LA Dt B (Z z"”iwi(z)).
: 7

The same type of argument as before goes through now.

(iii) We wish to show that if r(z)eRy (1< k<< n) then r()*f(2)
has the same properties as those which were hypothesised for f(z), which
will suftice to prove (iii) in light of parts (i) and (ii). Recall 7 (2) = 7y (%) -
1y where 7, (z) belongs to Ry, n belongs to €, and 4 is the formal iden-
tity. We note that if m,(z) and m,(2) both satisfy the hypotheses of (i)
(or (ii)}, for y™ and »* respectively, and " > »® (in the sense that
each component of ¥ is larger than or equal to the corresponding com-
ponent of ¥ with inequality holding at least once) then My (2) -+ Ma {2)
satisfies the hypotheses of (i) (or (ii)) for y®. Thus we need ounly show
that if #,(2) eB; then () f(2) satisfies the same hypotheses as f(2),
but for a larger value of y. Obviously we may assume 7 (25) 2= 0.

Tach 7y (2)#x4:(2) is defined for every L<<I<n and hag property
A; by Lemma T part (il). Further, boundedness on gach product of finite
angular gectors (in the different ¥3) follows immediately. In what follows
without loss of generality we take ¢(z) = 0. If

7y (2y) = age® -+t ra(en)
where § is a positive integer and a; # 0 we have
ry (o) of(2) = as8! BT F(2) 4 (27 ma (o)) #0f (2).

Tn case (i) above ES f(2) is of form (i) with 22" replacing #” and ¢(2) = 0.
Tn case (i) we obtain the result that BT f(z) is of form (ii) with & ot
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replacing 2' and ¢(e) bounded on each product of finite angular sectors,
Finally in each case

&2 P () i ()]
iz bounded on every product of finife angular sectors. This provey Theo-
rem III.
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A general class of sieve generated sequences
by
M. C. WunprrLIicE* (De Kalb, II)

There have been a number of recent investigations (see hibliography)
into the density of seqnences of integers which are generated by a sieve
process. The sieve was always set up to be stochastically similar to the
sieve of Hratosthenes, but with the exception of Buschman’s [2] recent
formulation of the sieve, none of the sieves were stated with enough
generality to include the sieve of Eratosthenes. Thus, the theorems which
were obtained were only of intrinsic interest, and did not make any real
progress toward a new sieve proof of the prime nmumber theorem if such
a proof is indeed possible. In this paper, the author describes a sieve
process in a very general context so that the prime number gieve as well
2% the lucky number type sieves can be described. Conditions are then
obtained which imply that the sequence generated is prime-like, that is,
the sequence {a,} satisfies-a, ~ nlogn.

1. The sieve process. The sieve process which generates the sequence
A = {a,} can be completely described by a mested sequence A > 4A®
= A® ... where each A® is itself a sequence of positive integers which
we will denote by {af"}. We will take 4™ to be the sequence of all integers
greater than 1 so that al’ == k-+1. 4 = {a,} is then the set theoretic
intersection of the 4%, For each n =1, we will let the sequence {3, (%)}
deseribe the elements eliminated at the nth sieving in the following way:
Let

a'.(si;?(l) < af(s:l,b)(a) < a;éz)(s} < ...
be the elements contained in 4™ but not in A™+'). Thus the sequences

{8.(%)} completely determine the sieve process.
We will furthermore assume the following conditions:

- (a) 8, (1) > n.
(b) For each n, s, (k) ~ ha,.

* The research for this paper was supported in part by N8F grant GIP-7331
at the Btate University of New York at Buffalo. )



