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(I, may be taken positive since without loss of generality weo oy assume
+hat none of the lines L, or Iy lies in the y, z-plave.) It is casy to- verify
that the hypercubes €, and %, have the required properties if we lef
2° ~ (EEY KM,
. a2 JES L A .

(5.12) E TE & (K1) gsel+1

Ag we noted earlier, the Theorem now follows from. the work in
Section 3, for the avoidance of a tube around Ly by 4(a”) is equivalent
to the avoidance of a layer about P, by A {u).
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The average order of twe arithmetical functions
by
M. M. Dopsox (Auckland)

Let F (k) be an arithmetical function of the poéit_ive integral "vé.ri&b]e
k. If there is a simple function of %k, f(k) say, such that
DR ~ DfR,
<N RN
then we say that f(%) is the average order of F (k). In this paper we establish

an asymptotic expression for the sum Y f(k) when F(k) satisfies certain
. k<N .

conditions. By considering two special cases we obtain the average order
of two arithmetical funetions. First we show that the average order of
the function I (k), introduced by Davenport and Lewis in their work

. . 212 .
on homogeneons additive eguations [3], is w. Then we show
that the average order of the function I'(%), introduced by Hardy and
5n%k
Littlewood in their work on Waring’s Problem [5], is-—i—:;;%g. We

make use of a resulf in Sieve Theory on the distribution of primes and
the nnderlying idea is that, with a permissible error, the values of % for
which the function ¥ (%) is large have a simple distribution.

We begin with some notation and lemmas. Throughout this paper,
% will denote a positive integer, N a sufficiently large positive integer
and p a prime. We shall always write r = [(log N)?], the integral part
of {log N)% Also we shall always write d = (k, p—1), the highest common
factor of & and p—1.

Now for any given prime p, we can express the positive integer & as

—1
{1) E=p'dn = p”%m,
where % is divisible by ° but not by p"™ and where d = (k, p—1) and
—1
1= pT Thus in the representation (1) of an integer % we have

(m,p) =1 and (f, m) :(%1, m) =1
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When (m, 1) = 1, we define the set S(m, ) as follows:
—1 p—1 )
S(m, 1) = {kéN; k =£~t—~—m, (m, p) = 1,~T~— > 1}.

The number of elements in a set X will be denoted by [X[. Also,
the symbol < will demote an inequality with an unspecified positive
constant factor.

We now obtain an estimate for the overlap between two different
such sets. The proof relies on the following result from Sieve Theory
(91, p. 45, Satz 4.2):

THEOREM 1. Let @y, ..., dsy by, -.., By Be indegers and let

o 37“10, (G;,bqj) =1
for i =1,...,8 and suppose that the equations
by = :I:bj': % #j
do not hold stmulianeously. Let w(p) be the number of solutions, distinet
(modp), of the congruence
(aym+by) ... (@e—-b,) = 0(modp)

and swppose that w(p} << p for all primes p. Finolly let

@ = A dy,

= naij

12 1

(Cﬁi,b_v;-— C&jb-,;) .

Then for all N =2, the number of elements in the sel

{£ < N; law+by| prime for ¢ =1,...,8}

N 1\~ (5-wmy)
<o [JF-3 )

where ¢(s) s a constant depending only on s and not on Gy, ..., Gy, byy ..., bs
or N,
In order to apply this result we replace the set given by the intersection

of the two distinct sets §(m,?) and S(w', ) by a more tractable set,
and we prove

LevmMA 1. Let [m,m'] be the lowest common multiple of m and m'
and 1ot m, and mg be defined by

is

MMy = MW Wy = [m, m'].
Suppose (m,t) = (m',t') =1 and suppose the equations

m=m", {=1t
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do not hold simullaneously. Then

[8{m, 1) ~ 8(m/, )| < |T(m, m'5 1, )]

where

N ' . .

T(mym'; 8, 1) =yn ————; fmegn--1, t'men+1 distinet primes;.
[m,m] .

Proof. Let & be a member of the set S{m, 1)~ S{m',t'), so that

—1 —1

& 2 m 7 !

= e
t t !

where (m, p) = (m’, p’Yy =1,p and p’ are primes, (m,?) = (m/, ') =1
p—1 p'—1
and ; > 1, 7
for otherwise we would. have mt’ = m't, which, since (m, ) = (m’, t') = 1,
implies that m = m' and ¥ = ¥, contrary to the hypothesis of the lemma.
Now since m and m’ both divide &, their lowest common multiple,
[m, m'], divides ¥ and we can write &k as

> 1. We note first that p and p’ are distinet:

h=[m,m]n,

for some % < ﬁﬁl—\%ﬁ Hence we can write the prime p in the form
H
p = f—]i +1 =itmy—— +1 = tmen-+1
m [m, m']
and the prime p’ in the form
p = v +1 =t my -k—+1 =t mgn-+1,
w [, m'] .

and it follows that belongs to the set I'(m,m';t, ). Thus

k
m, m')
each element in the set §(m, t) ~ 8(m', ¢') corresponds to just one element
in the set T{wm,m';t, '), whenee

8 (m, 1)~ S(m/, ) < |Tm, m'; 1, ).

Next we obfain an estimate for |T(m, m’; ¢, )|, the number of ele-
menty in the set I'(m, m'; ¢, ¥'), and hence, in view of the above lemma,
for [S(m, 1) ~ 8w, i)

Limanva 2. Suppose T<m,m <r=[logN)?] and 1<, <T,
T a fized positive inieger. Suppose also that (m, 1) = (m',t') =1 and that
the eguations m = m',t =1 do not hold simultancously. Then for N
sufficiently large
N(loglogr)?

[T (m,m'5 1, 1) <L [m, m](log¥)2’
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Proof, Let m, and m, be defined by mmy == m'my = [m, m", the
lowest common multiple of m and m'. Then tm, t'my, since otherwiso
we would have m’t = mi', which is excluded. Next it is plain that the
congruence

(tmyz 1) (¢ myx +1) = 0(modp)

has at most two solutions distinet (mod p) and that when p = 2, it hag
at most one. Lastly, since » = [(log §¥)*], we can choose N large enongh
to ensure that
‘ N
N - ) Al 2
[m m dl

Taking §=2,0, =My, 8y =1 m, and noting that we have wp)<p
for all primes p, we see that prowdmg N ix sufficiently large, Theorem L
can be applied to the set T(m, m'; 7, t’) and we deduce that

(2 w(m]
1T (m, m';t, ') < — [I( )
, (10 ] |

where B = tmt mq(tme— 1t mg).

Now
—(2—wa@) 1 -2 bl 2
H 1— L < H 1—5---) = (-mi,) < (loglogr)?,
P P o ()
Pl |

gince @(#) > BlloglogB ([6], p- 267, Theorem 328) and since JF < r3I°
< r8. Also, providing N is sufficiently large, we have thatl

log( ¥ T) = log (Nr 2T > log N,
[, m']

ang the lemma follows.

LevMMAe 3. Suppose 1< m,m' <r = [JogN)] and 14,0 <7,
a fized infeger. Suppose further that (m,1) = (w/, ¥} =1 and thet the
equations m = m',t =1’ are not svimultmwously satisfied. Then

y y <7 (10gN

H JEE

where the inner sum is extended over all keS{m,t) ~ 8(m', ).
Proof. We have just proved that the inner pum

(lon logr)

Z Lo (8 ) ~ S’y ¥)L< T 0my s 8 0] <
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Also,
r - § 1 (m, m) _ i VY (m, m)
. [m, m'] mm’ m m’
lgmm’ gr L lsmmigr . 1CMg? I’ €7

y 1 1 1
i e Z m, Z m, '
1T 1y £ rjC 1 g rfe

(my m)=1
where ¢ = (m, ') and m == em;, m' = om,. Henee
T < (ogn?
ogr
[, "] &

1t g T

and so, combining this estimate with the one obtained for the inner sum,
we get that

N(loglogr)®(logr)® N
1<L€T <
» 5; TR (log N)? < llog vy
for N sufficiently large, since T is & constant and r = [(log A)*].
Lumats 4. Let 8 be the undon of the finite sets Si, ..., 8, and let | be
a real, non-negative function defined on 8. Then

@ 3 Niwm— Y D jwm< Yim< Y Y f).

1<ign wely 1iign :ress‘,-nSj Te& lgign 2eS;

Tor suppose an element of S, x say, belongs to exactly m of the sets
81y .00y Sp. Then Ff(x) is counted m—im(m—1)<<1 times on the left
hand side of (2), while the other inequality is obvious.

We now prove :

TaEOREM 2. Let k be a posﬁwe integer with the represeniation

1
z.’P m

k=2p

p—1
(B, p—1)
Let ¢ >0, let T be o fized posilive integer and r = [{logN)Z], where
N s sufficiently large positive integer. Let F (k) be an arithmetical function
of & defined by

{3) F{k) = maximum #(%k, p),
. »

for each prime p, where 3° exactly divides k, t = and (m,p) = 1.

-

where the maximum is {aken over oll primes p and where F(k, p) satisfies
the following conditions:
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p—l > 2441, ther
(i)whenk:——mt—um, 1<i< T, p=2t-+1, then
1 P
b, ) = @,+Q (2= m3)
satisfies

Bk, p) = Gk, m,t} = H(p,m, 1) = O (% fm),

_1 . -
(i) when Jc=p”l°—rm, L<t< T, pmot+l, vml, the

F(k,p) satisfies
Ik, p) = O(E° Jom),

0,p=1t+1,1<t<T, then Lk, p) satisfios
Bk, p) = O(F° fm},

(iii) when k=p"m,v =

and
(iv) otherwise F(k, p) saiisfies
Pk, p) =0k, b>0.
Then ot
‘ NEF
(4) ZF(75)= Z () H(p, i, 1) 0((1 g N z)
k<N ié&ﬁi‘r N DN

Proof. We shall write § = (J S(m, {) where the union ig taken over
m,b

all coprime m and  with 1 < m < r and 1< ¢ T. Suppose the integer
% has no representations of the kinds given by (i), (i) ox (iii). Then we

can neglect the contribution of such k to the sum Z‘ (%) with an error
kN

of at most N & Ny for N sufficiently large. Moreover we have
that
M P = D EE)F O ),
<N k<N
I‘(k)>N""
But it F(k) > N°jr, then & must have at least one representation of ab
least one of the following kinds: (i) or (ili), subject to 1 =5 m < » or (il)
subject to 1< om £ 7.
Suppose then that maximum Tk, p)is attained for a vepreseniution.

of type (ii) with 1. vm <v i.e. for gome prime g = 11, we have

—1
Tc=g”g"—t—m, (m,t) = {m ;Q)—l pxl, 1<t T, 1=iom v

F(k) Bk, q).
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Then the contribution of such % to the sum > F (&) is at most -

k<N
3 NgjHe+n
E F(k) <N° 1 < N° § n({m ,
R RSP L P 4T
e Q”Tm<A qlgtfﬁ:gt;‘m 1t T k
l<rmgr 1<t<?
1;{th

where #{x) is the number of primes up to #. Thus we get that the contri-
bution is
<l\rc 2 l\ﬂ]Ztl]? < Nﬂ+1I2T3"2’)'2 < I\(Tﬂ+1/')",

1sSUineET
1T

Next guppose that maximum F(k, p) is atiained by a representation
of type (iil) with 1 << m <€ #, go that there exists a prime ¢ = ¢+1 such
that

E=¢'m, o200, ¢=1t+1, mi)l=(mq=1, 1<i<T

and ‘
F(k) =Pk, g).

Then the contribution of such numbers to the sum > ¥(k) is at most
k<N

F(k) €F° 3 1<N -Trlogh < N
g

E—gtmeN v log vV
g1 Lot
g prime i
lgmgr

Thus, with a permigsible error, we need only consider those integers
% which have a representation of type (i) with 1 << m <€, and such &
comprise, by definition, the set §. Hence we have

3 Bk = 3 PR+ 0N )
k<N kel
= ¥ Mwm+o( Y 2F(k)}+O(N“+1[7~),
%é;’;ﬁ,’kfs(’”zf) L R

(m,h=1

by Lemma 4, where the inner sum in the second term is extended over
all keS8 (m,t) ~ 8(m’', ¢) and where the outer sum is extended over all
m,m, b with L<<m,m €r, 1<, <, (m,t)=(m,1)=1 and
with the eqnations m = m',t = ' not soluble simultaneously. It follows

from Lemma 3 that ‘
et
F(k) = 2 F(k)+0(w_3ﬁ).
kg lg;r keS(M,1) (log &)

1l
(m,)=1
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Tinally, suppose thab BeS{m,t) and 111}4}13 (:;*(7‘:,' m, €) << F(k). Then
& must have another representation of type (i), with 1 < 'm/i r,' or & Tep-
regentation of type (i) with 1 < vm < ¢, or one of type (iii) Wi‘l}h 1< m
£r. It follows that the error infroduced ‘in %’eplacmg If‘(k) ]()Iyl & lu,’ m, 1)
when F(k) > G(k, m,t) in the sumlz F{k) is ot most 0N fr). Hence

e N
we have | o
— i 7 1) -~ 0 e
Srw- 3 3 awmm+0{ )
kN 1= 1 kel (L)
1is @
(158} =1

' le
= > .H(p.,m,L)v|~()(-(-1-dgN-)u,2):

T ? Nt
i PS5
(B =1 1 py=1

i p—1 - N, for
since if keS(m, 1), we can express k in the form k == g < N, for
some prime p, where (m,p) = 1. Also

SEip,m< S Hipym, o) <¥-NEIT

ps%ﬂ PN
B
whence
I
N rwy = Z Hlp, m, )+ O(r- T N4 0 Nm)
) ( ) han . .'p‘) 7‘ (].OgN) !
k<t Ee P LIE]
:(li?uf;l 7
. . e
= 3 Yntemo+o (g

l<mar Nt
1<igT DS
(i) =1

ik 1

- . , ) N
= D s, w1 -+n~0(~(10-g N)a,z-),

1<t It m_vw«;% st

putting m = Im’ and where (?) is the Mobins function. Since | = T <1,

on omitting the daghes, we have

ksZN‘ H(k) = Z Z 2 2 WD H(p, . )40 ((-h;z;ﬁlirl)gm)?

It<T It lsmag? NI .
pgfﬁ

which gives the required result.
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Now we make two applications of this result and obtain the average
order of the two arithmetical functions ™ (%) and T'(k).

THE AVERAGE ORDER OF I'*(k). The number 7" (k) is defined as the
least positive integer s with the following property: for amy non-zero
integers a,, ..., #;, the congruence

(5) o+ .. a2t = 0(modp™)

has a solution, with not all the variables 4, ..., @, divisible by », for every
prime power p”. Such solutions will be called primitive.

The nomber ™ (k) was introduced by Davenport and Lewis in their
investigation of homogeneous additive equationg [3]. Their main object
was to show that I (k) < k241 and that there i3 equality here whenever
k-1 is prime. When % is odd, 7™ (%) ean De estimated quite effectively
and Chowla and Shimura have proved ([2], Theorem A) that

F*(;lc)<<

Eg—‘)— +s) Eloghk for all odd & > Ey(z),

“where e i3 any positive number and they also proved that

klogk
log2

(&) > for infinitely many odd 7.

K. Norton ([8], Theorem 6.70) has improved the upper estimate
for I™ (k) for odd %= 3 to -

o k
I (k) <

Tlog 2 (31log k+5loglogk-6),

go that for all & > ky(e),

F*(k}<( —\—s)klogk.

2log2
The number ™ (%) can be defermined exactly for another class of integers
([4], p- 201, Theorem &.2.2) but otherwige, except for a few small values
of &, little is known. :

Let us define the function I™(k, p) to be the least integer s with th
follewing property: for any non-zero integers &y, ..., ¢, and every positive
integer %, the congruence (5) has a primitive solution for the particular
prime p. It follows that

(6) : I*(k) = maximumI™(k, p).
r
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Now it has been shown {[4], p- 183, Toemma 4.2.2} that if p—1 divides
% and p does not divide k, then

80

b2
I*(,p) =k(p—1+1=—+1,

where k = (p—1)m, (m, p) = 1. Further, if p—1 divides & and p” exactly
divides &, v = 1, then ([4], P. 197, Lemma 4.6.1)

k(g —1)

41 when  p s odd,
v+ 1
Ik, p) <
L(p"*—1)
—Z 4.1 whon p =2,
-2 1
Since
P 1< 2 (p—1) = 2k/m  when p>2
and

DI P ovi? 4]’5/7],\, when ¢ = 2,

it follows that in this case _
Ik, p) = O(kjvm).

Also, if for some prime p > 2, p—1 doos not divide k, then o straight-
forward modification of Lemma 4.4.2 ([4], p. 189) gives

™k, p) € (log‘k')zklm £ K,
Thus we see that the conditions of Theorem 2 are fulfilled with
T=1,¢6=2,b=}and with
G, m, 1) = 1
(kym, 1) = o
and
H{p,m,1) = m(p—1)3-41.

Hence we have

21‘*(75): 2 mp“+0(

ks N igmer P Nim

N 9
T

since it is plain that we can replace the texm o (p—1)*-4-1 by mp* in the
gum on the Tight hand side, with a permissible error.
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Now
3 g i O( (N fam)? )
pSm 3log (N [m) {log (¥ fm))
and
1 1 1 logm
- — 1+0( ))
Lé%g;‘ mlog (N jm) log ¥ 1&2;; m? ( log ¥
1 {j 1 +0(1) o[ Jogr
log &7 L m? N (log NV)?
L 1
~ logWN (log N2 )
Hence

L{2)N? N3
1<mer pé‘_{% = 3log ¥ —l_o((loglv)”2 )
Thus, since {(2) = n%/6 and since

k2 N3
logk ~ 3log’

kN

we have proved
TEEOREM 3. The average order of I'™ (k) is =2k2[6logk, or more precisely,
TEZNE]

I (k) = 0
,ﬂg{, (%) 18log ¥V + (

Nﬂ
(log N)*"* ) '

THE AVERAGE ORDER OF I'(k). The number (%) is defined to be the
least value of ¢ for which the congruence

(1) ot ...af = N (modp™,

where N is any integer, has a primitive selution for every prime power p™.

As in the preceding discussion, we introduce the function I'(%, p),
which is defined to be the least s for which the congruence (7) has a primi-
tive solution for every integer N and every positive integer #, for the
parficular prime p. Plainly

Ik) = maximumI™(k, p).
»

The funetions I'(k) and I'(k, p) were introduced by Hardy and Little-
wood in [8], though in a different way and with a different notation for
Ik, p), namely »,. They showed that for all %, I'(k) < 4% ([D], p. 186,
Theorem 12). They continued their investigation of I'(¥) and I'(%k, p)

Acta Arithmetica XVI1 8
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in more detail in [6] and proved there (p. B33, Theorem. 4) that I'(k) < &
unless % belongs to certain special classes, and evaluated I'(%) for many
values of k. Nevertheless, the behaviow of ['(k) for large & ig still to
a considerable extent unknown. In the course of their work, they deter-
mined (%, p) when p—1 or }(p—1} divides k ([6], p. 524, Lemma 7),
and they showed that if

i) p =2,v=0,ie kis odd, then

Ik, 2) =2;
(i) p =2,v >0, ie. k==2"m,m odd, then
4%

Ik, 2) = 2 = - 5

(il p > 2, d=p—1, ie. k= p"(p—1)m, p) == 1, then

{tn
P k-
== Pl = e 4 ——
Ik, p) =p 1 m
(iv) p > 2, d = §(p—1), ie. k—zo"-écpwi)m (m,p) =1, then
, (I/p”“ I
— 3" 1) L2
I'(k, p) = 4(p 1) 1__(111)) et
except in the case p =3, ¢ = 0, when I'(k,3) = 2.
On the other hand, if & = (k, p—1) < }(p—1), Le. if {(p—1) does
not divide %, then I. Chowla has shown ([1], p. 197, Theorem 4) that
for & sefficiently large,

T'(k, p) < kot

where £ > 0 and a = (1033 1641)/220 > 1/9.
We see that the hypotheses of Theorem 2 are satigfied with T = 2,
¢=1, b=} and with
. k
Gk my 1) = — +2~1
and
' . p—1t4+1
Hip, m;8) = S

Henee we have
2 ' ' :p« 2
2= 5 X 3 s o(ga)
= [t 1smgr pgviml

gince it i3 plain that we can replace H{p,m,#) by pft in this som with
a permissible error.
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Now
Nigz Ne
> p= % (ml)ilog +O( ")’
DTl 2 (ml)2log (Nt/ml) mi(log Ny
and
1 1 1 1

Z 21 _N = 2 ‘2[1-%“0( Og'nl)]

lgmegr K Og( t/m) IOgN lLLmgr n IOgN

1 [C( n 0 1 ) . 7 O 1
10 N ( )]+ ((1ogN)2 © 6logN + ((1ogN)2)'

It follows that

w2 N3¢ Nz
I(%) A
2 ®) Z Z AUSTrrYY O((logN)Sﬂ)

N =1 i
w2 N? i N2 wiN22 N2
= + - . +0 33
12log N 12log N 48log N (log V)

bR N2 N3
24log N (log N2 [°

D Tog ~ g
e o ——
il logk  2logN

THEOREM 4. The average order of I'(k) is

Since

~we have proved

dnik
12logk
More precisely,
BmiN? N2
ZPUG) = 24log N +O( 1o, N)‘”g)'
kN g ( g
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ACTA ARITHMETICA
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A note on the least prime quadratic residue (modp)
by
D. Worke (Marburg/Lahn)

Let p be an odd prime. By r,(p) we denote the least prime quadratic
residue (modp) and by IL(s,y) the L-funetion formed with the real

character (ﬁ) .
P

Elliott [2] recently showed: If for an integer % > 0 and a real ¢; > 0

%

o(loglogp)k

L
(1, 1) > logp

then we have, for every &> 0,
F 21
73(p) < o) pHPTIAT

In this note we will sharpen Elliott’s result to
THEOREM, Let t(p) be o positive funclion with

t(p)
H (1 —,
(H) (1 2) > o
Then, for absolute ey, cy >0
1 ra(p) < eapsten ™"

holds.
For the proof we need two lemmas.

Levwa 1, For every ¢ >0, p 2= pole) and @ = pt'™ we have the ine-
quality

(2) Z(l— %)%’yz(d)(g)>§L(1, 2.

R

For the proof see Elliott [2], (2). The proof rests upon Burgess’
estimation for character sums [1], Siegel’s theorem (8. [4], IV, § 8) and
2 method of Linnik—Vinogradov [31.



