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Some results on AC-o functions

by
M. C. Chakrabarty (West Bengal, India)

1. Introduction. Let @(z) be non-decreasing on the cloged in-
terval [a, b]. Outside the interval, w(z) is defined by o(z) = w(a) for
2z <6 and o(@) = w(b) for £ > b. Let § denote the set of points of con-
tinuity of w(x) and let D = [a, b]—8. Let 8, denote the nnion of pairwise
disjoint open intervals (ay, by) in [a, b] on each of which w () is constant,

Si=A{a, b1, 00, by, ), =88 and S, = [a,5]-8—(8, 8, .

R. L. Jeffery [4] has denoted by W the class of functions F(z) defined
as follows.

f(z) is defined on the set 8-la, b] such that f(z) is continuous at
each points of §-[a, b] with respect to §. If a point #, € D, f(x) tends to
a limit (finite or infinite) as « tends to 2+ and a,— over the points of
the set 8. These limits will be denoted by f(z,+) and f(z,—), respectively.
When z < g, f(#) = f(a+) and fl@) = f(b—) for & > b. f(z) may or may
not be defined at the points of the set D.

In [4] Jeffery has introduced the following definitions.

DErFINITION 1.1. A function f(@) defined on [a, b] and in the class W
is absolutely continuous relative to o, AC-w, if for £ > 0 there exists 6 > 0
such that for any set of non-overlapping intervals (z;, i) on [a, b] with

2o @i+) —w(@i—)} < 6 the relation 21f (@ +) —F@i—)] < & is satistied.

DeriNition 1.2. Let f(z) belong to the class . For any 2 and any
h # 0 with @ +% e 8, the function y(z, b) is defined by

fl@+h)—f(x—)
w(@+h)—ow(z—)’
fle+h)—f(z+)

{ h>0, w@+h)y—w@—)£0,
W(m’h)z{ g al _— P

o+t —a@L)’ h<<0, w@+h)—ol@+)=0,
lo, o(@+h)—w(@t)=0.

If p(z, h) tends to a limit as h—0, this limit is called the «-derivative
of f(%) at & and is denoted by Ja(z). The upper and lower limits of w(x, k)
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on the right and on the left are the corresponding upper and lower w-deri-
vatives of f(z) at z.

Letf af>((a?) =Y <Y <Y< .. < Yn= w(b) be any §xubdivision of
[w(a), (b)] where y;e w(I), I = [a,b]. For any y; there is an x; ¢ I for
which .w(z;) = g;. If for an y; there exist more than one x; su.eh that
¥+ = w(2¥),-we take any one . The set of points 2, #,, mg., sy @n I8 called
a w-subdivision ([11, [2]) of [a, b]. In [1] the following definition has been
introduced. '

DermviTioN 1.3. Let f(#) be defined on [a, ] and be in eclass L.
The least upper bound of the sums

V= 1f@+)~f (i )|

for all possible w-subdivisions @y, @, ..., #, of [@,b] is called the total
w-variation, Vo(f; a,b), of f(x) on [a, b]. If V.(f; a, b) < oo, then flz)
is said to be of bounded variation relative to w, BV-w, on [a, b].

‘We introduce the following definition.

DeFviTION 1.4. Let f(#) be defined on [a, b]. f(x) is said to have
the property (N,) if for every set e C [a, b] with w-measure [4] zero the
Lebesgue measure of the map f(e) is zero.

The purpose of the present paper is to study some properties of AC-w
functions and to show that if f(#) is BV-0 on [a, b] and possesses pro-
perty (N,), then f(») is AC-w on [a, b].

We require the following known results.

THEOREM 1.1. ([3], Th. 4.1.) If f(m) belongs to the class L, then all
the four w-dervatives of i) are w-measurable [4].

TEROREM 1.2. (3], Th. 6.2.) If f(z) is BV-0 on [a, b], then fi(z)
exists and is finite at all points of [, b] except a sei of w-measure zero.

TaEOREM 1.3. ([3], Th. 6.3.) If fle) is BV-w on [a, ], then fi(x)
is summable in Lebesgue-Stieltjes sense [4], summable (LS), on [a, b].

. The outer w-measure [4] and the «w-measure [4] of a set B will be
denoted by o*(E) and |H|,, respectively.

2. Preliminary lemmas.

Lemma 2.1. Let B be a subset of 8y and lev f(z) belong 1o the class L.
If falw) exists at each point of B and |fa(x)| <k on E, then

mf(B) < ko*(B) .

Proof. Choose &> 0 arbitrarily. For each positive integer n denote
by E, the set of points # of B such that

@) —f () < (k+e)jo(@)—w(y)| whenever yel and |z—y| <1/n.
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Then clearly B, CE,C ... and F — > Ba. So
1

fEB)CHBIC ... and  5(B)= Y5,

Therefore imm*f(H,) = m*f(E). We find a positive integer N such that
m*f(By) > m*f(B)—e. We now choose a sequence {I,} of pairwise disjoint
intervals I, with the properties

(i) m(I;) <1/N for each n,
(i) BxC ) I,, and
1

\ o

(i) .33 nlo < 0*(By) +e.

From the definition of the set Eywe see that for every pair of elements
@y, @y of I,-Ex we have

- (@) —f(@)] < (& +e) o () —a ()] < (k& +2)| Inl

which gives that m*f(In-By) < (k-+¢) |I,|,. Since By = Y1, -Ey, we have
1

mif(Ey) < Z W (In- By) < (k + &) _5] Talo < (k -+ &) [wX(By) +~e].
n=1 1

So
W) —e < (k+&)[w*(B) +¢] .
Since ¢ > 0 is arbitrary, we obtain m*f(B) < ko*(E).
Levuva 2.2. Let f(x) be defined on [a, b], be in class U, and have

properly (No). If B is the set of points in [a, b] where fal®)  exists and
|fal2) <k, then

W (B) < (ko*(E) .
Proof. We have [a, b] = 84+ 8. +8:+D where |S,), = 0, |8l =10
and D is at most enumerable. Since f(w) possesses property (No),
(B =0, m*f(BS)=0.
Algo m*f(ED) = 0 ‘since F(ED) is at most enumerable. Since £ — B8, +
+ES,+ES; +ED, we have
mf(B) < m*f(ES,),
< ko*(ES;)  (by lemma 2.1y,
< ko*(E) .
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Lmvva 2.3. Let f(z) be defined on [a,b], be in class U t‘md Ppossess
property (No). If E is a w-measurable set on [a, b] where fo(x) exists finitely,
then

mAf(B) <(L8) | |fa(@)]do .
. E

Proof. If |fi(x)] is not summable (LS) on H, the result is tri'vi_al.
So we suppose that |f4(»)] is summable (LS) on E. Let & be any positive
number. For any positive integer n, let B, denote the set of points of B

for which (n—1)e < |fa(®)| < ne. From theorem 1.1 it follows that fi(z)
and therefore |fi(x)} is w-measurable on E. So the sets H,, K, ... are

w-measurable, they are pairwise disjoint and ¥ = 21| F,. Therefore we

have

mH(B) < Y m*f(By) < D) me: |Baly  (by lemma 2.2),
1 1

En

< D [1fs@)do + - | Balu
< [1fs@)ldo +e | Bl
B

Since ¢ > 0 is arbitrary, we obtain
m(B) < [ |f(@)ldo .
E

Levma 2.4, Let f(x) be defined on [a, b] and let be in class W. If f(z)
18 bounded on 8, then for amy two points a,f (> a) of 8 n [a, b],

() =F(B) < m*f(B) + ) If(@e+) —Flmi—)
where B = [a, 1-8 and x,, @,, ... are the points 'of D which lie in [a, .
Proof. If the series Zlf(w¢+)—f(w¢~)| is divergent, the vesult is
trivial. So we suppose that Zl f(z1+)—f(@:—)] is finite. Let 4, B be the

lower and upper bounds of f(z) on E. Denote by A, B; the minimum
and maximum of f(z¢+), f(z:—) and write D, = {®,, 7, ...}. We show that
&) (4, B)C(B) +F(D) + D[4, B .

Let y e (4, B). If there is a point  ¢[a, §] = B +D, such that flz) =y,
then y e f(B) +f(D,). Suppose that there is no point « in [a, #] for which
¥ =f(e). Bince 4 <y < B, there exist two points ¢, d of B such that

icm
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A <flo) <y <f(d)<B.
that ¢ < d. Let

Without loss of generality we may assume

P = {z; el [c,d] and f(z) < y}.

Denote by & the upper bound of P. It is easy to see that ¢ <& < d and
F(E—) <y < f(+). Since y + f(x) for any « in [a, 8], it follows that
& € Dy. S0 § = x; for some 4 which shows that y e [4:, B;]. This proves (1).
Since D, is at most enumerable, m*f(D,) = 0. So from (1) we have

[fla)—f(B)l <B—A4 <m*f(E)+2 Ifloe+) —flee—)]

Lemma 2.5. If f(») has property (N,) and is BV-w on [a, b], then for
any two points a, B (> a) in [a,b],

If(B+)—fla=) < [ Ifife)de .

18]
Proof. The following cases come up for consideration:
) a<a g<b,
(i) @ = a f<b,
(i) a < a, =10 and a=q, b= p. »
Case (i). Since f(#) is BV-w on [a,d] by theorem 1.3, fi(z) is
summable (LS) on [a, b]. So for any -measurable set ¢ C[a, b],

(2) J1f@)Ndo~>0  as  le[,—0.

Let &> 0 be arbitrary. Choose two points & 75 of § with a<é<a,
B<n<b Let A=[£,7]-8 and B=[£,5]—8. Since B is at most
enumerable, we can take its elements as ,, #,,... Then by lemma 2.4
we have

(&) —f )] < m*f(4) + ;’ 1 (@) —F (@) -

Let A, denote the set of points of A where fi(x) exists finitely and let
Ay= A—A,. Then by theorem 1.2, |4,|, = 0. Since f(x) possesses pro-
perty (N,), m*f(4,) = 0. Therefore m*f(4d)= m*f(4,). Hence using
lemma 2.3 we get

& —Fm) < mf(A) + D 1f(@e+) ~f (@ —)]
< [ifs@ldo+ [ Ifuo)ldo = [ |fi)ldo
Ay B &

< [if@ldo+ [ 1fd@)do - . f] If(@)ldoo .

[&,a) [1,8]
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Letting £&—~a—~— and 5> -+ over the points of 8, we obtain
(3) fBH—flam)l < [If@)do.

[a,8]
Proceeding as above we can prove (3) in other cases.
Leyua 2.6. If f(x) 48 AC-0 on [a, ], then for every set of-pairwise
disjoint intervals (ar, fs) on [a, b] with oz, f1¢ 8 we have

2 Ifla) =Bl <Vu(f;0,0).

Proof. Let # be any positive integer. Without loss of generality we
may assume that (a;, ), (aa, Bs), -y (an, fu) are in the order of increasing
end points. If the points a < ay, By, &, fay vy Oy fu < b form a w-sub-
division of [a, b], then clearly

D 1f(a) —f (B < Valf; 0, b) .
1

Otherwise w(«) has the same value at two or more of the consecutive
end points of the intervals at one or more stages. For simplicity let us
suppose that w(e)= w(f) and () = w(a,) but at all points of the
seb {ar, 0y, Bs; @, Ba, Bas @5y Bsy vy Omy Bu} w(x) has distinet values. Then
the points ¢

&<y, Gy Bay 0 Bay Bay 05y By ey any Bn < B
form a w-subdivision of [a, b]. So

() —F (o)l 1 (oa | —F (8ol + I Ba) —F (B) + D) 1f(a) —F(B)]
= <Vulfs @, b) .
By theorem 4 [1], Fleg) = f(B,) and f(8s) = f(e). So we have
iZIf(at) —f (Bl < Volf; ay b) .
Since n i3 arbitrary, we obtain
Z [f(a) —f (8] < V.u(f; a, D) .

This proves the lemma,.

3. Results on AC-» functions.
TrvoreM 3.1. If f(z) is AC-0 on [a, b], then

f@ =fla+)+ [ fiydo  for zela,b]- 8

]
where ! @(2)dw denotes the (LB) integral of ¢(t) over the closed interval (a, B].

icm°®
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Proof. Since f(x) is AC-w on [a, ], by theorem 5 [1], it is BV-o
on [a, b]. So by theorems 1.2 and 1.3 the o-derivative fi(x) of f(w) exists
and is finite at all points of [a, b] except a set of w-measure zero and
fal®) is summable (LS) on [a, b]. We define the function g(z) by

fla+) for z<a.

q(z) f1(a +) +ff;(t)dcu for a<a<b,

f(o—)
Then clearly g () belongs t6 the class U and AC-o on [a, b]. By theorem 1

for x>b.

[4], f(#)—g(2) = k (constant) on &. Letting #-+a -+ over the points of §
we see that fla+)—g(a+)=k. Now, for z e [a, b], . :
4) g =fat)+ [fido+ [fdo, where A= {a}.
4 [CX]
If

d)e = w(a+)—w(a—) = w(e+)—o(a)~0,

then fi(a) = 0 which gives that in any case the first integral of (4) is
zero. 8o, letting #—a - over the points of § in (4) we get g(a+) = f(a+).
So k= 0. Thus ‘

f@)=fla+)+ [ fit)do  for all z ¢ [a, b]-8.

THEOREM 3.2. If f(z) is AC-w on [a, b], then f(x) has property (N,).
Proof. By the previous theorem we have

f@=fa+)+ [fit)dw for all we[a,B]-8.

Let E be any set on [a, b] with o-measure zero. Then E C §. Write
B’ = E(a,b) and B" = E—F'. The set B contains at most two points
and therefore so does f(E'*) which gives that m*f(E"') = 0. Hence m*f(E)
= m*f(¥'). Choose ¢>> 0 arbitrarily. Since |f.(z)] is summable (L8) on
[a, 0], we can find a 6>0 such that for any w-measurable set
¢C[a, b,

f]f[.,ldco <& whenever lej, < 4.
e

There exists an open set 4 C(a, b) such that B’ C A and |4, < 6. Let
A= 2 (as, B1), where the intervals (s, fr) are pairwise disjoint. Write

Ai=(ai,f) and EBi=E-(a, 1) (i

1,2,..).
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Ifif, 7 (> &) be any two points of B, then
n
n—f(&) = [fat)do
3
So,

8§ —fn) < [ 1fsldo < Af el deo
which gives that m*f(H;) < .4f |fi)dw. Therefore

Zm*f B) < ), [1fildeo = j Ifoldow < e .

i A

m*f(E) = m*f(E

= 0. This proves the theorem.

= fil@) —fr@) for

are non-decreasing on [a, b].

Since & > 0 is arbitrary, m*f(B)
TuroreM 3.3. If f(z) is AC-0 on [a,b], then f(z)=
all xela,b]-S where fi(x) and fy(w)

Proof. Let A denote the set of points in [a,b] where fo(z) exists
and is finite. We define the functions p(z) and g(z) on [a, b] as follows:

flo) i fieoy

P(w)':{o it f£($)<0}’ & A:

2w =1° L@ <0l g,
| —fa@) i fal@) >0

and p (%) = ¢(z) = 0 for x e [a, b] —A. Then p(x) and ¢(x) are non—negativ.e
on [a,d] and fi(x)= p(z)—g(z) for zeAd. Bach of p(x) and ¢(z) i8
snmmable (LS) on [a, b]. We now define the functions P(x) and @ (x) b

0 fox r<a,
Pz fp(t)dm for a <z <b,
}(b—) for x>b,
0 for z<a,
Q(z) = fq(t)dw for a <o <b),

a

Qb—)

Then clearly P(x) and Q(x) belong to the class U and are AC-w on [a, b].
Bince p(z) and ¢(x) are non-negative, the functions P(») and Q(x) are
non-decreasing on [a, b]. If z ¢[a, b]- 8, then

for z>b.

icm
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fl@) = fla+) + [ fit)do

= fla+) + [fit)do, B, =[a,2] 4,
Ex

A+ [ Ip) —g@)lde
Ez

=fla+)+ [ pit)do— [ g(t)do

=fla+)+P(z)—Q(=).
This proves the theorem.

The following example illustrates the extent of Theorem 3.3:

ExamerE. Let the functions «(z) and f(x) be defined in the interval
[0, 2] as follows:
(@) = 0, 0<e<1,
z—1 1<x<2,
and
zsin(lfz), 0<z <2
f(m) — { / E) )
0 r=20.

Clearly f(z) belongs to the class W. Let 0 <&y < & < oo < Wy < 2
be any w-subdivision of [0, 2]. Then 0 <&, <1, #, > 1. We have

n

= X1l +) —f (s~
= D If(@)—fes (o)

i=1
i3

< If (@)l + @)+ ) [flwn) —f (@il
=2

2
< 3+V(f) = a finite quantity,
1

because f(x) is BV on [1,2]. Thus f(z) is BV-w on [0, 2].

But it is well known. that f(«) is not BV on [0, 2]. This example shows
that every BV-w function cannot be expressed as the difference of two
non-decreasing functions.

TaroREM 3.4. If f(x) is AC-w on [a,b], then

b

J fa(t)do < Vu(f; a,b) <J 1740 |dw+2|f Ee) —F (&)

where &, & ... are the points in [a, b] for which f(&i-+) # f(&i—).

B
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Proof. Let #y, &y, Tyy s Tn D 1Y w-subdivision of [a,b]. Then

= Zlf(mi 'i*‘)"‘f(“%’—-l”

=1
n—1

Nl ) =l = ) ) —=f )]
= i=0

<) [ s 1dw~-21f £ +) —f(&)]

i=1 (Ti-1,2i]

b

< [1fsmlao+ X 17(E+) =fE - -
a i

Because Ty, &y, Ty, .., &n 18 an arbitrary w-subdivision of [a,b], we

have

b
(8) Volfy 0,0) < [ 1fs01deo+ X 1f(E+) —f (=)l

Choose &> 0 arbitrarily. Since |f4(¢)] is summable (LS) on [a,b], there
exists a 6 > 0 such that for any o-measurable set e C[a, D]

f]f;,(t)]dw <& whenever e, <d.

Let A denote the set of points in (a, b) where fi(z) exists and is finite.
‘Write

A—A4,.

Ay={moved and for) >0} and Ad,=

Choose closed sets B, and B, with B, C 4,, B, C A, such that |4, —B,|, < 6
and |4, —B,|, < §. By theorem 2 of [5], p. 46 there exist open sets Gy
and @, contained in (a, b) with B,C G, B,C G,, G1G, = 0 and |¢4—B,|.
< 6, |Gy—Byl, < 4. We choose sets

Pi= D'og, fil, Py= S’Eal,m with

i=1 i=1

o1y Biy aiy fie S

and P,C@&,, P,CG@, such that

|Gi—Pila<é (i=1,2).

Now,
b

(6) [15mldo = [ 1fa0lde = [ findo— [ fit)do
a (a.) Ay As

< [futydo— [ fut)de +26
B By

©
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< [rimdo— [fun +4e
& G

< f Jaltydo — f falt) +6e
2y Pq
m By w pl
< X [ fdo— 3 [ fundo +6e
=10 i=1a]
< V 1F(Bs) —F ai)lTZIf(ﬁ )—f(as)| +6s .
1“ =1

Since the intervals (« AR (2, By ey (am, Bm), (af, B1), {as, B3)y .uy (any B1)
are pairwise dl,s]omt we get: from (6) and lemma 2.6

f ot do < Vof; a, b) 466 .

Since s > 0 is arbitrary, we obtain
b

(7) . S1rm1do < Vs a, b .

The theorem follows from (5) and (7).

TemorEM 3.5. If f(x) is BV-w on [a,b] and has the property (N.,),
then f(@) is AC-w on [a, b],

Proof. Let ¢ be any positive number. By theorem 1.3, fo(w) is
summable (LS) on [«, b]. So there is a 6 > 0 such that for any w-mesu-
rable set e C[a, b] with |e|, < 6 we have

(8) [1fildo < 3e.

Let {(a:, f1)} be any set of pairwise disjoint open intervals with ) {o(Bi+)—
—w{a;—)} < 4. Choose any positive integer n. Without loss olf generality
we may suppose that the intervals (ay, 1), (day fo)y vy (on, fu) are in the
order of increasing end points. 'We divide the set {1, 2,...,n} into two
parts A and B such that A consists of odd integers and B con&ists of even
integers. Let

QU . -
€ = Z[airﬂd: £y = Z[M,ﬂd-
ied ieB
lehe‘ intervals [ac, fi] (i€ 4) are pairwise digjoint; the intervals [az, fi]
(i€ B) are also pairwise disjoint. Further le,|, < 8 and |ey), < 6. Using
lemma 2.5 and formula (8) we get

kid "

2 f(as—) —f(Be )< Y f[fwldw < j]fwldw [1fldo <3e.

qm] 1=l ay &y
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Since n is arbitrary, we have

3 fla—) —f(pe ) <de e

is proves the theorem. .
e Ipam ,c;ra.teful to Dr. P. C. Bhakta for his kind help and suggestions

in the preparation of the paper.
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Normal models and the field 37

by

Gustay Hensel and Hilary Putnam (Cambridge, Mass.)

It is known ([2], theorem 35, p. 394) that every axiomatizable, con-
sistent, first-order theory has a model in X, ~ I7,. Putnam [5] has shown
that such theories, based on a finite number of predicates, have models
n 27, where XY denotes the field of predicates generated by the recursively
enumerable predicates.

The purpose of this paper is to extend this result to the case of an
axiomatizable, consistent, first-order theory with identity built on a finite
number of predicates. More precisely, we shall show that such a theory,
if it possesses an infinite normal model, has a normal model in Z¥. The
model exhibited will be the simplest possible, in the sense that it will
contain Ramsey indiscernibles and only those extra elements needed
for completion. This answers completely the open question of Mostowski
in [4], p. 39.

§1. The theory 7, and the main theorem. As mentioned
previously, we shall employ the symbol XZ¥ to stand for the smallest
tield of number-theoretic predicates (of all orders, 1-ary, 2-ary, ete.)
which includes the recursively enumerable predicates and is closed under
the truth functions (e.g. closed under ] (not) and v(or)).

Let T, stand for an axiomatizable, consistent, first-order theory
with equality which is based on the predicates P}, ..., PX™, Here the
superscripts denote the order of the predicate symbol, and we shall usually
omit them. P, will be taken to be the equality symbol. All models of 7,
are hence of the form (4; Ry, ..., Rm) where 4 5= @ and R, C A", It R,
is the identity relation on 4, then the model is said to be normal.

TrzorEM 1.1. (MAIN TerorEM). If T, has an infinite normal model,
then Ty also has a normal model Q= (N; Qy, ..., Om) where N is the se
of natural mumbers and Qye Z¥ for all j=1, ..., m.

To prove this theorem it will be necessary to work with models of
theories stronger than T,. But before defining these new theories we shall
need a result due to Ramsey.
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