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Introduction

L. The aim of the present paper is to prove an approximate functional
equation for the Hecke’s L-functions Z(s, ¥) of any quadratic field K.
That equation being merely an auxiliary result(}) we will eonfine our-
selves to proving it merely on the line ¢ = § in the plane of complex
numbers & == o+ it. Having such a very limited purpose in proving the
result, we shall not give here a full account of the existing papers about
approximate funectional equations in general, since none of them would
do just as well for the applications which we have in view(®).

In 1961 Linnik ([10], § 40) proved a shortened funetional equation
for the Diriehlet L-function L(s, ) with a primitive character ymodD
on the line o = {+-4¢ with { <1 and D unbounded(®). Using the incom-
plete I'funetion Lavrik [8] proved the analogous result for all s in the
strip 0 < o< 1. He gave [9] also the corresponding resnlt for Hecke's
L-functions with Grossencharakter of imaginary quadratic field. But
if the functional equation contains a higher power of Ifunction than
the firgt one, his method does not give satisfactory results, since then
the corresponding residue sums do not represent familiar funetions,

In the present paper(*) we shall prove the following

() Which will be used in a later paper for the proof of & sieve theorem of Bom-
bieri’s type (see [1], Theorem 4) but for the et of primes which are representable
by a given quadratic form.

(®) The result of Lavrik [9] (for example) concernz merely the imaginary qua-
dratic field and the simplest case (out of three possible cases) in the real guadratic
field {see further §§ 5 and 6).

(3) With the restriction ¢ = 1/2, % < 1 Linnik’s method is applicable to Hecke's
L-functions of any algebraic field. See further §11.

. (%) A short deseription of the method and results of the present paper has been
given in [4]. ' '
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THEOREM. Leét
x{a)

) sy = D 5y (0=

(where the sum is over oll integer ideals a # 0) be the Heeke's L-funclion
of the quadratic field K (of the diseriminant A) with a primitive characler
ymodf. Let further 8, = 1j2+ity, 8, = 1/2-Fity (3 €1), 021,
pp— DT i NE>1,
= — X W= .
2) D=- Vid|¥f, ‘D4(1+”0n814 i NP =1.
Then we have wniformly in D, 1,

(a) Nua
(3) (80, 1) = (5, -+ 2 %ﬁ"h(—l}“: to) +

Ne<X

%) (Na ) x(0) (Na )

——— e t + ] ?7 R t 4—
+2Na1_50n2 D79 - NC[l § D!l.

NecX NogX
() Na -
‘|' 2 Nal_sl "74(__"71 tl) —-!—O(l 1)7
Nu%X

where |yl =1, end for § =1,2,3,4
; 1 o any case,
(@ &
R [ A P Re )

Tt seems likely that (3) remains true after removing all the terms
with s,. However, we cannot prove such a simple equation by the method
of the present paper, since giving 8, up we would loge the convergence
of some series and integrals during the proof. Let us remark that for the
intended applications the terms of (3) with s = s, will not cause much
inconvenience.

CoROLLARY. The term ni(8y, x) in (3) can be eliminated after veplacing
s and ng by other appropriate functions 7y, 7, (say) satisfying the estimates

~ 1 in ony cese,
I P R PP TR PR
with 1 =1, >8,j =3, 4.
"The theorem will be proved by considering separately the following
cages (i)-(iv). Writing . :

(4) A(f):%I/ANT (for 4 > 0), A(f):g;;l/llef (for 4 < 0)
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and

(5)  Esy ) = A6, 2,

where in the ease of a veal field

i) Gls) = I (;),
(i) G(s) = J’E(SW_H)
or

8 s+1
(iit) G(s) = F(E)P( 3 )

(in dependence on the kind of the sign character), and in case of an ima-
ginary field

{iv) G(s) = I'(s),
we have (cf. [6], Satz LXI, LVII)
(6} E(s, ) = () §(1—s,%), where |e(x)! = 1.

Dealing with the cases (i)-(iii) we have by (2) and 4y Af) =D
and thus, by (5),

™ €5, 2) = D'6(5)2(s,7), D = VART.

The approximate functional equation for the case (i)

2. Let sy = 1/2-44fy, 8, == 1/24-44, (¢, <€1)} and let ¢, be a positive
constant << 1/8. Write

¢+ico
1 £(s, 1) 1 1 )
— ds

2m'c_iw I’(E)I‘(l_s) (s——sﬂ §—8
2 2

(8) I, =

(12—e, e 1—0c).

By F(s) denoting the integrand, we have by (7)
71s]
. 2
I‘( 1_—3)
2

Es, ) —

o =D (5— 80) (5 — 52)
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Hence, for all large [f| > 2(L-!t[+h]) we have by the asymptotic

estimate
1
©) Doty = Vane "L |t) °~”2{1+0(1+m)} (0 < 1)

(cf. [11], Anhang, Satz 6.2) and by [2], Lemma 4,
Flo4-it) € Dl D (og D {i)H 1t~ g™ = D [}~ log=D 4|

with the constant in the notation depending on iy, . This proves the
absolute convergence of I,. By moving the contour of integration from
g =1—¢, to o = 1/2—¢, we prove that

Tig = E(80y 1) _ §(815 %) 41

r(54r) (56

By the substitution s = s,—2 and using (8), (6), (7) we get

(10)

/30y

1/2—0g-+1i00

1 E(sy 1) ( 1 1 )
=— — d
O Dy =53 f 1—s\ _[s\ \s—s, s—8 ?
1j2—~eg—ioa [T -
2 2
~ _1— ey deo E(,go-—«z, x) (i _ 1 )dz
i o F(1~Sn+Z)P(Somz) \# @ (89— 81)
2 2
Cp-+-Too
= om )
ﬂo—'l-oo
- e(x) ‘oj:‘m £(1—s0+2, %) (_1_ - __-.W*-—-l )dz
Qi o P(lwsu—'r—z)I,(sU_z) #—(8p~— &)
2 2
] —8y+%
_S_(Z_). coj&w Dl-—-ao+z F( ) —g +z "") (u’k_j_ — 1 )dz
2ni tg~oo 11(80 ) 0 s X 2 z_"‘(“"““"""‘"so_usl)

1-£g+teo I ( — St S)
_eln)

f D1—80+8
2ni
18— oo
]

= “S(Z)Ilr

{(1—sy--s, X)(
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| say. By (8) and (7)

I—eg4ieo
1 %

1
(12) Il_co = £(sy ) ( _ 1 )ds
2mi e T 1—s Pi 88y 8—8;
2 2 )
_ ——1—_ 12—y 4ico E(Z“[" Sy Z) (_]_- . __:l._“——) iz
2w 1/2--gg—ica Iw(l”'go“z)]w(é’o-i-ﬁ) E Bt-8y—87
2 2
1—-gp+ico P(8+Sc)
—— l _D8+SO 2
Ami et r 1—8,—=s
2
i (1 : ¢ ds
8 §—(8,— &) (84545 2)ds.

Let us write

{13) x(t) = 2 Nasgz "a'l-‘-(t'l-to)’

NQ}X

F(l—cotsu—{—it)

Fx = __]_‘__ f_Dl—co+su+it
2n

F( —8g—L+o,— 1t X
2

1 1
X (1—Go+ﬁ - l—do+i(tmt1+tu) )RX(t)dt!

X being defined by (2). Since in any quadratic field the number of ideals

a with fhe same norm Na = » does not exceed the number d(n) of positive
divisors of » (ef. [7], Satz 882) and sinee ¢, < 1/8, we have

at < 340 xom

n>X

(14)

If ¥f>1, then the primitive character ywodf is not the principal one
and we have, by [3], pp. 298-299,

> xla) < D'a'P.

Moz
Using this estimate we prove by partial surmimation (ef. [11], Anhang,
Batz 1.4), that

(15)  Bx(t) DL+ [t+1)) f e o <€ D'(1+ [t+1) X
: =
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Tet us gplit the integml (13) info pa.rts

f~+ _f-+—— f = AR+ +Y,

say, where T ==2(l—1—1t1|—[—lt0|) By (16), (13), {15), (9) and (2) we have

(16)

1— tqy
sQ < DIx! f (—:Li%%ll—)—dt<ﬂ"”1‘2 ©x-iogT L I7NDYV,
-

By (16), (13), (14) and (2)

(1 + t) (i'F" tu“"‘ f’l)
< X41{4D3[2T1_c0 < l—lﬂliz

j§)<x—1l4p3!2f (RS AR [to— 1
T

and, similazly,
SR LTID
The estimates for #@ and #% hold as well in the case of Nf =1,

whereas estimating #§ we use (14) instead of (15) which does not hold
anymore. Increasing X (cf. (2)) we get the same regult:

a
- (14 jt+2o) %
SR € XMDET

i< ;i 1+ ]
Hence by (16) we have in any case

amn Fx LUIDY,

dt € XD Slop T £ 1 DY,

By the same arguments we can prove the same estimate for the
analogous integral % (say) of the remainder term of £(1—s8,+8, %)
in I' (see (11)). Integrating the terms with Na < X of the { Dirichlet-
expansion (1) in I’ and I ., we get finite sums whose terms are res-

pectively
] L—s,+4¢
-
— g0 e | = — ——————| s,
i 1—cp—ico ]"(SU_S) § 3”(’?0_31)
) ’
.1 . s &8
—C:ttea » 5 (l 1 )ds
_.. w e f o i — el
Ami oo F(l—so——s) s s—(sy—80))
2
where
_Fa_ 1
=5 7D
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3. Now let us introduce the function

I—€p 10 I -80+S
s 2 ds

omi T s I s
T P(l—so——vs) s
' 2

(the convergence of the integral will be established in § 7). Making the
substitutions s— (s,—s,) = 2, s~ (s, 8,) = = (respectively) we prove that

1—s,4¢
l_cﬁ+im F(,-__L,.,,
— &

(19) His,, o) =

(>0, 8, = 1/2+41,)

2 ds
—_— ‘r
2mi 1—cp—ioe ]’(_sohs) s—{8y—s81)
9
—g -tz
l—ﬁ'ﬂ—'rioo F(ul-_ﬁﬁﬁl—.)
N L § S
w e e P(sl—z) 2
2
1-cp oo P(so+s)
° 32 ds
2“140_{00 I‘(l—sﬂms s—(8,—8,)
2
1—€g+ioo I i #
1 —&+89—8; 2 dz 458
=G | we v (s, o)
ot} oo F(lhslmz) &
2

" Hence the integrals in (18) are H{1—sp, #)—at VH(1— 8, ),
H{(sq, x)— ™" H(s,, ), respectively, and by (12), (17)

. x(a) Na Na\%o—* Na\l, i
IL...CO == D o P Naaﬂ {H(Su, D )M( D .H 81, —*13—)}“{"0(1 ID [2)
Npgt X .
e y(a) Na s (o) Na —1pl2
= WH(S‘“"D_)—DI Fo e T
NesX NoX
Similarly, by (11),
z(a) Na
.Dl .0} Y N 1—30 ( o D ) g

Nugx

e 32O,

o
NegX

l;“) Lo D).
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Substituting into (10) and (11}, using (7) and dividing through by D%,
we geb the approximate functional equation

(20) Fs)—D %01 (s,) <1
where '
1"(3) |
) (a) Na
(21) F(s) 3_—{:_?’ 5(3,1)—“ Ev-ua H(sﬂwﬁ") -
e I
z{a) N
. B )

Q
NaosX

Note, that for s = 5, = 12+ 4t, and s = 8; == 124, the factors
before the sums and before (s, ) are in medulus = L.

The case (ii)

1
4. Tn this case we have in (7) G(s) =I* (%) Now instead of (8)

we start with the integral

c4ioo

__1_ £(s, 7) ( 1 1
L= GH.L F(s+1)l’(2_s) 8—8, s——sl)ds

2 2

and go on as before. Introducing the function

1 1— gt F(1+;°+s. ) d
(22) By =5 [ o '—s——~=
. 2w 1=t r 2—g,—s8Y 8
2
we get the approximate functional equation (20) where in the present
cage '
11(342‘1) (a) N
y(a) = a
23 = — Rk hecl fstlihedt TSN
@ B0 =~ n- 3G i)
—5 Nex *
_ 1—28 z{a) Na
e(x)D Z‘ Nal_aH(l—s,T).

a
NagX
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The case (iii)

5. In this case we have in (7) G(s) — 1“(2—) 1"( Hz”l). We start with
the integral

e4-Too

1 E(s, 1) 1 1
2mi 8 2—s 8—s8 - §—8 as
C_im P(_)F( ) 0 '
2 2

e =

and go on as before. We get again the approximatfe funetional equation
(20) but with -

s
2 ~ N
(24} F(S)xﬂi(s,x)— ”ﬁé—zs)ﬂ(sa_l—:‘)—
55 =
118 _(a) N
—e(z)D -}%H(l—-s,_pi).

a
Nn;.x

The case (iv)
6. In this case we have 4 < 0 and we have by (2), (4), (5)

E(s; g} == (DY ()T (s, x)-

By the ‘duplication formmula’ ([12], p. 57) we have

‘ I'(s) = 012“1”_(%) I’(s—gl), 6 = (@),
and thus

1
B

Es, ) = olﬂsr(g)l*(

Comparing with (7) we remark, that this is exactly the previous case
(iii) (except for the constant ¢, which at the end disappears after dividing
(20) through by ¢,). Therefore we have in this case the same approximate
functional equation {{20), (24)}.
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Finally let us mention that one could deal with all the four cages
{i)-(iv) simuoltaneously by introducing the functions

s {5

(where j = 0,1,2; 0 = 1if 4 > 0 and ¢ = 1/2¥Vx for 4 < 0) and starting
with the integral

[LER T

7 _ f N 1CEY N (M_}______L__l__w) i
° 9w s+ 04/2] 1-f—[5/2]—8\ \8—s, &—a
o F( 2 )F 9

(where [2] denotes the largest integer < ). But then the reading would
become rather unpleasant.

The functions H(s,, ») and H(s,, 1)
7. Let us first establish the convergence of the integral (19) for

23> 2, with any positive z,< 1. To this end we take gome large fixed
¥ > 1438+ and take any T > Y and congider the part of (19)

1—egqt I (—SO +s )
a8

(25) s ! f 2 @
T = e [
2 1—chpi ¥ p( 1- 820__:.{) §

' k2
i yz—egigfpty T (T‘?;) £0* ;
2wt 32 g+ (T +lp) F( 1~ z ) i

By the asymptotic expansion (cf. [5], Satz 159, 160)

I'(s) = b(a)e™ " ItiG‘”zeﬁ(l"““'“‘“{1«!«0(—;—[)} (if o €31, [¢l>1)

we have for > 1
-l
_ {26) _

- - bta»«l]E e‘it(logt,m—l) {1__|_O (_]:_)} .
1’(—-— 8 ) : o t
l2 2

icm
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Since for 8 = 3/2—e¢,+il

250—¢ m—1+cu—i(t-io) m—-1+co+1‘t0 m—it {1 O(l)]
§—8,  Ll—eo+ili—t,) i e vy

we have, by (25), (26),

Tty it
(27) jY,T < 201 = tl—augiﬂ(]ogtfz— 1){1_|__0 (_1_)} at
¥ig ¢
T4+l Ity
< ;Bcﬂ"'l { f tAL'ﬂ Bi:(logigg—lmlng‘z) dt+ f 1“1_50 dt}
I"+t0 ¥t
T+io
— gf01 f t‘“ue’“(l"gtl‘l— 1—logz) di-i- mco_10(17—cn).
Py

To estimate the integral
Ty
7= % eit(logtjz— 1-~Tog ) dlf,
F+iy
we use the following

Levva A, If F'(u) and G{u) are any real functions such that G/F' is
monotonic and F'/6 =m >0 (or < —m << 0) in [a, b], then we have

b - 4
lwa(u)e Mdutga

(see [13), TV, §1, Lemma 2).

We deduce that I <€ ¥~ and hence, by (27), we have uniformly
inT=%Y¥

(28} Srr Lag ¥

(since z™ ' < 2yY). Writing

1_;-0_";)( p( S“+s)
_s 8

2
1T p(lzﬁ) s
2

for any fixed X > 1+3[f|+2® and any T = X, we can prove similarly
that ' '

(29) - Ixg Lay' X0

1
Ixr =
AT
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uniformly in 7> X. Increasing 7' to infinity we get from (19), (2B),
(28) and (29)

. 848
1-.¢g+dc0 F( 02 ) B s

——_H—-—-_m T
1—gy—too F(.}_*__‘;():i) §

8.} 8
1yt ¥ I"( 0 )
: o ds

A2 e Z g oxat 1),
, 1—8—8 8
| IW.AEL Y. 4 F(T)

(30) 27t

1
2
by which the convergence of the integral (19) is ensured.

By the same method one can prove the convergence of the infegral (22).
8. Tn this paragraph our aim is to prove the expansion
8o
() St
F(l—-so) £ wlMn-F1/2) 2n-4-3,
2

2048

(31) H (8, @) =

for s, = 1[24éty, 2 = @y > 0.
By the substitution s+4s, == 2 we get from. (19), (31)

&
3j2—0g+iB r (E) S
(32) H{sy, o) = o ds-+ O (B %"
L P(l_s) §—8,
2

for any B > 2(1-+ 2% (14 [f,]) (14 a5 ¥,
Choosing any large natural number m we replace the path of in-
tegration in (32) by the straight lines I,, L,, L, joining the points
L)) 3/2—ey—iB, —2m—1—ill;
Ly) —2m—1—iR, —2m—1-4-iE; L,) —2m-—1-1H,3/2—0,+iH.

By the theorem on residues

'3)
Y G i

H(sgy &) = ——rpe —

(35) Hloor 2 . F(l—SO) 20‘; n!I'(n+41/2) 2%+Su+ f+f

= Ll,Ls Ly
2
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From the functional equation I'{z-+1) = el'(2) and the agymptotic esti-
mates of I'(1/21-éf) and I'(1—1it) (see (9)) we deduce that
1

T{—n— ; ~tim}s
(=m 1/2-'_%/2)<§m+1/2—}—'it12]-|m-——1/2+c't/2|...]l/2:—it/2|6 !

(34)
1 < 1
I(m+1—itj2) ~ |m-4tf2] |m—1-+étf2] ... [1-+ee/2)- (14 [ e~

For s sufficiently large m > 6(1--2) the product of #™1* with
the factors (34) is in modulus legs than 2*7227™(14 |t} whence the
integral 1:{ tends to zero (uniformly in F > 2), ag m — oo.

Since we have on IL; and I,
8
r{Z
G .
1—s\ s—s5
I
=)

and the path of integration I,-+ L, i3 of length <€ m, for a sufficiently
large E > B,(w, m) > m we have

<E—00’ 580 <w2m+3]2_i_ma-1

f & Boolt g ot
Ly Ly

Now for every m taking ¥ = Fy(r, m) and increa.'sing m to infinity
from (33) we get the expansion (31).
By the same method one can get the expansion

(35)  H(s,,0) =

1-+3,
I‘ 2 o ( — l)n . a,;:‘)’.vr,-|-1--}-l![,
— 2 2 -
22

I'(Z_SO) - I {n4-1+1/2) 2u-+1438,
2

for the function H defined by (22).

9. In the present paragraph we shall prove the representations

(36) C H(sg, ) =2 [ J_yp(2u)u T,
@

(=]
(37) H(syy o) = 2 [ Jyp(20)u™ " du,
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where #3x,>0, 8 = 1/2+4it, and J,(2) denote the Bessel func-
tion

N (=" (2™
(38) Sz} = % ml T(m 1+

{ef, [14], §3.1).
Prooi. By (31) and (38)

( - 1)m mzmq.so

z) :;F?)_W Z mil(m+1[2) 2m-ts,

3]
—2— @z
= ‘"‘2 f J_llng(zu)%so_l"zd%.
{13
T d
w
In order. to get (36) we have to prove that
r{le
2
1_‘80
r
=
which ig equivalent to the proof of the equality
1’(35) o
2 -
(39) S N8 S ) f Ty (12 s,
It 1—s, ;
2

Using the identity (cf. {14], § 13.24)

o0
— 2 f J_]_ﬂ(zﬂ)uso_l’lzdu,
0

AU I{p2) o
f P T DRy e ) (if rey << rer--3/9)

with » == —1/2, u = g,, we get (39), whence (36) follows. In the same
manner one can prove (37).

10. In this paragraph we shall prove the following result:
Hor oll @ = 2y > 0 we have uniformly in @, 1,

(40) H(1f244ty, ) €1, H(L[24dt, 2) < 1.

icm
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And if @ > max(¥#, §[t,]), where B stands for appropriate comstant
=1, we have uniformly in i,

(41) H(1[2+ity,2) €07, H(1[2+it, 2) <o,
Tn the proof we shall need the asymptotic expansions for # —+ oo

I _ya(@) = oo P eosa+0 (),
(42)

Jyp(®) = o Peing 0@ "), ¢ =V2/n

(which one can get from the results of [14], §§ 7.1, 7.3). Also we shall
use Lemma A of §7 and the analogons

Levwa B. If F(u} and G(u) are any real functions such that G|F
is monotonie, F'(u)27r>0 (or < —r<0) and |Gw)| <M in [a, b],
then we have
b
1 > SM
L] Gu)eT™ | < .
! <7

This is Lemma 4 of [13], IV, §1.

We are now in a position to begin the proof of (40), {(41) for the
function H. In the range #, < # < ¥ we use the expansion (31) and get
HH{1/2 +ity, #)| < e(B) €1. In what follows we may suppose x> E.

By (36) and (42) we have

H(1/24-ity, a) = 2”2@1f u™ " (eos 2u) w0 du 4O (=%

o

— 2-4/2@1-" 12 3i(2“+501°g”)dﬁ+
%

o]
+2_11201f u_mgi(_zu.;.tolugu)du+0(m_5;2)
@

= 6y ¥+ 0 T’Tz_!‘o(wusm)r

say. We ean estimate the integrals ¥y and ¥, by means of Lemmma A.
In the notation of that lemma we have in the present case

B () [G () = w( 4211y ).

If x> 2it,], then also %> %|f,] and we can take m = iz Hence
by Lemma A we get (41) for the funection H.

It remains to prove that for B <z << £it,] we have
(43) Vi€l and V<1

(whence (40) would follow for the funetion H). This will be proved by
considering different cages.
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If ¢, > 0 and # > B, then by Lemma A we have
(44} vV, Lo,

And if besides # < &t,, then we split V, into the following parts:
#y o

(45) j‘u_uz z(—2u+talogu) a4 f + f — Vg]_‘i_ Vza”@“ Vza:

o o
say. For the estimation of Vy; we use Lemma A with m = &%, whence
{46) Vo €',
For V,, we use the same lemma with m == 3(§2,)'/" > 3(2a)"", whence
{47) , Vi <o,

And 1}’22 can be estimated by means of Lemma B where we can take
== (3t W r = 315" and get
Vi €1

V. L1,

and in view of (44) we have established (43) for the case t, >0, B <=
< 3

?[f t>0,2>% and }t, <2< 4§, then the required estimate
for V, can be obtained in the same way, except that now the part Vy
of ¥, in (45) dizappears.

In the case of f,< 0,2 > H we have, by Lemma A, V, <z "2
If in partienlar §, = 0, @ > B, then we have also (by the same lemma)
¥, <o I, however, < 0 and o > B, then we split V, into parts
and by the argnments used before we get the estimate V; < 1.

This proves the desired results for the function H. And by the sarme

method, using (35) and (37), we can prove (40) ‘and (41) for the function H.

Hence, by (46), (47), (4B)

Proof of the theorem

11. The theorern of §1 follows evidently from (20), (21), (23), (24),
§ 6, (40) and (41), And the Corollary would clearly follow from an approxi-
mate functional equation of the following type

_xla) "
(48) Ly, 2) 2 o ) ot S G0,
Natx, NogX; ’
whero 8, =1/2-+ity, &, €1, X, = 1DlogD (131, > 3), Iy'| = 1 with the

factors ¢, €1, ¢, €1 depending on i, Na and NF.

icm

Functional equation for Hecke's L-funclions 177

The equation (48) can be proved by Linnik’s method ([10], § 40)
arguing as follows.
Let &(y) be defined by (6) and let &' =Ve(y). Then, by (6),

& E(1/2 it y) = & E{1/2-} 0%, ¥), whenee &, £(1/2+141, )} is a real number.
Let us write

2+feo

1
(19) F@) =5 [ wEE

ds

§—8,

Moving the contour of integration to the lines = 1/2 (along which
line ds/3ni{s— ¢} is purely imaginary), the point s = &; being excluded
by a semi-cirele with rading fending fo zero, we get

{50) ref (s;) = $&.6(s, 7).
By (49), (1) and since, by § 6,

(51) E(s, 2) = cD°G(s)i(s, ), G(8) = {F (i)r_? {P(Hl)}?

2 2
(.7 = 0: 1, 2)3
we have
24f0e
1 X((I) 5 ds
52 F = D .
(52) @ =5z | ew(Z ) ren =

For any y > 0 we have

2+1oo z4ico

d
(53) f UG —— =y [y — =1, ),

2doo

say. Moving the line of integration fo rez = 0, we prove the estimate

{54) lp{sy, i <o, i y<F

for any fixed2 E > 1, ¢, being independent of &.
If y > F, then we move the line of integration to rez == F and,
supposing E large enough, we get the estimate

B 3 3 Bzl 3
(66)  Ip(s,y)< ¢ Flosv e (? + Z) < G-Eiogy{(-g— + Z) G—Elz}

2
< 6_E]og'y+(E/2+1-[4)103(E;2+3/4) < e_;-Elngy

(¢f. [12], p. 57).
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By (52) and {53)
Na\~% Na
F{8,) = &0 g‘ x(a) (‘D“_a) ¥ (311 ‘D"“) .

Hence, by (50),

) ¥ sl ) =resle) = 50+ T
Na)

_ﬂi 1 x(a) ( R
T g P ZNaslwsl’ D

Now we use (51) and divide (56) through by Yee, D G (s,). Using (B5)
(with % == Na/D, B = y"*) and considering that 1/G(s) €1 (since
{, €1) we can prove that the remainders of the infinite geries with
Na > X, are in modulns < 17" Thus we geb (48) with

by = 1.‘)("31: %)/G(sl)? 0:1 =% (31; *ﬁll)/a(s:)

which are <1, by (54}, (55).

510 o . N7 x(a) " Na
+ —;~ Dy Vi ¥ (Su 5") .
Q
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Kloosterman sums and finite field extensions*
by
L. Carrrrz (Durham, North Carolina)

1. Iniroduction. Let g = p’, where p is prime and f>1. Put
F = GF{q), the finite field of order ¢g. For arbitrary a<¥ define
Ha) = ata ... fa? ),
g0 that a<GF(p). Put

e(a) = ¢ HAP,

We now define the Klposterman sum for #:

(1) Sa) = D elar+a,
T
L0
where a2’ == 1. ¥t is easily seen that S{a) iz real for all a<F.

In addition to F we consider also the finite field F, = GF(¢") of
order ¢", where n 3> 1 and define the Kloosterman gum for F,. We denote
this sum by 80" (a), where a is an arbitrary element of F,. Clearly 8" (a)
= S(a).

Tt follows at once from the definition that

8™ = —1 (m=1,2,3,...).

We may accordingly assume that a == 0. For arbitrary a<F we in-
vestigate the relationship of 8™ (a) to 8{a). We shall show that

> 1
(L.2) 2%7,38%)=1og{1+q-ssm)+q‘-“} (s > 1).

By means of (1.2) we can express S (a) explicitly in terms of S(a). In
particnlar we show that

L3y S(")(a) o (_1)n—121_n Z (;)(S(a))ﬂ"y{(ﬂ(a))2~—4q}r

Irn
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