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Fixed points of arcwise connected spaces
by
W. Holsztynski (Warszawa)

This paper is a continuation of the papers of Borsuk [1] and Young [4].
It follows from some results of Borsuk that his fixed point theorem of [1]
is a special case of Young’s earlier fixed-point theorem of [4]. The ideas
used by Borsuk and Young are different. Our methods are similar to
Borsuk’s methods.
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§ 1. Borsuk-Young arcwise connected spaces (B-spaces).

(1.1) DEFINITION. We say that an arcwise connected space X is a B-space
if it has the following property:

For any ome-to-ome continuous mapping f of the ray (0, co) into X,
the closure of the set P = f([(), oo)) 18 @& simple arc.

This condition is taken from a lemma of Borsuk's paper [1] (see
Section 3 of [1]). A similar condition equivalent in the class of Hausdorff
spaces, but not equivalent for T),-spaces (see (1.18) and (1.19)), was
formulated by Young in the earlier paper [4].

First we shall give some fundamental properties of the class of

B-gpaces.
(1.2) ProrosiTioN. A B-space does mot contain a homeomorphic image
of & circle. It does not even contain the image of a circle under a one-to-one
continuous fumction. (The latter assertion proves stronger if applied to
non-Hausdorff spaces.)

As a corollary (see also (1.3)) we obtain the following

(1.3) ProrosiTioN. For any two points z,y of a B-space X there emists
a unique simple arc x,y with end-points @,y (if ==y, then z,y = {x}).
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(1.4) ProposiTioN. 4 B-space does not contain, as a closed subset, a one-
to-one continuous image of the ray [0, co).

(1.5) PROPOSITION. Any simple arc in o B-space is a closed sel. Any
one-to-one image of a segment in a B-space is a simple arc.

(1.6) ProrosrTioN. Any B-space is o Ty-space.

(1.7) ExawprE. Thespace {a: a < 2} [0, 1), under the interval topology
induced by lexicographic ordering, is a B-space. This space is called the
long half-line. Point (0, 0) is the end-point of the long half-line. The one-
point union of two long half-lines, where the common point is the end-
point of each of them, is called the long line. Also the long line is a B-gpace.

(1.8) ProrosITiON. If o Hausdorff space X is « omne-to-one continuous
image of the long half-line or of the long line, then X is a B-space.

(1.9) ProrosITioN. If 4 is a simple arc in a B-space, or a subset which
is homeomorphic to an open interval, then A is contained in a maximal
simple arc or in a one-to-one continuous image of the long half-line.

(1.10) ProrosiTioN. Hvery closed arcwise connected subspace of a B-space
is o B-space.

A connected space X is said to be unicoherent if for every two connected
closed subsets such that X = 4 v B the set 4 ~ B is connected. A con-
nected space is said to be hereditarily unicoherent if all its cloged and
connected subsets are unicoherent.

(1.11) ProrosITION. Every hereditarily unicoherent arcwise connected Haus-
dorff space X, not containing a closed subset, which is a-one-to-ome continuous
image of the ray [0, oo) is a B-space.

Proof. Let f be a one-to-one continuous mapping of [0, oo) into X.
We put P = f([0, co)). There exists a point g « P\P. Let @ be the (unique)
simple arc with f(0) and ¢ as the end-points. Then @ C P (since Q w P
is a connected closed subset of X and X is hereditarily unicoherent) and
there exists a sequence of positive real numbers ay, a,,... such that
lima, = co and f(a) e for any i=1, 2, ... (indeed, ¢ eQ\{g}QF and

n=:00

¢ ¢f([0, al), hence

2« N\{g\f([0,a]) C @ ~ f(a, )

and there exists a’ > a sueh that f(a’) @ for any a > 0). Thus Q@ CPand
consequently @ = P,

(1.12) PROPOSITION. Any arcwise conmected hereditarily unicoherent com-
pact Hausdorff space X is a B-space.

) Proof. Let f be a one-to-one continuous mapping of the ray [0, oo)
Into .X. We shall show that the set P = f([0, o)) is not closed in X.
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Otherwise P is a compact subspace of X. The set P, = f([0, n])
is a closed subset of P for n=1,2,.. Hence, it follows from Baire’s
theorem that there exists a positive integer N such that the interior I
of Py in P is a non-empty set. Similarly, for any % = 0, 1,2, .. there
exists an integer N > k such that the set

Py = f([k, N])

has o non-empty interior I,y in the subspace fk, oo)), since

i

(700, 8 ~ f{k, o)) © ) Pea

and the interior of the set f([0,k]) ~f (%, oo)) is empty in the subspace

f{(k, o0)). Then also
Ik»N\\f({O: 1,2, }) #* 0,

Evidently, I.\{f(k)}C I, (for k < n). Hence

U In 2 U U Ik.'n\\f({o: 17 27 })
n=1 k=0 n=k+1
and
(1.13) sup{z e R: f(x) e (I} = oo.
n=3

Now we shall show that if 0 <a< ¥ and f(a) e Ly, then
J([0,a))CIx.

Indeed, f([0,N]) nf([N , o0)) is a connected subset of P, since X
is hereditarily connected, and we have

f(a) ¢ f([0, N]) ~ f{[N, oo))
and

F(N) e f([0, N)) ~ f([N, o0)) .
Hence if 0 <b < a, then

F(b) ¢£([0, N]) hf([N, °°))7 f([0,a])C Ix.
It follows from the above and from (1.13) that
U L= 1[0, ) = 2,

which is in contradiction to the compaeﬁness of P.
Thus, by Proposition (1.11), X is a B-space.

ie.

(1.14) Remark. Propogition (1.12), in the case of (metric) continua,
is another formulation of the lemma from Section 3 of [1] (but our proof
is not analogous to Borsuk’s proof of that lemma).

20*
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(118) Bxampre. There evists a B-space which is not unicoherent.
Indeed, let

1 1\ o i
pn:(lyj‘{‘ﬁ)) QW,—‘:(Z,%‘)E«R»; n=1,2,..

We put {z, y)> for the closed segment with the end-points z, ¥ € R2. Then
the subspace

o0 o
X= <(07 0); (?’a 0)> g le<(07 0)1 Pn> Uplany Qn>
n= =
of the plane R? is a B-space and X is not unicoherent, since iti is the union
of the connected closed subsets ((0,0), (2, 0)> and

0 0,0, 2> © 0 @ny ga> © {2, 00,

and the intersection of these sets is not connected (since it is the two-
point set {(0, 0), (2, 0)}).

(1.16) ProrostTION. The cone CX over X is a B-space if and only if X
is a Ty-space and any subset of X that is an image of a non-degenerate in-
terval under a continuous mapping is a one-point set. In particular, if X is
a Hausdorff space, then 0X is a B-space if and only if X does mot contain
any non-degenerate arc. If the space X is also connected (and in addition
not unicoherent), then CX is mot hereditarily unicoherent. What. is more,
if in addition X is not unicoherent, then obviously even the base of OX is
not unicoherent.

The following example was presented to me by A. Lelek during
a conversation.

(117) Exampir (A. Lelek). There exists in R* a compact B-space, which
48 not a hereditarily uniceherent continuum.

Indeed, let K be Knaster’s (plane) hereditarily indecomposable
contintum. Then a homeomorphic image of CK is contained in ®* and
it is a continuum which is not hereditarily unicoherent.

Instead of Knaster’s continuum we can take any other plane con-
tinuum X, without any non-degenerate simple are, which is not unicoherent.
‘Then the cone CX has a base that is not unicoherent. But this cone is
a compact B-space, topologically imbeddable in R°.

{1.18) Examprr. Let X be a space of power at least of the continuum,
with the weakest 7T-topology. Then the cone over X is not a B-space
and yet has the following property (Young [4]):

{119) In the space X the union of every monotone increasing sequence
of simple arcs is contained in a simple arc.
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Let us remark that an arcwise connected space is a B-space if and
only if condition (1.19) and the following two conditions hold:
(1.20)

(1.21) any subset of the space which is a one-to-one continuous image of
a simple arc is & simple arc in this space.

any simple arc in the space is a closed subset;

§2. A game on B-space. Let X be a B-space and let Q C X x X
be a set such that

(21) @ ~(ZX Z) is a closed subset of ZX Z for any arc Z in X,

(2.2) Qnd=0 (le. (z,2)¢Q for any zeX).

If (w,y) ¢Q for any =,y sa\,/b (where a, b e X), then we put adgb.
More generally, we put A edy, where 4 is a subset of X, if (x,9)¢Q
for any x,y ¢ A. Evidently
(2.3) if adgb, then (a,b)¢Q.

We shall define the following two-person game with full information.

Rules: There are two players. They alternately pick points out
of the space X. A sequence
(2.4) Gyy byy oy Doy eeey Guy by oney

where a;, b; (¢=1,2,...) denote points chosen by the first and second
player respectively, will he called a game. The game (2.4) is considered
to be won by the first player if for an integer 4

(2.5) there exists an z ehbi‘,’b,;l such that a;yq1e€ a;,’sv and a;dgo.

We can say informally that the second player lost already in the
(1+1)-move, so that the remaining moves are insignificant. The second
player wins if there are no integers satisfying (2.5).

(2.6) TuEOrREM. The first player always has a winning strategy.
More precisely, there exist a point a, ¢ X and o sequence of functions
gt XX, n=1,2,..
such that for any sequence (2.4) satisfying
(2.7) Ont1= Gn(G, b1y Gy by eeey @y b)), m=1,2,..
there exists an integer i such that (2.8) holds irue.

(2.8) Remark. We shall show o little more, namely that the first player
has a winning strategy independly of the choice of a;.
Proof. First we shall define ¢, and g,. Let «, y ¢ X. If zdyy, then let

flz,y)=1y.
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Next, if the relation zdgy does not hold, then there exists suchla point y’
that

2.9) yew,y,
(2.10) the relation zdoy’ does not hold
(2.11) if &' ea::-qj'\{y’} then axdow’ .

In this case let gy(z,y) be a point such that
(2.12) nl@,y) <@, Y\ 9@, y)doy' -

The existence of such y’ and g,(%, ¥) is a consequence of (2.1) and (2.2).
We put also

and

v if
9@y Y,y u,v) = fl], if
Y otherwise

udqv ,
(2.13) 1= g(z,y) and %, v ¢dg,

for any %, v € X. Now gaps1 and gonse, 2 =1,2, ..., are defined by
(2.14)

and

Goni1{yy Yry ovy Bons1y Yont1) = G1(@amt1y Yont)

ons2(B15 Y1y ooy Bontay Yante) = Go(@ona1s Yontty Tontey Yonsn) -

Let a, be an arbitrarily chosen point of X" and let (2.4) be a sequence
such that (2.7) holds. We shall show that condition (2.5) holds for a certain
positive integer i.

Otherwise the relation a;dgb; does not hold (since if a;dgb;, then
a1 = b;) and, by (2.11)-(2.14),
(2.15)
and, by (2.10) and (2.13),
(2.18) the relation s dgasi., does not hold for any @ = 1,2,..

Thus it follows from (2.15) that

aidga;y

(2.17) @iy Gigs N by, by = O for any i=1,92, ...

~—

—_—
Letus remark that a; and ax;4, belong to G2;-1, bag- -1, & and @z € o1, Aaiyr

(see (2.9), (2.12) and (2.13)). We have also Oty € Bai, b,L
Indeed, by condition (2.5) of winning and (2.11)

e e
bai-ay bai O (g, Bapo\{@2i41}) =

Hence, for a point p ¢ a:;/aziﬂ\{am-, Grip1} the points by—g, bay and auivy
belong to the same component and the point as; to different component
of aremfg/connectivity in’ the subspace X\{p}, whence p ¢ a;-,_b/gi. Thus
@411 € dagy bo;. This show that @iy, e ai\,_’b; for any i=1,2,...

* ©
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Thus, by (2.17), a; does not belong to the component of arcwise
connectivity of b;y; in the subspace X\{ai11} (@;41 = bs since ;g Gigy
but not a;dgb;). Hence

(@5, Gir\{@i11}) N (@ig1, bip\{@:21)) = O

) N —_— )
and, sinee @;y1, @ips C @ie1, biya, We obtain

(2.18) @iy Qigy O Gigyy Gign = {Bis1} .

Furthermore, we have

(2.19) Uy 0 ™ @, Grgr = {5}

Indeed, if 1 = 1, then (2.19) is trivial. Thus let us assume that (2.19)
is true for ¢= k. Then we shall show that

S—

—~
Ary Gpay N Gy Gpre = {Grer} .

for any 7 =1,2, ...

Indeed, by (2.18)

S S—
(@1, @ “ Griy, Opgs) N Qry Gppr = {Ory Gsa} -

Hence, by Proposition (1.2),
Gyy G N Opp1, ke = D .
Thus

U1y Qg1 N Gty Opsn © (03, Qg Gy Gpy1) N g1,y Gpre = {@pqa} -

pa—

Equality (2.19) is proved.
Thus the set P = Ua:;ln_ﬂ is a one-to-one continuous image of
n=1
the ray [0, co) and P is a non-degenerate simple are.

Let g e P\P. Then pdgg for some p ¢ P and there exists a positive
integer 4 such that as;—; and ax: belong to p, g, which contradicts (2.16).
Theorem (2.6) is proved.

(2.20) The first player has a winning strategy also if the game (2.4) is
considered to be won by him if for an integer i either

g, bi\{a«;, bi} € dQ
or

@iy Gipa\{0i, @i} e dg  and @y, Ge N Dy by F O

The proof of (2.20) is analogous to the proof of Theorem (2.6).
(2.21) Remark. It is easy to see that Theorem (2.6) holds also if for
the space X conditions (1.19) and (1.20) are satisfied (cf. Remark (1.18)).

We shall now proceed to a description of a discrete version of our
game. (This part of the paper is not essential for the understanding of
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the whole.) We shall call a graph the ordered pair (V, &) where V is a non-
empty set and @ is a family of pairs (not ordered) of different elements
of V. The graph (V, G) is called a (generalized) tree if it is ¢onnected (i.e.
for any two distinet points a, b € V there'is a finite sequence z, = a, #,, ,,
vy @ =>b such that {w;, #;1.} e @ for i=0,1,2,...,2—1) and V does
not confain an infinite sequence @y, a,,.. eV such that {a, a;is} e @
and a; # a4 for any 4=1,2,..

The players choose vertices of the graph alternately, one at a time
50 that again we obtain a sequence of the form (2.4) which we call a game.
The first player wins if for an integer ¢ we have

(i) a; = b; or

(i) {@1, @11} € G and the vertices b, by41 are contained in the same
component and for any sequence

Ty = Di, By, Bay ooy By = byyy
sueh that {#z, #r41} e @ for k=10,1,2, .., n—1 we have
{e, @ipi} = {m, 4}

for some 1¢{0,1,2,..,n—1}.

In the opposite case the second player wins.
(2.21) TeEOREM. The first player has a winning strategy if and only if
the graph (V, G) is a tree.

§ 3. Fixed point properties of B-space. The following theorem
is a generalization of Borsuk’s Theorem 2 from [1] and Young’s Theorem
from [4] (see Corollary (3.3)).

(31) THEOREM. Buery continuous mapping f: XX of a B-space into
itself such that

(3.2)

f@), fly) Cf(=,y)
Jor any z,y ¢ X has a fizved point.

If X is a Hausdorff B-space, then condition (3.2) is satisfied auto-
matically. Hence we obtain
(3.3) CoroLLa®RY (Young [4]). Bvery continuous mapping of a Hausdorff
B-space into itself has a fized point.

Now, let f: XX be a continuous mapping, where X is a B-space,
and let

={(z,y)eX Y= .
Then the sot @={(@,9) e TX X: y= f(a)}
QA (AXA)={(@,9) c Ax 4: y = f()}

={(@,9) ¢ (f7(4) » 4)x 4: y = f(a))
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is, by Proposition (1.5), a closed subset of 4 X A for any simple are A
in X. Hence (2.1) holds.

Theorem (3.1) is'a simple consequence of the following more general
one
(8.4) THEOREM. Let X be a B-space and let Q C X% X be o non-empty
relation such that conditions (2.1) and

(3.5) there ewists a function h: QX X—>X such that (a', h(a,b, a')) €@
and b, h(a, b,a’) C W {: (9, 0) <@} for any (a,b) €Q and o e X,

pea,a
are satisfied. Then there exists an we X such that (x,2)eQ (i Q£ ).

(3.6) Remark. It follows from (3.5) that for any zeX there exists

an ¥ ¢ X such that (z,y) Q.
Proof. The following condition is a consequence of (3.5):

(3.7) if we Bﬁt(a, b,a’) and o € m, then

(a‘,-&"x a‘,_ﬁv) nNQ#O, where (a,b)eQ and o' X .

Indeed, if (3.5) holds and z € bﬁz(a, b,a’) and &’ € a, , then (p,»)e@

for some p < a, a’, whence (p,2) e(a,zXa, ) Q.

Now if (2.2) holds, then let (a;,b,) eQ, anyr= Gn(@yy Dyy ooy @ny b)),
as in Theorem (2.6), and bpi1= h{an, by, ayr1), %= 1,2, ... Then (2.5)
holds for a positive integer 4, in contradiction to (3.7). This proves
Theorem. (3.4).
(3.8) Remark. It is easy to see that in Theorem (3.4) condition (3.5)
can be replaced by the following weaker condition:

There exists o function h: Qx X—X such that (@', h(a, b, a') <@ for
any (a,b) @, a’ ¢ X, and condition (8.7) holds.

Consequently also in Theorem (3.1) condition (3.2) can be replaced
by the following weaker one:

~—— — — ~—

If mefla),f(a') and o' ca,wz, then (a,xXa,r)~Q # 0, for any
a,a eX.

But it is not trne that any B-space has the fixed-point property;
In § 5 we shall give an example of a B-space which does not possess this
property.

We say that a metric space (X, d) is the space of a graph (V, @) (see
Section 2) if

(1) ¥ C X, _

(b) for any set {a, b} e G there exists in X exactly one simple arc a,
with end-points a, b,
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(c) -any arc a,\f b, where {a, b} € &, is isometric to the ‘closed interval
I= [Oy 1],

(@ X:{ %&G a,b and a,b ¢, d C.{a,b} for any {a, b}, {c, @} < G,

a,be

(e) the metric d is, under the conditions (¢) and (d), the greatest
metrie such that d(e, d) = 1 for any different a,beV.

Evidently the metric space of a graph is a 1-dimensional space.
If a graph is not connected, then the space of that graph does not possess
the fized-point property (since it is not connected). Next, if a graph is
connected but is not a tree, then it contains, as a closed subset, a homeo-
morphic image of a circle or of the ray [0, co) and this set is a retract
of the space of the graph. Hence this space does not possess the fixed-
point property. Thus from Theorem (2.6), since the space of a tree is
a B-space, we obtain

(8.9) THEOREM. The space of a (gemeralized) graph has the fixed-point
property if and only if that graph s a tree.

(3.10) Remark. In[4]it hag been proved that the spike of a dentimerable
family of closed intervals (in a Hilbert space) has the fixed-point property
(this is a very special case of Theorem (3.9)). In respect of generality,
the simple result contained in Proposition 7 of [2] cannot be compared
with Theorem (3.1) or even (3.4).

{311) Remark. One can verify that Theorem (3.4) and the other
results of this paragraph hold if we replace the condition that the arcwise
connected space X is a B-gpace by. two conditions, (1.19) and (1.20)
{see Remark (2.21)).

§ 4. Continuous mappings of compact Hausdorff spaces
onto T,-spaces. Let us remark that

(4.1) TeEOREM. If f: X—>X is a continuous mapping of a B-space into
wtself such that for any simple arc A in X:

(4.2) there ewist a Housdorff space Y4 and continuous mapping ga: A—>Ya,
of A onto Y4, and a one-to-one continuous mapping ha: Ya—>f(A) of ¥4
onto f(A) such that flJA = hao g4,

then f has o fized point.

Proof. If z,y ¢f(4), then there exists a simple arc Z in Y4 with
the end-points hi'(z), hi'(y). Hence, by (1.5), ha(Z) C f(4) is a simple
are in X' which contains # and . Thus condition (3.2) holds and, by (3.1),
Theorem (4.1) is true.

Thus it is interesting to find out when the following proposition is
true for a continuous mapping f: XY of a compact Hausdortt space
onto a T'-space Y:
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(4.3) there are a continuous mapping g: X7 onto a Hausdorff space Z
and a one-to-one continuous mapping h: Z-—>Y such that f=hog.

The answer is contained in the following theorem:

(4.4) THEOREM. Let f: XY be a continuous mapping of a Hausdorff
compact space X onlo a T,-space Y. Then (4.3) holds if and only if

(4.5) 7 f(F)) is a closed subset of X for any closed F cx.

Proof. Evidently, (4.3) implies (4.5). Hence, let us assume that
condition (4.5) is satisfied. Then let h: Z—¥ be a one-to-one function
of a set Z onto ¥, Z % ¥. We shall introduce a topology in 2 by a basis
of open sets. A set G belongs to this basis if and only if @ = NV o f(F)
for a closed subset F' of X; if also G = Z\h™" o f(F"), where F’ is closed
n X, then

66 =N o f(F) o b7 o f(I7)] = NI o f(F © F)
8 a set of the base. Next if H is an open subset of T, then

WH) = 2\ o (1),
where F = f(¥\H) is a closed subset of X. Thus ) is continuous and
consequently Z is a 7T-space.
Obviously, we must have g = &~ o f: X—Z, and such a ¢is a mapping
onto. Let F be a closed subset of X. Then

g (AN o () = XNf(f()
is an open subset of X. Thus the mapping ¢ is continuous.

Finally let #,y « Z be a pair of different points. Then ¢ (z), ¢ %)
are disjoint closed subset of .X. Let G D g~Y(x) and H D g~Y(y) are disjoint
open subset of X. Then '

U= 2\ e f(X\G) = Z\g(X\G) and T = Z\h™" o f(X\H) = Z\g(X\H)

are neighbourhoods of # and y respectively, and

UnV=7Z\[g(X\&) v g(X\H)) = Z\¢((X\&) v (X\H)) = @ .
The theorem is proved.

(4.6) COROLLARY. If a mapping ¢': X-+Z' of a compact Hausdorff space X
onto & Hausdorff space Z' is not a continuous mapping, but ¢'|X, is con-
tinuous for a certwin closed subset X, of X such that ¢'(X,) = %' (especially,
if 7' =Xy= X, C X and ¢': XX, is a non-continuous retraction), and
b': Z'=Y is a one-to-one continuous mapping of Z' onto a T,-space ¥,
then (4.3) does not hold for f=1"og'.
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Proof. Let F' be a closed subset of Z’ such that g' " (') is not a cloged

subset of X. But F= g (F') n X, is a closed subset of X and
@) =g W e g/ (@) = ¢ g (F) = g ()

is not a closed subset of X. Thus, by Theorem (4.4), condition (4.3) is not
satisfied.
(4.7) ExamprLE. Let »: [0,2]-[0,1] be a retraction, not continuous
and such that r~*(x) is a finite set for any « [0, 1]. Next let &’ [0,1]-Y
be a one-to-one mapping of [0,1] onto a T,-space ¥ with the minimal
T,-topology (closed subsets of I are finite). Then f= h'o# is a con-
tinuous mapping of [0, 2] onto the Z;-space ¥ such that' condition (4.3)
is not satisfied.

Now we introduce a generalization of the notion of arc-wise connecti-
vity.
(4.8) DerFiNITION. A space X iy said to Dbe weakly arcwise connected
if and only if for any different points #,y ¢ X there exists a one-to-one
continuous mapping f: [0,1]—X such that f(0) = 2 and f(1) = v.

For example, if X is a T;-space with the weakest T,-topology and
the power of X is at least the continuum, then X is a weakly arcwise

connected space which is not an arcwise connected one. Obviously any
arcwise connected space is weakly arcwise connected.

(£9) Let Y =1[0,1) v {a, b}, where @ b and {a, b} ~ [0,1)= @, and
let a mapping g: ¥—[0,1] be given by

zel0,1),

t=a or x=>5.

v if
1 it
Let, by definition, a subset G be open in ¥ if and only if f(G) is an open
subset of [0, 1], for the usual topology of the segment [0, 1]. Hence ¥
is o Ty-space (and g is a continuous mapping). The space Y is an image
of the closed segment [—1, 1] under the continuous mapping f: [—1,1]-Y

| ym:{

@ it z=-1,
fa)y=1z if —-l<a<1
b if =1,

but there exists no one-to-one continuous mupping h: 4—¥ of a simple
arc 4 into ¥ such that a,beh(4). Thus 7;-space Y is a continuous
image of a simple arc, which is not a weakly arcwise connected space.
This seems to be the simplest example of this kind.

Now we give an extremal example of this type.

(4#.10) Exasmpre. We shall give an example of a T,-space X, containing
at least two different points, such that X will be a continuous image
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of a simple arc but X will not contain any one-to-one im
segment [0, 1].

Let f': I-X' be a light continuous mapping of the unit interval
I=10,1] onto a dendrite X’ such that the following two conditions hold:

age of the

(411) If @',y are different points of X', then there exists a point ze X’
of order 3 (') such that for every p e f'~'(2) there ewists an g > 0 suech that
the set f’((;p— e, p+ e)) is disjoint with ewactly one component of conmectivity
of " or y' in the subspace X\{f ()} of X, for any positive & < ¢,.
(4.12) The set X3 of all the points of order 3 in X is countable.

Let & = (IN\X3) v f7(Xi) (we assume that X'~ I = 0). Thus we
can define the mappings f: 7—+X and ¢: XX’ as follows:

FIFTHENXD) = f/If (XN\X5)
9If XY = fIf ()

These mappings are onto and f' = gof. Obvibusly, f~'(«) is a closed subset
of I for any e X. i

Let us consider X with the strongest topology such that f: I—X
will be continuous. Under such a topology X is a T,-space and ¢: XX’
is a continuous mapping.

We shall show that

and  fIf"7N(XS) is an identity,

and  g|X"\Xj is an identity .

(£.13) if a connected subset S of X contains at least two different points,

then there are p, q e I ~ 8 such that f'(p) = Flq) € X3 and for any positive ¢
the set :

fllp—e p+e) v (g—e, g+2)
has common points with any of the components of X\{f'(p)}, but
f,((P'“goy_p"“‘«'o)); Fllg— &, !l‘i”ao)) )
s disjoint with a component of X'\{f'(p)}.

as well as

Indeed, because f' is light, ¢(S) has at least two different points
%' = g(z);, y' = g(y), where ,y¢S. Let z be a point of X' as in (4.11)
and let €3, 0y, " be the components of «',y’ and the remaining com-
Dponent of X'\{z}. The sets (', C; and ¢’ are open in X'. Thus, by the
definition of topology in X, also the sets ’

Co=g(Ci) v {pelnX: f((p—e,p+e) CCLu {2} for some &> 0},
Cy=g 0 w{pel nX: f((p—e,p+e) C CLo {e} for some &> 0},

(*) A point p of a dendrite D has order k if the subspace D\{p} has & different
<components.
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Do=g (G C)ulpel nX: f((p—e,pte) CChoC U ) for
some &> 0},

Dy=g7(Cyw O)wlpel nX: fl(p—e,p+e) COyo € ot for
' some & > 0}

are open. We have
ConDy=0,nD, =0

and

DanQC'me¢®¢CynSQDynS,
whence
(4.14) S\(Cz v Dy) # O = S\(Cy v Dy).

‘The last inequalities prove (4.13). )

Now let 8= h([a,b]), where h: fa, b]-X is a non-constant con-
tinuous mapping of an interval [a, b] into X; we can agsume, without
loss of generality, that # = h(a) and y = h(b) are the different points.
Then there exist points p, g e ~ 8, as in (4.13). By (4.14) we can assume
that

peS\(0:vD,)C D, and qe S\(0y v Dy) .

But D; v Dy =X, whence 8~ Dy~ Dy # D is an open proper of sub-
space § of X. Thus

IR NS8C8ADnDy ¢ giz) n 8

since §Y(z) ~ S is a closed subset of S. Hence there exists a point we § ~
N Dy A D)N\gYz), i.e. @ point « e § such that g(u) e ¢'. We have « = h(c)
for some ¢, where a < ¢ < b. The power of the set

g°hla,cl) ~ g o h(lc, b]) D g(a), #

is the continwum. By (4.12) the set X is countable, Hence, by definition
of g, the power of the set h([a, ¢]) ~ k([e, b]) is also equal to the continuum
and consequently % is not a one-to-one mapping. This proves that the
space X possesses the required properties in (4.10). It remains to give
a concrete example of a light continuous mapping f': I--X’, where
X' = f'(I) is a dendrite such that conditions (4.11) and (4.12) are satisfied
for this mapping.
Let 7 be, as usual, the Hilbert space and let

By = {(@, 2, ) € B @ = 0 for i> n}
and

e = (07, 8, ..)
where
&= 0 H izq,
1

#oi—1. where n=1,2

3 e
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We shall define a sequence of polygonal trees X, C B, and a sequence
of simplicial mappings onto fu: I—+X,, n =1, 2, ..., as follows:
K= {1, @, ..) e Bp: 0 <2y <1}, Aty = (¢,0,0,..)

for tel.
Next, let

0=t <@ < .. <thy=1
be a sequence such that fu(t) is an end-point or point of ramification

of a tree X, C By if and only if ¢ = ¢} for some i = 0,1, ..., k(n). Then
we put

. 2., 1
fn(tH g(t~t2‘>) i <<l gl

g 2, 1
2 (ti -|-2i¢+1) + %-(t— adl/ _t}"“) n+1

3 3
1 3 N tﬂ
it —23-t’;+§t?+1 <t \liz—‘ﬂ
Jrpa(t) = '
it ten) | Bftin—t )
fn 2 9 6 1
{3 (3
if t7{+{)ti+1<i<%t’:+§t?+1
. 1o, 20 ., &
fn(ﬂ+1+ g (i*t?ﬂ)) if 73‘71' -+ gﬂ"ﬂ <1< gy
forn=1,2,..,¢=0,1, .., k(n)—1, and

X71+1 = fn+1(1) .
It is easy to see that

(1) =",

(i1) Jaltd) = Faralt®) = faie(td) = ooy

(iii) k(n) = 4",

(iv) falt?) is an end-point of Xy if i i8 even ,

(v)  fall?) is a ramification point of order 3 if i is odd and n > 1.
The sequence X;, X,, ... i increasing and the seq.uence of .ma;pping&
s fay ... 18 uniformly converging to a continuous mapping f’ defined on I.

n=1

We put X' = f(I). Then X’'= | JX,. Evidently f(}) = fa(}) for
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n=1,2,..,4=0,1,..,4"" and f() is a point of order 3 in X’ if ang
only if t = ¢} for an integer #>1 and an odd ¢ such that 0 < ¢ < 4",
(If i is even, then f'(i7) is an end-point in X’. Also if # € . 4N G Xy, then z
is an end-point. The other points of X’ are the points of ordg; 13). Thus X3

is a countable set..One can easily verify that also condition (4.11) is
satistied.

(415) Remark. If X' and f: I-X' are constructed as above, then
g~*() is a finite set for any » ¢ X5. The mapping ¢: XX’ can be factored,

X
7N
o 1
o\
—y

9= 191°4s, go(X) = Xy, in such a way that g;' () is a two-point set for
any 2 e X3, and X, has the requived properties of X from (4.10).

Next, one can verify that, in this case, f is an open mapping of I
onto X, whence X has a countable base of open sets.

LA

§ 5. B-spaces without the fixed-point property. Let
J: I-+X De a continuous mapping of I onto a T,-space X such that any
one-to-one image in the X of a simple arc is a one-point set, and let
a=f(0) and b= f(1) be different points (see Example (4.10)). Then
the T.-space ¥ obtained from the space X x {0,1} by the identification
of the point (a, ) with (b, 1—1), for 4 = 0,1, is a continuous image of I
under the following mapping g: I->Y:

(fe1), 0) for 0<t
(fei—1),1) for t<i<1.

Any one-to-one irﬁe’nge in the ¥ of a simple arc is also a one-pointi set.
Next, the mapping h: Y—¥ given by

Rz, 1) = (@, 1—4) for

is a homeomorphism of ¥ onto itself without the fixed-noi
. ed-point property.
We can assume that point property

(=

VAR

zeY,4=0or 1

Y C {(#y, 2,) € R2: 2y =1}
(obviously, ¥ is not a topological subspace of R%). Let
Z = {t'w}st,lsI

be 4 space with a topology such that o set F C Z is closed in Z if and
on.}y i F N ¥ and F A {t-2}r are closed subsets of Y (with the T,-to-
Dbology defined above) and of the segment {t-z}, tel, (with the usual

icm°®

ok

Fiwed points of arcwise: connecled spaces 305

Buclidean topology) respectively, for any ze¢ X. Then Z is a B-space
since any one-to-one continuous image of the ray [4, oo) in Z is. contained
in a set of the form

{t-aher v {t-Yher
Space Y is a retract of Z. The retraction #: Z—¥ can be defined as follows

z,ye Y.

r{t-w)=g(t-g'(®), for tel,ze¥,

where ¢': Y—I is an arbitrarily chosen function such that ¢ o ¢'(z) = =.
Evidently, » is continnous and r(s) = 2 for x ¢ ¥. Thus Z is a B-space
without the fixed-point property. Loosely speaking, the space Z, as well
as the space X from Example (4.10), is a 1-dimensional space. The space Z
is not contractible.

§ 6. Topological squares without the fixed-point pro-
perty. The following theorem, combined with Young’s Theorem (3.1),
is a generalization of the concrete result of the paper [4].

(6.1) THEOREM. If an arcwise connected Hausdorff space X contains an
infinite discrete closed subspace and X* is a normal space, then X* does not
possess the fixzed-point property. - Fe
Proof. If X contains an infinite discrete closed subspace, then it
contains an infinite countable discrete closed subspace 4 = {a,, @s,...}.
Let an‘,/a,,ﬂ be a simple arc with a, and @4 as end-points, n =1, 2, ...
We put
=N —— 0 —
P = U Gum-1y ton X {@an-1} @ U {20} X Gon1, ton .
n=1 n=1
Obviously P is a closed subset of the space X X X and P is homeo-
morphic to the ray [0, oo). Hence, P is a retract of X X X and consequently
X x X does not possess the fixed point property.
Thus, we have obtained a large class of spaces with the fixed-point
property whose squares do not have this property. This is the class of
paracompact B-spaces, which contain infinite diserete subspace.

§ 7. Some examples. Now we shall give some examples of “‘good
spaces” without the fixed-point property.
(7.1) BxAmpLE. There exists a 1-dimensional unicoherent plane con-
tinuum X without the fixed-point property for homeomorphisms into
itgelf.

Indeed, we can put

X={(x,y) e R: *+yt=1} v

U{((]A—t)cos%,

Fundamenta Mathematicae, T, LXIV 21

(1+t)sini;i): 0<t< 1}.
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xt, let
=X {9 eR x=—2and 0 <y<3}u
v {(®,9) e R (2,3—y) < X}.
Y is a 1-dimensional unicoherent plane continunm (see Fig. 1a)
there exists a homeomorphism of ¥ onto itself without any fixed

N

Fig. 1b

For the unicoherent plane continuum Z from Fig. 1b there also
exists a homeomorphism of Z onto itself. This continuum is defined as
follows:

Z = {(x,y) e R*: (mcost— ysint, xsintt-ycost) e X

for some # such that 0 <1 < =/2}.
Evidently the spirals
T
T

(1+z)sinf): 0<t< 1}

S= {((1+t) €08 7

and
8 ={(®,9) e R*: (—y, x) e 8}
are disjoint.
(7.2) Examrir. (3) There exists an arcwise connected 1-dimensional
continnum X without the fixed-point property for continuous mappings

(%) This example is due to Young [5]. We give the formal description of this example
(only one inessential detail has been changed).

21*
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onto itself, such that X does not contain any homeomorphic image of the
z circle (see Fig. 2).
D L, Indeed, let
//// S(m)z‘?—i—sin;—‘:—l for —1l<z<1
~and
‘(—1)"~S((~1)"m) for  —1 < (—1)" <1—-9—2——,
Su(@) =1 \ 2n—1
|(—1)”-3 for 1~m<(—l)"w<1.
Then 8n, n=1,2,..., are continuous mappings and
mSen(z) = S(z) for —1l<2a<l
Ay / and e

lmSep—a(@) = —8S(—a2) for —l<a<1.

n=00

Now we put

Xo={@,9)eR: z=12A—-1<y<3) Vig=—1r—3<y<1)V

vl <1Aly=S8@ vy=—8(—a)]}x{0}C %,
T Xo={(@,9) &2 (jo] =1 A 0 < (—1)" < (—1)"Sa(a) v
1
v (Il <1 Ay = Sa(@)} x {Z}gm,
) _ B 1V A 1
. 4, ._{ Y, ) e RS m=(—1)" Ay=0A z+1“z<nl’
o ~ B= { ;Y,2) e R o] <1 Ay =z=0},
/ = {=z,y,2)ez®: 2=9y=0A0<2<1},
- ; D:{w 4,20 e R 0<az<Lry=0vz=1},
//7/ ,
7 1 and -
- TEe X = UJL, {JApwBuwCuD.
A4 n=0 n=1
| Obviously X is an arewise connected I-dimensional continuum
pd //,':?/// and X does not contain any homeomorphic image of the cnele
%4 Let f: X—X be a function defined as follows:
/ ’ d (2) fle,y,0)=(—2z,—y,0) for any (x,y,0)eX,.
Thus, we have defined f|X, so that we have
f T , fIXo

fX) = X,CX.

Z . _ [(—22+sgnw,0,0) it }<|gl <1,
) Fig. 2 {b) f($’0’0)_l(0,0,%—lw|) it 5 < %.

%\
@©
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Again, we have
f(B)CBuCCX.

0,0,1+2 if 0<ze<
(c) f(O,O,Z): {52;_’1-’—;’)1) if 1 <z<f7
Again, f(()C CuDCX.
(1,—12»,1) it 0<s<],
(@) f(@,0,1)= (3—80, 53—8m), 1) i d<o<i,
(—1,—9+12z,1) it i<o<i,
(—1,0, ;—22) if $<e<l.

Thus, we have defined f|D and we have
fD)y=X,u4,CX.

o
n4+1

1

(-o=vita)

Thus we have defined f|X, and we have f(X,) = Xnp,.
1 1

O S, 0,9 = (=20, 25 (1) + 2y

Thus we have defined fld, and f(da) = dnsy, n=1,2, ...
It is easy to see that (a)-(f) give a well defined continnous mapping
f: X>X without a fixed point.

Indeed, let wi(a, , g, @) = a; be the projections, ¢=1,2,3. Then
7 f(a) = —m(a) # m(a)  for any a eX\(BuluD),
sgumf(a) # sgnm(a) for any ae B\{(0, 0, 0)} = B\(C,

% f (@) > my(a)

(—IE, SrH—l("‘

(e) flr,y,2)=

if (2,y,2)eX, and |2|< 1,

it (2,y,2) e Xy and |z =1.

) i (2,0,2) ¢ dn.

for any ae ¢
and : ’

DnfD)y=Dn (X0 4,)= {1,0,1)} e X},

f(1,0,1)5(1,0,1).

(7.3)_ Exampre. There exists a 1-dimensional hereditarily unicoherent
arcwise connected separable metric space X which does not contain any
one.—to-one continuous image of the ray [0, co) as a closed subset, and
which does not possess the fixed-point property even for homeomorphisms
onto itself.

Inde(‘ed, let X = R be the set of real numbers and let dy: RX R—2R,
where 4 is an irrational number, be a metric given by

_whence

4oz, y) = max (min([z—y], 1— [z— y]), min ((ao— ay], 1— [aw— ayl) ,
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where [z]-is-a fraction part of » (evidently d; = d_, and«the metric. spaces
(R, ds) and (R, ays) are isometric). Then (R, d,) is a metric group, i.e.
da(z+-2, y+2) = da(w, y)

(and it is totally bounded as.a metric space). The following lemma shows
that the space (R, ds) is hereditarily unicoherent.

(7.4) LemmA. If A is a proper connected olosed subset of space (R, da),
then A is a simple arc.

Proof. Let Z be a group of integers and let p: R°—>R¥Z% be a ca-
nonical homomorphism. We can define in the quotient group K%/Z® a me-
tric d by

d(p(z, ), p(u, v)) = max (min ((o—«], 1—[2— «]), min ([y— ],
1—[y—a]) .
Then the mapping p is an open continuous mapping of the Euclidean
plane R? onto the metric space (R*Z%, d). Next, the mapping
P ofa: R—RYZY,

is an isometric imbedding of (R, ds) into (R*Z?, d).
Now let # € A, where A is a proper connected closed subset of (R, da).
Then

where fi: R—=R* is given by fao(z) = (z, az),

(—oo,2]E A and [2,00) ¢ A4,
ag -half-lines are dense in (R, ds). Let u <w <o and u,v¢ A. The set
(R*Z*\p o fa(A) is contained in an open subset of (R?/Z, d) which con-
taines p o fo(R\A). Hence, for a certain positive-integer 4n, we obtéin:
75 i 1 }_}U {('v‘ . _]< +]}r
(7.8) »p {(u, y): au— <y< au+n 3(v;y): a—— <y < vt C

C(RYZ\p o fol4) .
Next .

@8) of{fy, -+ verfo v, w3 ven)] C@RIZND - fum).
The set
Gy = {(y,z)e:&ﬂ: u<y<v and ay—;;-<z<ay+%}
is open in a Euclidean plane and p(@) is open in R*/Z*. Furthermore,
fal4) A Fr(Gn) = @
and consequently, by (7.5) and (7.6),
P o fo(4) ~Fr(p(Ga)) = G,
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since for any bounded set & C R? we have

Frip(@) Cp(Fr@).
Thus
P(Ga) N p o fol4)

is a closed-open set in the subspace p o fa(4) for n =1, 2, ..., and, since
P ofa(d) is connected,

Poful4) C [ p(6w).

Hence 4 C u, ». This proves Lemma (7.4).
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‘Rank’ theory of modules

by
Vlastimil D1ab (Canberra)

1. Preliminaries. The application [2] of the general algebraic
dependence scheme of [1] to modules resulted in obtaining some basic
information on dependence over modules. The aim of the present paper
is to extend these investigations and build up a rank theory of modules
parallel to that of abelian groups (ef. e.g. L. Fuchs [6]). In particular,
the theory offers a generalization of some results of A. W. Goldie [8]
and, when applied to injective modules, it enables us to generalize some
results of B. Matlis [9]. In the latter, invariants »p(M) are derived which
coincide with the invariants of P. Gabriel and U. Oberst in [7]. The value
of our approach rests on the fact that, in contrast to [7], we define r¢(M)
for an R-module M without any reference to its injective hull H (M)
and can then use these cardinals re(M) to characterize H (M).

Throughout the paper, R denotes a fixed (associative) ring with
unity, £ — the family of all its proper (i.e. % E) left ideals and J C £ — the
subfamily of all (meet —) irreducible ideals. For Lel and peR, the
symbol L: ¢ stands for the (left) ideal consisting of all y € R, such that
x0 € L. Following [3], a subfamily X of £ is said to be a Q-family if

Q)

Denote the least Q-family containing a given ideal LefL by Qr; thus,
Qr = {L: p|o ¢ R\L}. Define in the set Q of all Q-families X the “duality”
map @ by

Q]

Thus, & defines in Q a Galois connection (ef. O. Ore [10]). Tn particular,

VL,oLeX A ge RAL~L: peX).

Letk LetAQnKk=0.

Ky C Kog—85, D 65, ,

and & is an (idempotent) closure operator; in fact, ™ 5 = 8°K for any
two positive integers # and 4. Making use of ¢, we can introduce the sym-
metric relation ¥ C QX Q by

7 (K, 2] €V o PR = OKE(« 6F = 84K2) .
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