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On the composition and products of universal mappings

by
W. Holsztynski (Warszawa)

A continuous mapping f: X—XY of a topological space X into a to-
pological space Y is said to be a universal mapping if for any continuous
mapping ¢g: XY there exists a point x ¢ X such that f(z) = g(=).

Some positive results about the inverse systems and products of
the universal mappings are contained in papers [3], [5] and [6]. An example
of the inverse system of 1-dimensional continua with universal projections
such that the inverse limit does not possess the fixed point property, is
given in [4] (cf. [8]).

In this paper we shall show that composition and product of universal
mappings may not be universal. A simple relation between universality
of the composition of mappings and the product of the same mappings
is given in section 3.

§ 1. Universal mappings which raise dimension. Let I =[—1,1]
be the closed interval. We start from the following direct consequence
of Theorem from [2] (see also Theorem B from [5]).

(1.1) ProposrrioN. If f: XY is a universal mapping, where X, X are
normal spaces with dimX < dim Y, then for every integer n such that
dimX < n < dim ¥ and for every universal mapping gn: ¥ —1I" the mapping
gnofi X—I" is a non-universal mapping which is the composition of two
universal Mappings.

Now we introduce an auxiliary notion of S-mapping. Let

= (X, {Xi}ter, A), where

X, is a topological spa.ce,

4 and X; are connected subsets of X, for any te T,

o d) =X,

Xi~nA # O for every teT.

Then we shall say that a continuous mapping f: X,—Y of X, onto
4 space Y is an §-mapping if the following three conditions hold:

(i) A = fYa) for some point ac¥,
(i) @ ef(Xe) ~ f(Xu) = {a} or =f(Xe) for any t,ueT,
(i) fIXs: Xi—f(Xs) is a universal mapping for any teT.
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The following generalization of Proposition 7 from [3] has almost
the same proof.

(1.2) PROPOSITION. Let f: Xy—~Y be an S-mapping such that for any
continuous mapping g: Z—Y, where Z = Xu for an arbitrary weT or
Z= A, the set g(Z) ~f(Xe)\{a} is an open subset of the subspace ¢(Z).
Then f is a universal mapping.

(1.3) CoroLLARY. Let f: X,—Y be an 8-mapping of X, onto a Haus-
dorff space Y, and let f(X,) be a closed subset of Y for any t « T. Newt, suppose
that for any continuous mapping g: Z->X, where Z is an arbitrary space Xy,
teT, vr Z= A, and for any neighbourhood U of ae Y we have

9(Z) ~ f(X\U # @
for at most finite number of indexes u e T. Then f is a wniversal mapping.

(1.4) CororLarY. Let f: Xo—=Y be an 8-mapping of X, onto a Haus-
dorff space ¥ such that for any connected and locally connected compact
subspace W of Y and for any neighbourhood U of a e X the set W\U s
contained in o finite union of the subspaces f(X:). Newt, suppose that A
and X;, te T, arve locally connected compact Hausdorff spaces. Then f is
@& universal mapping.

(1.5) ExAMPLE. Let g,: X—~K" be & one-to-one continuous mapping
of a subspace X of the Cantor discontinunm D onto the mth power
of the Knaster’s hereditarily indecomposable continuum, where = is
a positive integer or n = 8,. Then the cone mapping Cgn.: (X —CK"
is, by Corollary (1.4), a one-to-one universal mapping of a I1-dimen-
sional separable metric space onto a (n+1)-dimensional continuum,
n=1,2,..,N8.

(1.7) ExampLE. Let f,: D—+K" be a continuous mapping of D
onto K™ (see (1.5)), where n is any positive integer or # = §,. Then the
cone mapping Cfs: CD—CK" as a continuous extension of Cg, from (1.5}
(or by Corollary (1.4)) is a universal mapping of a 1-dimensional continuum
onto a (n-1)-dimensional continuum, n =1, 2, ..., §,.

From Proposition (1.1) and Examples (1.5), (1.6) we immediately
obtain the following result:

(L.7) THEOREM. The composition gof: X—~I" of two universal
mapping-is not any universal mapping in general, even if ¥ is a continuum
and either X is a 1-dimensional continuwm or X is a 1-dimensional separable
metric space and f is one-to-one.

Example (1.5) can be generalized.

(1.8) DEFINITION (see [7]). An arcwise connected space X is said
to be a B-space if it has the following property:

For any one-to-one continuous mapping f of the ray [0, o0) into X,
the closure of the set P = f([0, co)) is a simple arc.
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Leb us remark that in a B-space X there exists the unique simple
arc z,y with the end-points «,y for any x,y ¢ X.

The folowing theorem is proved in [7] (see also [7], Theorem (3.4)).

(1.9) TeeoreM. Let X be a B-space and @ C XX X be a non-empty
relation such that the following two conditions are satisfied:

(1.10) @ ~ (A x A)is a closed subset of A x A for any simple arc A in X,

(1.11) there exists a function h: Q X X—X such that (a’, h(a, b, a’)) € Q
and the simple arc b, h(a, b, a’) is contained in U lgeX: (p,9) eQ} for

any (a,b)eQ and a’ e X. pese

Then there exists an © e X such that (z, z) e Q.

Now we shall prove the following theorem, which is a generalization
of Bxample (1.5).

(1.12) TrrorEM. If f: XY is a onelo-one continuous mapping of
a B-space X onto a Hausdorff B-space Y, then f is a universal mapping.

Proof. Let g: XY be a continuous mapping. Then

Q= {&,y) e XXX: g(a)=f(y)} = (Fx9)(4r)

is a closed subset of X x X, as Y is a Hausdorff space (4y is the diagonal
in ¥ xY). Thus condition (1.10) holds.

Now, let us put h(a,b,a’) =f"og(a’) for any (a,b,a’)e@x X.
Then g(a’) = f(k(a, b, a’)), and hence

{a', h(a,b,a")) €@ for any (a,b,a’)e@xX.
Next, -
U {g¢X: (0, 0@ =1"°g(a,a)
vea,a’ .
is an arcwise connected subset of X, as X is an arcwise connected space
and Y is a B-space. Hence, since (a, b) and (a’, h{a, b, a')) belong to @,

b, h(a,b,a’) C flogla,a’).

Thus condition (1.11) is also satisfied and, by Theorem (1.9), ¢(z) = fla)
for a point x e X.

The following example has some relation to the product:

(1.13) Examers. Letf;: D—XK be a continuous mapping onto, where D
and K are as in Bxample (1.5), and let X be a space obtained from Dx I
by identification of poinis (x,1), (y,1) such that filg) = fily), =,y eD.
Then X is a 1-dimensional continuum.

We shall show that the mapping f: XK I, given by f(z, 1)
= (fulm), 1) for (,1) ¢ X, 45 universal.

Indeed, let p: K xI->K be the projection and let h: X-Kx1
be a continuous mapping. Then p o h(z,1)=fy(z) for a certain zeD
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since K has the fixed point property. Hence h(I) C {fi(#)} x I for such
zeD and I,= {(z,t): teI}. On the other hand,

st Io—>{fil@)} x I
is a universal mapping. Thus f(z, t) = h{z, t) for some ¢ ¢ I. Universality
of f is proved.

Now, let g: K—I be & continuous mapping onto, and let 4: I—J
be the identity mapping. Then, by Theorem (2.7) from [5], the product
mapping ¢ xi: KxI-I* is universal yet, by Proposition (1.1), the
composition {g xi)o f: X->I2 i3 not a universal mapping.

We can give a direct proof of the last fact. Let @ be a closed-open
subset of D such thatb

e CE and (gof)7H(1)C D\G.
Then the mapping h: X—-I2 given by the formula
(min(L, gofifa) +1—1), —1) ' if 2@,

h(@, 1) =
@1 (max(—l, g o fufe) ~1 +1), —1) if «xeD\G

is continuous. Evidently h(p) # (g X ©) o f(p) for any p e X.
(1.14) Remark. One can prove, analogously as for f, that the
mapping fx ¢ is universal (see (1.13)).

§ 2. Compositions of the universal mappings of poly-
hedra. Let us recall (see Proposition (1.1) of [6]) that a continuous
mapping f: X—I" is not a universal mapping if and only if there exists
& continuous mapping g: X 8" (where, in this case, 8" is the boundary
of I") such that g(z) = f(z) for any @ <fH(S"™). '

(2.1) ExampLE. Let ¢ be the complex plane and

Q=1{rel: | <1} and S ={ecC: fo|==1}.
Next, let M be a Mobins strip obtained from the subspace
P={eel: } <[2| <1}
by thg identitication of the points 2,2, e P such that [@y] == || == 4 and
# =7. Then the mapping f: M-»~Q given by the formula
f(z) = (Bw—I}zT-)z for any ze M

is a well-(.ieﬁned universal mapping and the composition yof: M—¢
f’f the universal mappings f: M—Q and g: Q—>Q, g(2) =2 for z¢0,
18 not a universal mapping.

More gex}era,lly, let Puy, where n, m are the arbitrary integers, be
a space obtained from P by identification of the points 2z, 2, ¢ P such
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that either |2,] = l¢,] = % and 2§ = 2§ or Joy| = [2,] = 1 and 2" = 2. Next,
let f,’f,,,.: P,.n—@Q be a mapping given by formula
2
fE () = (2———Iz—l-) mz'"" for zePugp.
Obviously, Pnm is a polyhedron and fEm is a well-defined continuous
mapping for any integer k. This mapping, under a triangulation of Ppm,
is even a simplicial mapping.

(2.2) THEROREM. The mapping f,f,m: Pom—>Q is universal if and only
if mtkm. The composilion gnofam: Pam—Q of the mappings fam and
gn: Q—Q, gu(2) = 2 for z¢Q, is never universal.

Proof. If n|km then the mappings h: Ppm—Q, h(z)= —(z/le)*™
for 2 ¢ Ppm, is & well-defined continuous mapping such that &(z) # fom(2)
for any 2 e Ppm, i.e. fi, is not a universal mapping.

In particular, g o fem = fus i8 D0t a universal mapping.

Now let n+km. Let 8% denote the subspace of Py, obtained from &'
by identification of the points 2,2 ¢ 8* such that 2" = z§'. Then

Hy(Pom, 83 Za) £0  and  (fEa)ale) # 0 € Hy(Q, 8% Za)

for any generator e of the relative homology group Hy(FPam, 8; Zn),
where Z, is the group of the rests modulo n. Hence, if f: Pyn—¢ is a con-
tinuous mapping such that f(@)= fX.(z) for any @ eSp= (fum) (8",
then

8 of(6) = (FI8h)e © 6(6) == (FhmlSr)s o 6(€) = 8 (fam)ule) # 0

since 6: Hy(Q, 8% Zy)—H,(8) is an isomorphism. Thus f(Pnm) g: 8. Thig
means that f,{‘,,,, is @ universal mappings. The theorem is proved.

§. 3. Product of nniversal mappings. Connection with
the composition. We have proved in papers [5] and [6] that the pro-
duet of universal mappings of the compact spaces onto the snake-like
spaces (and, under a condition, onto one n-dimensional cube I™) is a uni-
versal mapping. Now we shall start from some examples of two universal
mappings, the product of which is not a universal mapping.

(3.1) Bxampir. Let B be a Boltiansky’s 2-dimensional continuum
such that dimB?= 3 (see [1]). Then, by Theorem of [2], there exists
a universal mapping f: B—I*, but fxf: B*—I* is not a universal
mapping.

(3.2) Exampre. As Knill [9] has shown there exists a 2-dimen-
sional continuum X with the fixed-point property such that X xI does
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not possess this property. In the other words, the identities ix: X-»X
and iy: T—T are universal, but éx X 4y is not a universal mapping, although

dim (X »I) = dim X +dim7 = dim X +1

(cf. Theorem of [2]).

The following theorem gives the relation between the universality
of the composition of some mappings and the universality of the product
of the same mappings (this is a product criterion of universality of the
composition of mappings).

(3.3) TurorEM. Let fi: X;—~Xyy be a continuous mapping for any
i=1,2,..,n If the Cartesian product

nfi: nXi—>HXi+1

=] =1 =l
of mappings fi, fay .-, fa 18 universal, then the composition

f=foofoao..ofi Ti—>Xpps
78 also universal.
Proof. Let g: X;—~X,., be an arbitrary mapping. We shall define

a mapping
@: n X~ H Xins

i=1
by
G2y @yy ooy Tn) = (mzy Lgy oory Tny 9(‘”1))

for any (2, %, -.., #a) € | | X;. Then

@) = (_[sz-) (%)

for some x = (%, ¥, ..., @z), and hence

By =frofiqe.ofi(®) for i=1,2,..,n-1
and
g@) =Jfaofaro.ofi(®), where meX,.
The theorem is proved.

(3.4) Remark. The converse of Theorem (3.3) is not true. Indeed,
let f: X —1I be a universal mapping of the continuum X from Example (3.2)
into I (in this case that means f(X) = I). Then the composition f o ix = f
is & universal mapping, but the product mapping ix X f: X2—»>X xI is
not universal. Theorem (3.3) has a generalization in Theory of Category.

The following assertion is a direct consequence of Proposition (1.1)
and Theorem (3.3).
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(8.5) CorOLLARY. If dimX <n < dim Y, where X and ¥ are normal
spaces and m is a positive integer, then for any universal mappings f: X—¥
and g: Y—I" the product mapping fX g: XX Y —>Y xI" is not universal.

We can apply the above Corollary to Examples (1.5) and (1.6).

(3.6) Examprg. Let the mappings f: XK x1, g: K—I, and i: I>I
be given as in Example (1.13). We know (see (1.13)) that the composition
(gx4)ef: X—I* is not a universal mapping. Hence also the product
mapping fXgxi: XX EXI->KXI® i3 not a universal mapping yet
the mappings g X 4, f X ¢ are universal (the mapping f X g is not universal).

(8.7) ExamprE. The product of universal mappings of 2-dimensional
polyhedra is not necessarily a universal mapping. For example, if n tkm,

then f,,,,, Pppn—Q and gn: @Q—Q are universal (see Example (2.1) and
Theorem (2.2)) but

TamX gai PamXQ>QXQ
is not a universal mapping.
Let us put
4 = -Pn,m X S}n w Sfln X-Pn',m' Q -Pn,m X-Pn’,m’ .
Then )
(3.8) We have

Hy(A; Ry) = {(,%') e R@Ry: n& = n's’ = mag+m's’ = Omod1}

where By = R|Z denotes the group of the numbers modulo 1, and
(3.9) Hy(4; B) = 0 if n, mn’ or o', m'n is a pair of relatively prime
integers.
(3.10) ExAampLE. Let n, m be a pair of relatively prime integers
and #»’ = m and m' = n. Then by (3.9) we have Hy4; R))=0.
Evidently P, and P,,, are homeomorphic polyhedra. The product
mapping fam X fmn: PamX Pun—@xQ of the universal mappings fam
and f.s (see Theorem (2.2)) of the homeomorphic polyhedra is not universal.
Indeed,

A= (fwlt,m Xfaln,n)_l(ss)
and
Jam X frnld: A8

is, by the Hopf theorem, a homotopically trivial mapping. Hence the
assertion is a consequence of the Borsuk’s homotopy extension theorem.
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Euklidische und Minkowskische
Orthogonalititsrelationen

von

Wolfgang Rautenberg (Berlin)

In affinen Ebenen lassen sich Orthogonalitétsrelationen danach
unterscheiden, ob sie selbstorthogonale (singulir, isotrop) Richtungen
enthalten oder nicht, anders ausgedriickt, ob die ihnen entsprechenden
Tnvolutionen auf der unendlich fernen Geraden von hyperbolischen oder
elliptischen Typ sind. Die ersteren seien Minkowskische (pseudoeukli-
dische) die letzeren Buklidische Orthogonalititsrelationen genannt.

Die allgemeinen Eigenschaften dieser Relationen werden gewohn-
lich erst nach Einfithrung von Koordinaten durch die Untersuchung qua-
dratischer Formen, oder mit Hilfsmitteln der Theorie der projektiven
Abbildungen untersucht. Es ist vom Standpunkt der Grundlagen der
Geometrie, wie anch fiir die Geometrie selbst von Interesse, diese Higen-
schaften innerhalb der Theorie der affinen Ebenen selbst herzuleiten.
Bemerkenswert ist, daf die hier genannten Theoreme und Corollare
auf synthetischen, d. h. rein geometrischen Wege sehr viel schneller
und eleganter als mit analytischen Hilfsmitteln herleitbar sind.

Bs wird w.a. ein Kriterium fiir die Existenz singuliirer Richtungen
angegeben, Ferner werden Bedingungen fiir die Kommensurabilitit von
Orthogonalitiitsrelationen genannt. Die Untersuchungen sind von einer
Anordnung unabhingig.

Wir betrachten hier i. a. Translationsebenen, also affine Ebenen, mit
dem sogenannten kleinen Satz von Desargues als zusitzlichem Axiom. (1)
Um Sonderfille auszuschliessen, wollen wir auBerdem annehmen, dag die
Diagonalen eines Parallelogramms einander schneiden (Fano-Axiom).

Punkte werden mit 4, B, ..., Geraden mit a, b, ... bezeichnet. 4B be-
zeichnet die Verbindungsgerade der Punkte A, B; a*b den Schnittpunkt
zweier nicht paralleler Geraden a, b, || bezeichnet die Parallelitéits-
relation und o, o, ... die Aequivalenzklassen dieser Relation, Richtungen
genant. + bezeichnet Orthogonalititsrelationen.

(1) Die folgenden Theoreme gelten meist auch ohne diese Voraussetzung; es ist

m. W. unbekannt, ob die Existenz von O-Relationen in affinen Ebenen nicht schon
den kleinen Desargues impliziert.
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