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4.3. THEOREM. Suppose {ap} s gemerated by a sieve which satisfies
the following conditions:

(a) For each &> 1, 4y = ola(k)— a(k—1)).

(D) alk) ~ sp(1) ~ cla)(loga,)’ for L<a<e and ¢ > 0.

Then ap ~ klogh.

It should be pointed out that the theorem above cannot yield o proof
of the prime number theorem sinece we know that the first number elim-
inated at the kth sieving iy (pp)?. This fact together with the second
condition in the above theorem immediately implies the prime number
theorem. It would be interesting to know whether Ay = o{w(k)— a{f~- JI,))
holds for the prime sieve. Since a(k) = §(ap)*/log(ar) and @y = klogk,
we are asking whether 4z = o(kloghk). This question has already boon
posed by Buschman [2] and some computational evidence made by the
author seems to indicate that the condition holds.
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On a question related to diephantine approximation
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1. Introduction. In an extension of a result of Cassels [1], Daveupor.t‘
[4] proved the following theorem ovn simultaneous diophantine approxi-
mation. Tet AP, ..., A (g =1,...,7) be r sets of k real numbers. Then
there exist continnum-many sets of real numbers ay, ..., oz such that
(1.1) max ||(a; 4 Ay wf® > Cju

Lgfsk
for every integer u > 0,andforg =1, ..., 7, where Cis a positive consgtant
depending on r and &, and || represents the distance from x %o the nearest
integer. -
As was also noted in [4], relation (1.1) has & simple geometnc;‘al
interpretation. Let L; (g=1,...,7) be r lines through the origin .in
(k+1)-dimensional space defined by the equations

(1.2) g—ilmy =0 (j=1,..., k),
and suppose that we surround each of these lines IL; by a tube
(1.3) o — D ag) < min(l, lz,l"*) (G =1,..., ).

Then relation (1.1) implies that there exist continuum-many lattices
with no point {except the origin 0} in any of the tubes. In fact, we may
define the lattices by

(1.4) U g = gy, OHE gy = gy (f =140 k)

Now by calling upon a standard transference principle (seg, j?OI"
example, [2], chapter 5, section 2), Davenport showed that (1.1) is equiv-
alent to

(18) . I j (o )| > O amaz )™,
f=1

for some congbant ¢; > 0, and all sets of & inftegers w,, ..., U, not all 0.
Relation (1.5) has a geometric interpretation dual to that of (1.1). Namely,
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i P,{g=1,...,r) are # hyperplanes in (k- 1)-space defined by the
eqnations
(1'6) mﬂ“{"l&l)mj"%"‘...—l—}ggﬁ)lvk = O’

and if we place a layer around cach of these hyperplanes:
(1.7 (g0t 2ty ] < (14 max o)™

then there exist continumm-many lattices with no points except the
origin in any of these layers. Here we may define the lattices lry

(1.8) CHCHNg — gy byt b apty, O oy =y (J=1,..,k).

Since the two types of lattice, (1.4) and (1.8), given by Davenport
are inconsistent, the question was asked in [4] whether, given any finite
set of lines and hyperplanes through O, there was a lattice that wonld
simultaneonsly avoid the tubes and layers around them. We will show
hers that such a lattice does exist, in fact there are continuum-many
of them.

We would like to thank Profegsor Davenport for & number of very
useful suggestions.

2. The main theorem. We will state and prove our prineipal result
first for 3-dimensional space, since thig will contain all the essontials of the
general case. The general case will he presented in Section 4.

THROREM 1. Lef v lines Iy, defined by the equations
{2.1) y—Age =0, s—po=0 (g=1,...,7),
and s planes Py, defined by
{2.2} e+ Byt+-pr =0 {(I=1,...,3),

be given, each passing through 0. Then there exists a lattice A and o positive
number o such that every point (z, vy, 2) of 4 other than O satisfies

(1) max(ly— 2,2, le— peel) > omin(l, [217) (g =1, ..., ),

(2) lo+ 6,y +@rl > p(L-+max{|z|, ly], [2)™* t=1,...,9).

In fact, the set of all such laftices has the cardinal of the continuum.
Proof. If

0 = (dy1y Gays Gg1y Ciay Con, Cagy (yzy Cogs Ugy)

is & point in 9-dimensional space for which the three vectors

(a1, agry aig) (J=1, 2? 3),
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are independent, then we may associate with « the lattice 4 = A(a)
of points (z, ¥, 2) given by

T = Oy U Q¥ a3,
(2.3) Y = Oy Ut pe D+ OaaW,

2 = Oy Ut Gyt 03 W,

as u, v, % assume all integer values. Moreover, about each such point
@ i & neighborhood N (o) in 9-space in which the correspondence between
points and lattices is one-to-one. That is, each point o in N {e) corresponds
to o basis of a latfice A, and no two points o, o' in N{e) correspond to
bases of the same lattice. Conversely, a lattice A given by (2.3) defines
a point ¢ in 9-space such that 4 = A{e).
We will denote by 7'(a} the linear transformation (2.3) with matrix
{ai], and write 4 == A(a) for detay.
We define the distance hetween two points e, ¢’ to be
la—af| = max a;— ayl.
1,7
With the point « in 9-space we associate also the adjoint point o,
defined by
Ay
4(w)

Ed
@y = )
where A is the co-factor of a;. If the coordinates of a, three-by-three,
determine three independent vectors, then the same is true also for a”.
The lattices A(a), A(c*) are then polar lattices, and T{(a), T(a*) are
polar transformations. We will denote the function from « to ¢ by =.
For the moment, we reduce our problem to one involving only lines
by replacing each of the planes P; by its polar reciprocal L}, the line
through the origin and perpendicular to Py. Let I} be given by the equa-
tions

(2.4) y—ie=0, z—uo=20.

We begin the search for a lattice A satistying (1) and (2} by ehoosing
a lattice 4,, a point a, such that A, = A(a), and. a (small) positive
number 8, so that the following conditions are satisfied. We will impose
further restrictions on &, as the proof progresses.

(I) A{eg) # 0 and 4§, iz small enough so that the correspondence
between. points a and lattices A(e) deseribed earlier is one-to-ome for all
o in the hypercube €, = %,(ay, 24, of center o and edge length 24,.
In faet, §, is small enough so that there exisis a number D > 0 such
that 14(a)| > D for all ¢ in %, and all ¢ in (%) .
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(L) There exist positive copstants I, K * such that (i) if (a,l)
iy any hypercube in €, we may extract from (%) a hypercube Z{u", I'}
such that I — K*1, and similarly (i) if @(a”,¥) is any hyperenbe in
7z(%,), we may extract & hypereube % (e, 1) from 7~ N @) such that § == KI'.

(I11) There exists a positive number H such that tho set of deter-
minants

Gy — Ay Ugg— B
(2.5)
Ogj— Altyj  Cgf= iy
are all in absolute value greater than I, where (i, j) muy take the values
(1,2}, (1, 3),(2, 3}, where a == (ay) 18 any point in %, or in «(%,), and
where 4, 4 Tuns over the r+s paixs of numbers 4, py and Al ey given
m (2.1) and (2.4).

Condition I implies that the Jacobian of = is not zere in &,. Con-
dition TT is merely a restatement of the fact that = is approximately
linear around «, (this follows from I). Without loss of gencrality wo may
agsime that none of the lines I, or Lj lies in the ¥, z-plane. Condition 111
then has the effect of not permiting any of the basis vectors of A(aj,
for ae®, or aem(%,), 1o be too close to any Ly oxr Ly, and, in fact, of not
permitting the plane determined by any pair of basis veectors of A(a)
to be too close to any L, or Lj.

The scheme of the proof is as follows. We will constauet two nested
sequences of hypercubey in 9-space, €p{w,, k) and .@,,J(u‘,",‘,, L,’A), with

p 5= 28, = LR, 1, =20, =R,

(2.6) - . ’ . ' 1/2 - 3/2
I, = K, max(ly, 1) < 2KY R,

where £ > 1 and K, are constants which will be chosen later. Morcover,
for any « in €,, no point of A(a) (except O) which is the image under
T(a) of an integral point (u, v, w) with max(jul, |v], w|) < B* will fall
in dny of the tubes

(2.7) Wy Aol < gmin(l, o7, e—ppml < gymin(L, o)

g=1,...,7 around the lines Ly,. ¢, iz a fixed small positive numhber
which will be chosen later, and which will depend only on A,. Similarly,
for every o in £,., no point of A({a) except O which arises frora one of
these integral points will fall in any of the tubes

(28)  ly—Aial < eumin(l, lo7),  je—piel < guminl, ol

{t =1,...,s) around the lines L;. The intersection of the sequence of
hypercubes {#,} will yield a point o, and the infersection of {%,} will
define a point o* (the point defined by (M2, will, indeed, be the adjoint
of the point given by () €,, since the centers of %, and 2, are adjoints
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for every n). A{«) will have no point except O in the tubes (2.7) around
the lines Ly, and A{a*) will avoid the tubes (2.8) around the lines Ij.
We will conclude the proof by uging the relation between polar reciprocal
bodies and polar lattices to show that A(a) also has no poinf other than
0 in layers about the planes ;.

LuuMa. Suppose ae?, [aen(%,), resp.] and suppose that U is a posi-
tine number. Let L be any of the limes L, or L7; say L is defined by the
equations y— i = 0, 2—ux = 0. Then there exisi constanis 4, B, C, not
all zero, such that if A(a) s any laitice for which

() ae®y [wen(%,), resp.], la—a] < K U,

(b) T{a) carries some integer point (u,w,w) (#£0) to L, where

max (ful, [v], wl) < U,
then the coordinates of a satisfy

{2.9) AT(gp— Acrys) {@z3— pttyg)— {Qag— Aeyn) (tag— phzys) ]+
+ Bl(aga— Aoryy) (ag— phetyg ) (Oay— Adyy) (2as— pog) 1+
+ O[{ag— Aoy} (g — poigs) — (Caa— Aoga){ttg— shayg)] = 0.

Remark. 4, B, ¢ will depend on «, U, and L, but not on A(a) or
on (w, v, w). The lemms really makes a statement about a collection ot
points which are close together. In the proof of Theorem I, the role of
@ will be played by e, and oy, the centers of ¥, and %,. The constant
K, is defined by

Ky = H27°37 {1+ max (4], 1w},

where 4, # Tung over the set of pairs A;, u, and X, ui which define I,
and L¥. K, depends only on A, and on the lines Ty and Lf .

Proof of the lemma. For simplicity, let us asswme first that L
is the z-axis and ae?,. Suppose that A(a), A{a’), A(a”") are three lattices,
with a, o', o”’ in %,, such that la—a| < 8, and similarly for o and o”,
where 6 < K T~%, and such that T'(a), T(a’), T(s") carry the integral
points (u, 0, w), (w0, w), (@, o",w’) respectively, to I, where
max(|ul, [, lw)) < U, and similacly for (', ', w’) and (#', 0", w').

Let us write

w v w
G= u 2 w
w' v w
We have then
1 oy O D 0 0 f

(2.10) G 10 gy g | = | U 551%'*\“5;2’0"1‘ ey ﬁ;1%’+ﬁ;zﬁr+ﬁ;awr 3

0 ay ap W' B P’ Basw’! By v+ Buw’’ |
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where pi = ay— o, fiy = ay—a;. 1t follows (see condition IIT) that
|G| H < 283252 U9, and therefore that |G| < 1. But the entrics of ¢ are
all integers, so G must be an integer. Hence ¢ = 0. We conclude that all
integral points (u, v, w), with max(|ul, |0], [»]) < U, which arec mapped
to Lby some T (c) for which ae%, and |a—a| < Ky U7, satisty a relation
{2.11) Au+ Bo+0w =0,

with A, B, ¢ not all zero. In other words, all such integer points lie on
a plane through the origin. 4, B, ¢ do not depoend on r ov on (%, v, w).
Sinece T'(«) carries (u#, v, w) to the m-axis, we have the relationy
0= aglu‘i— CCEE'U“‘P' aaaw’

(2.12)
0 = ag U+ agv+ ayw.

From (2.11) and (2.12) we have
(2.13)  A(cgtsa— tay0as) -t Blugytigy— aay @gy) + Oy dpe— tggagy) = 0,

which is (2.9) in thé special cate A = p = 0.
TFor the general case when L ig given by y—Ar = 0, 2— ux = 0, we
replace the left-hand side of (2.10) by

1 an—dey og—pen
G0 agp—Aayy oy3— gy
0 ap—Aays ag—pan

and proeceed ag before. That proves the lemma.

" Returning to the proof of Theorem 1, we will show by induction that
we may construct the sequences of hypercubes %, 2, with the required
properties (i.e., those given in the sketch of the proof). For the case n = 0,
we already have a hypercube #,{a,, I,). From n{%,) extract a hypercube
Do(ag, b)), and from =~'(D,) extract a hypercube %{(ay, V), with
i = Kl;, and such that max(i®, ) < 2K R We now assume
that €; = € and I, = ). This is permissible since a reduetion in the
§ize of I, will not affect any of our previous work. Since there are no
integer points (u,v,w) with 0 < max(|u], |0], w|) < R°, the properties
required of ¥, and %, are matistied vacnously.

Let us sappose then that @,(a,,1,) and @ (ay, 1) have been con-
structed satisfying (2.8), and such that no T'(a), tor ¢e%, or ae,, corries
an integer point (u,w,w), with

1 (2.14) 1< max(jul, o, lw)) < R”,

in1?0 any of the. tubes (2.7) or (2.8), respectively. Consider the set of all
¢ in %, for which T(a) carries an integer point gatisfying

(2.15) B < max (jul, [2], lw]) < &

On a question related to diophantine approxzimation 63

to the line I,. From the lemma, applied with @ = @, and U = R™*
(it is here that we need max(l,, ) < 2K;"R™?), we see that these
« satisfy relation (2.9) for some A, By, 0, not all zero, with L = 1,
M= Hq- .

Dencte by o, where g =1,..., 7, the linear transformation that
takes the point (ayy, @ay— Agti, @n— pg@irs Crpy Cap— Agliys, sz — HgG1z, G1ay
Gog— Agliia, Gas— figGys) TO the point a = (az). Define ¢ (t=1,..., s}
anglogously. Suppose L, = I,. The transformation ms, carries %, to
a slightly distorted pavallelepiped and takes the surface (2.9} (with 4, B,
C, A p=A4,, B, €y, A, gy, resp.) to a plane. Hence we may choose
a parallelepiped # from. mo (%,), and chooge from £ an “octant” #’ that
avoids the plane. We may then choose a hypercube %, (1, b} from
o7 'm (@), If 1, is small enough, this can be done so that &, , = 277,
No a in %, satisfies (2.9) with 4,B,0C, 2 u = Ay, By, Oy, Ay, by
Tesp.

We repeat the process, transforming 4, ; by noy, extracting an octant
to avoid the corresponding plane, and transforming baek fo get %, ,-
Then we transform %, , by noy, and so forth. After repeating this operation
r times, we get a hypercube @y »(a, v, In /) With the property that if a <%, »,
then « does not satisty (2.9) with 4, B, O, 4, p = Aq, By, Oy Ag, tig,
resp., for 1 < g < r, and so '(«) does not map any integral points satistying
(2.18) onto any of the lines Ly, ..., L.

(IV) We will assume that 7, is small enough so that this process
may Dbe carried out with

by = 27",

Next we map %, to the adjoint space, and we extract from 77 (G v}
a hypercube @, .(a,, b,), where b, = K'l,,. We now carry out the
construction of Dy i1y -evy Dupysy WhEre Pupiy > Dprpgin {(1=0,...
oy §1), using the transformations 76t , ..., wo; and avoiding the
appropriate planes. 'We have finally a hypercube D prs(Gnrpss lnposh
where '
(IV’) we assume that I, is small enough so that

¢ e I
In.,r-;-s =2 Zn,r«

(Assumptions IV and IV’ arve possible since the transformations gy, o
are linear and, as noted before, » is approximated by a linear transfor-
mation in a small neighborhood of a,.) For any a in %y, ,.., the corres-
ponding T(c) will not map any integral point gatisfying (2.15) onto any
of the lines L}, ..., L}. Finally, we extract from @' (D rye) » hypercube
@rrs(Onresy bups), Where Ly, s = Hlppyo. We have then

T%,”s — 2_(r+s+2)KK$lm Z':’L,J'«]—S — o—{r+s) pr* l:u-



@
64 D. 1. Goldsmith Im“

We have shown that T(¢) maps no integral point satisfying (2.15)
onto any of the lines I, if ais in %, ,.s, snd none onto the lines L it «
is in @ppys. In order that the lattices should have no points in the tubey
surronnding these lines we will remove a border from @y, and 2 ,.,.

‘Tet K, be a positive constant, depending only on «, {for d, small)
such that if Ja—a,| < 8, and if T(a) carries (w, v, w) to (@, ¥, 2), then
2 byt he? > Ki(wt+vi+w?), and gimilaly i T'(w) takes (w,v,w) to
(%, v, 2) where |a—a;| < d. Also, let Ky be a positive constint depending
on the lines L, and Zj such that, if (#, ¥, #) lies in one of the tubes (2.7)
or (2.8), then |z| > K3{z*+ g+ 29" (recall that we have assumoed uone
of the lines I, or L; lies in the ¥, 2-plane).

We congtruct €,., by removing feom €0 0 border of thicknesg
B, and @,,, by removing from @, a boxder of thickness fi,, where

bo = o (K+ V) ESPESRT™, L = M

We have to show that this construction of the sequence of hypercubes
%y, Dn is possible (roughly speaking, that the border is not foo large
to allow us to iterate the process), and that if e, o arve in %up1, Doy
Tesp., then A(a), A(a’) aveid the tubes (2.7), (2.8) resp. (in other words,
the border is large enough).

I, and I, have already been chosen to salisty various conditiong,
To show thal the construction of the hypercubes is possible, we must
show that R and ¢, may be chosen, independent of », ko that (2.6) holds.
We need &, = [, R7CI2 Since

by =LE™  and Iy =2 CPTIRE 20, (K -+ 1) KPR R,

we take '
or+etd KK*K%“KH [

Tﬁ“? @1 = T

2.16 RV = praai
( . ) (I - 1)2r+e+s

{The order in which the constants are chosen is: first R, ag in (2.16), then
1, and I to satisty T-TV' and max(l, I) < 2K3* R, then ¢, a8 in (2.16).)
It iz easy to verify that (2.6) is satisfied.

Finally, we must show that %,., and 2,,, carry the inductive prop-
erty; that is, if « is in €,,,, then T(a) does not carry any integral point
(u, v, ) satisfying (2.15) into any of the tubes (2.7), with an analogous
result for « in @y,,. Suppose, on the contrary, that T(z) does earry such
an integer point to (z, ¥, 2), where (z, y, 2) is within the tube (2.7) around
L;. Bince (u?+v?+w?)' > R", it follows that (#*--y2-e%)"® > K, R",
and o the point (z,y,2) differs from the point (#, A, y,o) on L, by
at most g, Ky ' K;' R™™" with respect to each of the - and 2~ coordinates.
Thus, since max([ul, ||, w|) = B", we need vary the components ay
of « by no more than o, Ky '* ;' R~ $o find a point o’ such that T(a')
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carries {#, v, w) to L,. Bub this is not possible, for o’ would still be within
the border around %,.,.
The reasoning for %,,, is the same,

3. Completion of the proof. In the preceding section we constricted
two nested sequences of hypercubes, &, (ay, L), Du(an, ln), With 1,, I, — 0.
The two points a, «* defined by their respective intersections are, as was
noted earlier, adjoint points. Moreover, T'(u) carries no integral point
except O into any of the tubes (2.7), and T (a*) carries none into the tubes
(2.8). We will conclude the proof by demonstrating that A(e) has no
point except O in any of the layers

(8.1) 2+ 6,9+ iz < @{1-+max (|, ly|, Jo)}

around the planes P; (t =1,...,s) for some suitably small positive
number g.

For simplicity, let us suppose that P; is the v, z-plane, so that L;
is the z-axis, We would then like to show that 4 (e) has no points (except
0) in the layer

o] < {L+max(lzl, |v], lel)}
for some 5 > 0, or, equivalently, in the layer
(3.2) o] < ' (L4 g7 +2?)

for some positive ', It is, therefore, sufficient to show that there exists
n’ > 0 guch that, for every W > 1, all points of A {a) other than O satisfy

(3.3) Yot < W2 = o] > g WL

Relation {3.3) will hold if there exists 4 => 0 such that, for every
V1,

(3.4) TR g L PV TRy g?) > 65,
The set of points defined by (3.4) is simply the exterior of the ellipsoid
(8.5) STV L BBV R (22t =1

after shrinking by a facter 8%, So it is sufficient to show that & exists
such that, for every V > 1, the ellipsoid (3.5) has first minimum y, > ¢
with respect to the lattice A(a).

The polar reciprocal of the ellipseid (3.5) is the ellipsoid

(3.6) VXL 5T V(Y2 22) = 1.

Suppose that y,, y,, ¥a are the successive minima of the ellipsoid (3.5)
with respect to the lattice A{e), and that »,, v, v, are the successive
minima of (8.6) with respect to A(a*). The numbers yy, ¥s, ¥ss ¥1y ¥2; ¥3

Acta Arithmetiea XVI1 L]
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depend on V. However, since the volume of the ellipsoids {3.5) and (3.6)
is independent of V, we conclude from the well known regulty of Min-
kowski and Mahler (ses, for example, [3], pages 218, 219), fhat there
exist positive constants A, 4., 45, 44, which depend on the dmmnsmn
of the space (and, in the case of A; and 4,, on 4(«) and A{a"), hence
wltimately on ), but not -on ¥, such thab

(3 7 LA K yapays < Ay, Ao Ay,

' A<y, AgKyaon < Ay Ay vgeg =L Ay

It follows then that y, > 9i4d,/4,, so it i3 rufficient to show that »,
= 8Y5(A,/A,)"". Thiz means that the ellipsoid (3.6), attier haviog Deen
shrunk by a factor 8Y(A4,/4,)"% should contain no points of A{a*)
other tham 0. In other words, it is sufficient that for every V > 1 all
points of A(a ) except O should satisfy

(5.8). _ a““ VXL 5 YT 22) > 8104, )4,.

Relation (3.8) will be satisfied if there exists & > 0 such that for every
V > 1, and for every point (£ 0) of A(«*), we have

(3.9) X| < 87 PTHAAYE = T3420 > 572 (4,/4,).

Now we know already that A(¢*) has no point except O in » tube
around the X -axis. Suppose this tube is given by

810y~ Y2 < (- + 1)

for some sufﬁelently sma.ll ¢g- This means that for some small gy, for
every point of A(a”) except O and every 0 < W < 0s(dyfds) we have

(3.11) V42 < W | X| > g, W

This is Just xelation (3.9) with 6= g}(d,/d,)% V= VW YA,/ 4,0,
Heuce A(cz) avolds a layer of the torm (3.2) around the y,zplane for
gome 7' > G, .

CIE I s not the z-axis, rotate I to coincide with the o- mxm, repent
the above procedure using the rotated images of A («) (md A(e"), then
rotate I; back to its original position. Thug A(a) avoids a Layor around
-each of the planes P;. For the value of o in the statement of the theovem
we may tiake any positive number less than g, and less than the values
of n that arise in the above process from each of the lines L. _

To show that there are in fact continnum-many such A(a), we note
that we could haveé replaced % and 2, by any one of their octants (at

the cost of reducing the value of g), and so had several choices at each
gtep in our construction of A(a). -
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4. Extension to k11 dimensions (% 3= 1). The extension of Theorem 1
to higher dimensions offers no diffieulty. We asscciate with 4 a point
a = (a) in (k4 1)>-dimensional gpace. The construction of the hyper-
cubes €, and @, proceeds as before; now I, = LB Y Again we get
two polar lattices A(a) and A(a"). The relations analogous to (3.3)
and {3.4) are

(4.1) BEb . ah < WP = g > g WF,
(4.2) TGN PR L PIETD Yt L gy > SN

and we eontinue in a straightforward manner to prove
THEOREM 2. Let v lines L, defined by the equations

(4.3} t—iPD2e =0 (J=1,..,k g=1,...,7),
and s planes Fy, defined by
(4.4) Bot pley . i =0 @E=1,...,9),

be given in (k-+ 1)-dimensional space. Then there exists a (k- 1)-dimensional
lattice A and o positive number p such that every poimt (mg, ..., o) of A
other than the origin satisfies g

(1) maxuw,—ﬂ“’mun > gmin(l, lml™) (g =1,..,7),

(2) Iwﬁ—m T+ .. +;a”cckl>9(1+m?Xlr¢) t=1,...,8).

In fact, the set of all such laitices has the cardinal of the condfinuum.

We are thus able to construet a lattice which simultaneonsly avoids
tubes and layers of appropriate thickness around 1-dimensional and
k-dimensional subspaces, respectively. The question of finding a lattice
that avoids subspaces of intermediate dimension remains open.

5. Infinitely many lines and planmes. We close by showing that with
only minor medifications of the preceding argument we can prove the
analogs of Theorems 1 and 2 for a denumerably infinite set of lines and
planes passing through the origin. For simplicity we will oufline the
required changes only for the three-dimensional case, the extension to
higher dimensions being straightforward.

TuworEM 3. Let Ly, Ly, ... be a sequence of lines ﬂwough the omgm,
say Ly (g =1,2,...) is deﬁned by

(b.1) Y—rtor =0, g—pgzr=20.

Also, let P, P,,... be o sequence of planes through the origin; sey P, (¢
=1,2,...) i¢ defined by

(5.2) _ _ T+ Ogy + gz = 0.
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Then there ewists & Sequence of positive constants g, (g == 1,2, '").Md
continuum-many lattices A, such that every point (x,y,2) of A sabisfies

(1) max(ly— A&, 2— s} > o min(l, o™ (@ =1,2,...),

(2) e+ B+ pa2| > @q(1+max{1m|7 [yl lz|})—2 {g=1,2,...).

Proof. We begin the proof as in Theorem 1, associating lattices
A with points o in 9-space, and defining T{a), 4(a), la—a'| unq *a* a8
before. We replace the planes Py by their polar reciprocal lines L, and
suppose that Ly is defined by
(6.3) y—ite =0, ez—pgw=0.

Next we chooge a lattice 4, a point a,in 9-space sueh that Ay == 4 (ay),
and a small positive number 3, to satisty conditions (1) and (IT) and also
conditions (IV) and (XV') with # = s = 1. (We do not apsume condition
(ITI) sinee this would irapose a needless restriction on the lines Ly and L7 .)
‘We suppose also that a positive constant M = M (a,) is given such that

(5.4) oy < M

for all « in %, and in #(%,).
The scheme of the proof is ag follows. We will construet two nested

sequences of hypercubes in 9-space, Gyl 1) and Dy (o, 1y, with
(5.5) D=2, =LE™, I, =28 = LR 1, = Ky,

and
(5.6) max(ly, i) < 2K R,

where B > 1 will be chosen later and K, = D31 M. X, plays the role
that K, played in Theorem 1, but depends only on Ay, not on any of the
lines I, or Iy . Now for any positive integer # we may write

n = 207114 2m),

where ¢ = g(n) =1 and m = m(n) 2 0 are integers uniquely determined
by n. Using a modification of the Lemma of Section 2, we will constrach
the hypercubes %, and %, so that, if ae®,, T(a) does not map inbo the
tube

(B.0) |y @l < gemin(L, (277, o el < gemin(l, |ni"t)
(g = g{n)) around I, any integer point (u, v, w) satislying
(5.8) B < mac(jul, ol o)) < B

and similarly if ¢, , then T (a) will not carry any integer point satisfying
{B.8) into the tube

(5.9)  [y—ipal< gpmin(l, 37,  le—pgel < gumin(l, |2l
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{q = q{(n)) around IL;. The constants g, ( =1,2,...) will be chosen
later. In this way we will determine two adjoint points a and o, such
that A(a) will have no poinfs in the tubes (5.7) around the lines L, (g
=1,2,...) and A(a*) will have no points in the tubes (5.9) around the
lines Iy (g =1,2,...). The Theorem then follows from the method of
Section 3.

The modification of the Lemmsa which we require to construct €,
and 2, as described above is simply a replacement of K, by K, in the
condition lo—a| < E}? U™ in the hypothesis of the Lemma. The
proot of the Lemma in the new form follows the original proof quite closely,
except that we replace the determinant

1 ay—Aty fa— H#en
0 ogp— Aty Gg— ity -

0 opg—Adyy Qgg— fithg

by the determinant

Oy Ogy— Allyy  Ugg— O3

Uayn fas— Alge Gap~— p0ys | = lagl,

@y CGog— Allia  @az— $Cag

and alse we assume that || < 2, |¢] < 2 (bhis can always be accomplished
by an appropriate interchange of the axes).

The construction of the hypercubes now offers no difficulty. We
proceed as before and (with the previous notation) obtain two hyper-
cubes

Er1,2{tn_12, lh1z) © €an and 9?1,—1,2(@:—1,2, Z;a—m) c Dyay

where
lp12 = 2_4’KK*Z,1_1, Z;_l,g =97 *KEK*l,_,.

No T(a), for ae®p_,z, carries an integer point satisfying (5.8) onto Lgeny s
and similarly no T(a), for ae@y, 5, carries such an integer point onto
Lg(n). In order to form %, we remove from €, ;. & border of thickuess
Bn.1, and to form 2, we remove from Z, ;, 2 border of thickness
Bny =K 'f,_y. For the value of ., we take

(5.10) By = oo (K1) KT M RECME (g = g(n)),

where M, (¢ =1, 2,...) is & positive constant depending on L, and I
such that if o point (@, ¥, 2) of A(a) or A{a*) lies in the tube (5.7) or (5.9),
resp., then

(5.11) ]$| > Mi(z2+ g2t 22,
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(I, may be taken positive since without loss of generality weo oy assume
+hat none of the lines L, or Iy lies in the y, z-plave.) It is casy to- verify
that the hypercubes €, and %, have the required properties if we lef
2° ~ (EEY KM,
. a2 JES L A .

(5.12) E TE & (K1) gsel+1

Ag we noted earlier, the Theorem now follows from. the work in
Section 3, for the avoidance of a tube around Ly by 4(a”) is equivalent
to the avoidance of a layer about P, by A {u).
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ACTA ARITHMETICA
XVI (1969)

The average order of twe arithmetical functions
by
M. M. Dopsox (Auckland)

Let F (k) be an arithmetical function of the poéit_ive integral "vé.ri&b]e
k. If there is a simple function of %k, f(k) say, such that
DR ~ DfR,
<N RN
then we say that f(%) is the average order of F (k). In this paper we establish

an asymptotic expression for the sum Y f(k) when F(k) satisfies certain
. k<N .

conditions. By considering two special cases we obtain the average order
of two arithmetical funetions. First we show that the average order of
the function I (k), introduced by Davenport and Lewis in their work

. . 212 .
on homogeneons additive eguations [3], is w. Then we show
that the average order of the function I'(%), introduced by Hardy and
5n%k
Littlewood in their work on Waring’s Problem [5], is-—i—:;;%g. We

make use of a resulf in Sieve Theory on the distribution of primes and
the nnderlying idea is that, with a permissible error, the values of % for
which the function ¥ (%) is large have a simple distribution.

We begin with some notation and lemmas. Throughout this paper,
% will denote a positive integer, N a sufficiently large positive integer
and p a prime. We shall always write r = [(log N)?], the integral part
of {log N)% Also we shall always write d = (k, p—1), the highest common
factor of & and p—1.

Now for any given prime p, we can express the positive integer & as

—1
{1) E=p'dn = p”%m,
where % is divisible by ° but not by p"™ and where d = (k, p—1) and
—1
1= pT Thus in the representation (1) of an integer % we have

(m,p) =1 and (f, m) :(%1, m) =1



