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Infinite complementation in the lattice of topologies *

by

Paul S. Schnare ** (Gainesville, Florida)

1. Introduction. This paper attempts to be self-contained, bub
for basic facts and backround see the author’s previous paper [4] in this
journal. In that paper a theorem of Hartmanis [3] was strengthened to
gshow that every proper (i.e., neither trivial mor discrete) topology on
a finite set X with n > 2 elements has at least » —1 .complements in the
lattice of all topologies on X. This lower bound is best possible as was
shown by an example. Utilizing this result, together with other results
in that paper, it was shown that every proper topology on an infinite set
has infinitely many principal (1) complements. This answered affirmatively
a strengthened form of a question of Berri [1] (implicit in Hartmanis [3]).

The further questions naturally arise. Is it possible to estimate the
cardinality of the set of complements (respectively, principal complements)
for a proper topology on an infinite set? In particular, can one obtain
a (best possible) lower bound on the cardinality of the set of complements
for a proper topology on an infinite set X analogous to that obtained
if the set is finite? A natural candidate for such a lower bound would
be |X]|.

The purpose of this paper is to answer these questions affirmatively.
Specifically, the following result is established.

THEOREM. Hvery proper topology on am infinite set X has at least | X|

complements (vesp., principal complements) and at most 21X complements
(vesp., 2% principal complements). Moreover, these bounds are best possible.

Remark. This provides an alternate way of establishing the main
result of [4] which follows as an immediate corollary.

* This paper is part of a doctoral dissertation written under the direction of
Professor M. P. Berri of Tulane University of Louisiana.
*% The author was an NSF Science Faculty Fellow during the preparation of this
paper.
(*) A topology is principal iff it is closed under the formation of arbitrary in-
tersections [5].
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- In the next section appears a proof that |X] is a lower bound. In
section 3 the theorem will be completed and examples will be given to
show that these estimates ave the best possible.

2. Proof that |X| is a lower bound. The proof of this, the
difficult part of the theorem, although elementary, involves a series of
reductions resulting from a fairly complicated case (and subcase) analysis.
Tor convenience the proof is broken down into several propositions.
Quite heavy use is made of the following lemma which appeared in an
equivalent form in [4]. The details of its proof are omitted here. Throughout
this section let ¢ be a proper topology on an infinite set X.

Lemma 2.1, Let X, CX. Then, t has at least as many (principal)
complements as does 1| Xy, the restriction of ¢ to X;.

Proof. Let X,=— X\X, and suppose without loss of generality
that X:#@, i=1,2 Let t;=t|Xi, i=1,2. Suppose that {tl: jeJ
and |J| = K} is a set of K distinet (prineipal) complements for i,. Let #
be o fixed principal complement for ¢,. Such exists by Steiner’s Theorem
({81, p. 397). Define K distinct (principal) complements for ¢: {t': jed}
as follows. Let

8(a, W(d) = {UCX: ae U>be U} Gxtp={UVV: Ueci]

and V etg) () .

and

Next fix: e Xy, i=1,2.
Case 1. Xi¢t for i=1,2. Let ¢’ = #]«1}.
Case 2. X, et and X, ¢t. Let ¢ = (] #1)) AS(my, Us(2y)).
Case 3. X, ¢t and X,et. Let ¢/ = (£ +t}) A S (my, W(xy)).
Case 4. Xiet, i=1,2. Let ! = (15)An 8 (zy, W(wy))
A8 (zy, W) @

Note that in Cases 2, 3, and 4 of the proof above, the topology v
depends not only on #] and the choice of #, but also on the choice of
@i € Xy, i =1, 2. Bince in what follows we will vary the 2¢s in an attempt
to obtain different (principal) complements, let us for a fixed #; denote
the complement for ¢ obtained in Case 2, 3, and 4 from # for the arbitrary
points @5 e Xy, i=1,2 by  =i(n, @y, §).

Now there is obviously another approach that might yield new

complen{ents for ¢, namely, to vary the subset X,. We shall also use this
method in the following propositions.

(*) Note: S(a,Us(b)) is a maximal proper principal topology, when a = b.
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PROPOSITION 2.2 Suppose that X has o subspace Y with t|Y proper

and |Y| = |X|. Suppose further that there emists a point y,e ¥ such that

{yo} ¢ 81T and for |X| y's o0 TN\{Wo}, {ya} € t1{yo, ¥}. Then t has at least | X|
principal complements.

Proof. By hypothesis there exist |[X| 3’s in ¥\{y,} such that
{yo} € t|{y, ¥} and {yo} ¢t/ Y. By excluding at most one such y we may
assume further that {y,, y} ¢ {|¥. For each such y let X, = {y,,y}. Use
TLemma 2.1, Case 1 or Case 3 to construct a principal complement #'(y)
for #|¥ from (t|{ys, ¥})’, the unique complement for ¢({y,, y}, and a fixed
principal complement for #/(¥\{y,, ¥}). By construction we note that
{Yas ¥} € ¥'(y). Suppose that y, # y,. We claim that t'(y,) 5 t'(y,) for other-
wise (Yo} = {Uo; Y1} © o, %2} €'(yy). Hence, {yo} € (t{ys, %:})". This is
a contradiction since by hypothesis {yo} € t|{yo, ¥:}. It follows that #|Y
has at least |X| principal complements. By Lemma 2.1 ¢ has at least | X]
principal complements. W

COROLLARY 2.3. If X has a non-discrete Ty subspace ¥ with |¥| = |X],
then t has at least |X| principal complements.

PROPOSITION 2.4. Suppose that (X, 1) has no isolated points. Then t has
at least |X| principal complements.

Proof. Fix a proper open subset W C X such that no non-empty
open subset has smaller cardinality. We consider the following possibilities:
IX\W|= |X| and | X\W]| < |X|.

Tirst assume that |[X\W}|= |X|. Fix an arbitrary point w,e W.
Since there are no isolated points in (X, #), we have {w,} ¢ . Since |X\W|
= |X]|, there exist |X| o’s in X\W such that {w} = W ~ {w,, v} € §|{t,, v}
By Proposition 2.2, ¢ has at least |X| prineipal complements.

Next assume |X\W| < |X|. Then |W|= |X|. We note that W is
not diserete. Thus, if t|)W is T, then by Corollary 2.3 t has at least |1 X]
principal complements. So we assume further that #|W is not T,. Then
there exists wqe W with {w,} not closed in ¢|W. By excluding at most
one point of W\{w,}, there exist |X| w’s in W\{w} such that {wy, w}
is not closed (or open) in #W.

Case 1. For |X| such w’s t|{w,, w} is not trivial. For each of these
use Lemma 2.1, Case 1 to define a principal complement #'(w) for {|W
from (¢|{wq, w})’" and a principal complement for t(W\{wy, w}). I wy 7 w,
but #'(w,) = 1'(w,), then {wo} = {wq, wi} N {wa, we} € ¥'(201). Since {wq, Wa}
is not closed in ¢ W, then W\{wo, ws} €t (w,) = ¢'(w,). Hence, {w,}
= {wg, Wy} ~ (W\{tq, wo}) € #'(a0;). Thus, (t[{wo, wi})’ iy discrete con-
tradicting the assumption that ¢/{w,,w,} is not trivial. Hence, '(awy)
= t'(w,) and #|W has at least |X| principal complements. Therefore, ¢ has
at least |X| principal complements by Lemma 2.1. )
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Case 2. For |X| such w’s, f|{w,,w} is trivial. We claim that
there exists a subset AC W with |4|= |X| and #[4 trivial. Let 4
= {w e W: {w,, w} is neither open nor closed in W and #[{w,, w} is trivial}.
By hypothesis in this case |4} = |X]. To see that |4 is trivial, we sup-
pose that for some proper subset B C A we have B ¢t[4. If w, e B, then
there exists w ¢ A\B such that {w,} « t|{w,, w}, a contradiction. If w,¢ B,
then there exists w ¢ B such that {w} ei|{w,, w}, also a conditradiction.
Thus, t|4 is trivial.

If A ct, then fix a point be X\A. Let # be the discrete topology
on A and # a fixed principal complement on #|(X\A). For each ae A
we now use Lemma 2.1, Case 2 or Case 4 to construct a principal comple-
ment for X: #a)=t(a,b,1) from a,b,# and #%. By construection if
a, # a,, then {a,} € 1'{a,)\'{a,). Consequently, there are at least | X| principal
complements for .

If 4 ¢t, then 4 ¢t|W. We now use Lemma 2.1, Case 1 or Case 3 to
construct a principal complement & for W from the discrete topology
on 4 and a principal complement for 1[(W\4). We note that if a4,
then {a} ¢#. Fixing a point be¢ X\W and & principal complement for
H(X\W), we now use Lemma 2.1, Case 2 or Case 4 to construet t(a)
=1(a,b,1) a principal complement for . By construction {a} ¢ tY(a)
but if o’ e A\{a}, then {a'} ¢ #(a). Hence, if a, o’ ¢ A and a # @', then
#'(a) # t*(a’). Consequently, ¢ has at least |X| principal complements. m

Tn the next two propositions I denotes the set of isolated points
in (X,1).

ProposirioN 2.5. If |X\I|= |X|, then t has at least |X| principal
complements.

Proof. If #}(X\I) has no isolated points and is a proper topology,
then by Proposition 2.4 t|(X\I) has at least | X| principal complements.
Consequently, by Lemma 2.1, ¢ has at least |X| prineipal comple-
ments.

If tj(X\I) is not proper and has no isolated points, then #|(X\I) is
trivial. Using Lemma 2.1, Case 3 or Case 4, for each y e Z\I one can
construct a principal complement #(y) = t(y, 15, 1) for t. Here 4,eI is
fixed; #; is the discrete topology on X\I; and the fixed complement, #,
for #|I is the trivial topology on I. Now I u {y} e ™My) but it 9’ e I\I
and y' sy, then Tu {y'}¢#y) and #(y) # ty’). Consequently, since
IZ\I| = |X|, ¢ has at least |X| principal complements.

Suppose, then, that #/(X\I) has an isolated point y,. Then, {y,}¢¢
a,.nd for every y ¢ Z\I distinct from y,, {y,} /{90, ¥}. Thus, by Proposi-
tion 2.2, ¢ has at least |X| principal complements. m

ProrosrrioN 2.6. If |X\I| < |X|, then t has af least |X| principal
complements.
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Proof. Corollary 2.3 takes care of the case where (X,?) is T,. So
let us suppose that (X, ) is not Tj.

Oase 1. There exists a point y, ¢ X\I such that {y,} is not closed
in (X,1). Since |I|= |X|, then there exist |X| ¢’s in I such that {y,, i}
is neither open nor closed in (X, ). By using Lemma 2.1, Case 1 we can
construct a prineipal complement #'(4) for ¢ from (¢|{y,, ¢})’ and a principal
complement for #{(X\{¥,, 7}). If we assume that (i) = (i) for 4; # 4,
then {i} € {Ho, 41} » X\Wo, G} €t'(4,). But 4 is isolated in (X,?) and
{i,} €. Since ¢ and #'(4;) are complements, this is a contradiction. Thus,
1(4;) 5 t'(4,) for i, +# i,. Hence, there exist at least |X| principal comple-
ments for .

Case 2. Every point of X\I is closed in (X, t). Since (X, £) i3 not T},
there exists a point 4, e I such that 4, is not closed in (X, ). Hence, there
exist | X| #'s in I\{i,} such that {i,, 7} is not closed in (X, ?). Fix y, ¢ X\I
and using Lemma 2.1, Case 2 define for each such ¢ a principal complement
11(3) = (4, ¥, 1) for ¢ where ] is the trivial topology on {4y, 4}. If 4, # iy,
we claim that (i) # #*(i,) for suppose the contrary. Then, X\{i,}
= X\, 2} v X\{o, £} € $1(i;). But then, {i} = X\{io} ~ {i, i} ¢ 1. This
contradicts the fact that i is trivial. Thus #'(4;) # £'(4,). Since |I| = |X],
then t has at least |X| principal complements. m

This completes the proof that the cardinal number of the set of
complements (resp., privcipal complements) for a proper topology on
an infinite set has [X| as a lower bound.

3. Completion of the proof and examples.

LevmA 3.1. On an infinite set X, there are 2% gopologies and 2
principal topologies. '

Proof. Let X be an infinite set. It is well known that there are 22!
topologies on X. It is easily seen that there are |X| principal ultraspaces (°)
on X. Since each principal topology is the intersection of principal ultra-
spaces [5], there are at most 2% principal topologies. But for each subset
ACX the topology {@, 4, X} is principal. Hence X has exactly !Xl
principal topologies. ®

COROLLARY 3.2. A proper topology on an infinite set X has at most el Xl
complements and pid principal complements.

We now give examples to show that the bounds obtained are best
possible.

(*) An uliraspace is a maximal proper topology, A topology ¢ is an ultraspace iff
t= 8, W) = {UCX: ¢ U-T W}, where W is an ultrafilter on X different from
U (x), the principal ultrafilter generated by = [2]. The ultraspace §(z,W) is principal
iff U = U (y) for some y ¢ X\{z}.
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TrEOREM 3.3. Let t = S(x, W) be an uliraspace on the infinite set X.
Then t has exactly 22 complements and 2l principal complements.

Proof. First we shall prove that there exists a subset ¥ C X\{x}
with |¥| = | X| and ¥ ¢ U. If U is principal, say W = U(y) where z 5 y,
then let ¥ = X\{z,y}. If U is non-principal, we can express X\{z}
as the disjoint union of two subsets both with cardinality |X|. Since
exactly one of them belongs to U, let ¥ be the other one.

Now, given any topology s on ¥, define the following topology on
X: 5={U v {z}: Ues}v {0,X}, Clearly, if s is principal so is 5, and
if 8, # 8,, then 3 #%35,. )

We claim that each 3 is & complement for ¢. Since 25 C¢ and
{z} = @ U {z} 5, then tv§ = 1. We shall now show that A5 = 0. Suppose
that there exists U ¢ s such that U v {z} = X and U v {} e t = 8(z, W).
Then, U v {z} ¢ W. Since {z} ¢ W, then U ¢ U and, consequently, ¥ ¢ U,
a contradiction. Thus, tA§= 0.

We have just shown that distinet (principal) topologies on Y yield
distinet (prineipal) complements for ¢ on X. Since |¥|= |X|, it follows
from Lemma 3.1 and Corollary 3.2 that ¢ has 22X complements and 2/
principal complements. m

TEEOREM 3.4. There exists, on every infinite set X, a topology with
ezactly |X| complements all of which are principal.

Proof. Lt t= {9, {z}, X\{z}, X}. Bach complement for ¢ is of the
form #'(y) = S, Wy)AS(y, U(x)), where y ¢ X\{x}. Clearly, each t'(y)
is principal, and there are [X\{z}| = |X| such complements. m

Remark. The aunthor [4] has shown that a non-discrete T, topology
never possesses 2 maximal complement or a maximal principal complement.
However, the example used in the proof of Theorem 3.4 shows that for
every positive cardinal number K there exists a principal topological
space with exactly K maximal (principal) complements.

If we assume the generalized continuum hypothesis (GCH), then
the statement of our main result can be somewhat sharpened.

THEOREM 3.5. Suppose that |X|=n,. Assuming GCH every proper
topology on X ha$ Ra, Nat1, OF Napz complements and K, or No4q principal
complements. Moreover, each of these values is attained.

Proof. The only thing not already established is the existence of

a proper topology on X with 2! — Nq+1 complements. This is accomplished
in the following theorem. m

TeeOREM 3.6. The minimal T (cofinite) topology on an infinite set X
has exactly ol complements (4).

() The author thanks P. Nanzetta for help in proving Theorem 3.8.

] ©
Im Complementation in the lattice of topologies 256

Proof. Partition X into |X| disjoint subsets each of cardinality |X]|,
say X = {J{Xu: ae A}, where |A]= |X|=|X4| for each aeAd and
Xpen Xo=0 for a =+ a'. Let t denote the minimal T topology on X
and i, = t| X, for each a ¢ A. Observe that #; is the minimal T, topology
on X,. By our main Theorem each f, has at least | X| complements. Suppose,
for each @ e A, that ?; is a complement for ;. Then ¢ = x{ts: a e A}
= {U{Uas: aeAd}: Usets} is a complement for ¢ as is easily “verified.
Suppose that ' = *{i;: a ¢ A} and for some a, € 4 3, # t;;. Then t' # 1",
Consequently, ¢ has at least | X = 2% gomplements.

Suppose that ¢’ is any complement for ¢. Then, given @ ¢ X, there
exists Uet and V et’ such that {#} = U ~V. But, since U is cofinite,
V is finite. It follows that each point = ¢ X is a member of a minimal
open neighborhood in (X, #'). Thus, # is principal. By Lemma 3.1, # has
at most 2% complements. m
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