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since for any bounded set & C R? we have

Frip(@) Cp(Fr@).
Thus
P(Ga) N p o fol4)

is a closed-open set in the subspace p o fa(4) for n =1, 2, ..., and, since
P ofa(d) is connected,

Poful4) C [ p(6w).

Hence 4 C u, ». This proves Lemma (7.4).
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‘Rank’ theory of modules

by
Vlastimil D1ab (Canberra)

1. Preliminaries. The application [2] of the general algebraic
dependence scheme of [1] to modules resulted in obtaining some basic
information on dependence over modules. The aim of the present paper
is to extend these investigations and build up a rank theory of modules
parallel to that of abelian groups (ef. e.g. L. Fuchs [6]). In particular,
the theory offers a generalization of some results of A. W. Goldie [8]
and, when applied to injective modules, it enables us to generalize some
results of B. Matlis [9]. In the latter, invariants »p(M) are derived which
coincide with the invariants of P. Gabriel and U. Oberst in [7]. The value
of our approach rests on the fact that, in contrast to [7], we define r¢(M)
for an R-module M without any reference to its injective hull H (M)
and can then use these cardinals re(M) to characterize H (M).

Throughout the paper, R denotes a fixed (associative) ring with
unity, £ — the family of all its proper (i.e. % E) left ideals and J C £ — the
subfamily of all (meet —) irreducible ideals. For Lel and peR, the
symbol L: ¢ stands for the (left) ideal consisting of all y € R, such that
x0 € L. Following [3], a subfamily X of £ is said to be a Q-family if

Q)

Denote the least Q-family containing a given ideal LefL by Qr; thus,
Qr = {L: p|o ¢ R\L}. Define in the set Q of all Q-families X the “duality”
map @ by

Q]

Thus, & defines in Q a Galois connection (ef. O. Ore [10]). Tn particular,

VL,oLeX A ge RAL~L: peX).

Letk LetAQnKk=0.

Ky C Kog—85, D 65, ,

and & is an (idempotent) closure operator; in fact, ™ 5 = 8°K for any
two positive integers # and 4. Making use of ¢, we can introduce the sym-
metric relation ¥ C QX Q by

7 (K, 2] €V o PR = OKE(« 6F = 84K2) .
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. . Q1 .
The square F? is easily seen to be anveq}n:gau_lenqe ~.in Q. As a matier
-of ‘fact, )

() KRy o 0% = 0K, > VAL C Ky © Ky Qs Ky ~ Ky o= B)

and &K= J X is the greatest element in its i-equivalenee class. If
2%
Ho2 Ky and Ky C Ky, X, is said to be essential in X,. Notice that

[R, 2] eV >F1n K2 =@
. Q .
and that V is stable under the equlvalenc;e ~, le.
(R, K3 e P A KEQ i (5= 1, 2)>[K3, K e 7.

Also, if [¥, X?]e 4, then the Q-family % = Ko K? is r&-equiva,lent
to £; thus X is essential (in £). A set {X,| @ < 0} of essential Q- families X,

is said to be centred if [ X, is essential; evidently, every finite set of
wER

essential Q-families is centred.

Let M (always) denote a (unital left) E-module; put M™ = M\{o}.
The order (annihilator) of m e M is denoted by O(m); hence, O(m) el
if and only if m e M¥. Evidently, O(gm)= 0(m): ¢ for any o ¢ R and
m e M, Also, for a cyclic R-submodule (m} generated by m we have
{m> =~ RmoedO(m). -

A subset X C M¥ of M is said to be independent it

(X)= @ (=)= @ Rr;
zeX xeX

otherwise, X is said to be dependent. X is a mazimal independent subset
of a set § C M if it is the only independent subset of containing X.
Two independent subsets X, and X, are defined to be e-related if both X,
and X, are maximal independent subsets of X, v X,. Thus, any two
maximal independent subsets of a set S C M are e-related. The following
extension of the definition of an essential R-submodule of an R-module
will be also needed: A subset 8, C M is called essential in 8, C M if every
maximal independent subset of 8, is a maximal independent subset of &,.
We refer to [1] and [2] for the following basic result:

(A) Let X, and X, be two independent ¢-related subsets of M. If O(=)
is irreducible for every x e X, , then

card(X;) = card(X,).

Also, the following two simple results (cf. Lemma 2.1 and 3.2 of [2])
will be used repeatedly:
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(B) An ideal L €L is irreducible if and only if, for every a and 8 of
R\L, there are u and » in R such that

ua—vel and padl .

(C) A subset X C M¥* s dependent if and only if there emist mie X
and oie BR(1 <1 <k) such that

13
Daw=0  with R 0(em)= 0(ow) for 1<i<Fk.
i=1

Our investigations will be closely connected with the subsets My
of M; for X C L, My is defined by

Mme My, —omeM A O(m)el.

Firgt, we present two simple preliminary results.

Proposirion 1. X CC s a Q-family if and only if, for every
E-module M, My, w {0y C M is the union of cyclic R-submodules.

PROPOSITION 2. Two Q-families K, and X, are rg-eguiwlent if and
only if, for every R-module M, any two mazimal independent subsets X
and X, of My, and Mx;, , respectively; are ¢ ~reluted. In particular, if X, C My,
then X, is also a maximal independent subset of Mx,. Thus, X, is essential
in Koy if and only if, for every R-module M, My, is essential in My, (or,
equivalently, if My, ~ {m) 5= {0} for every m ¢ Myx,).

Proof. Let J,~X, and me Mix\X;, 50 O(m) e Ky. By (%), there
is p € B such that gm e My,. Therefore, in view of (C), X; v (m) is depen-
dent, as required.

On the other hand, take L ¢ X\X, and consider M = RmodL = (m)
with X, = {m}. According to (C),

k
0 # om= Zgimc

=1

with  O(gm) = O(eim:) € K,

for suitable o, 0;¢R and zie Mz, (1<i< k).

Qr A X, % @ and thus X, K,.
The rest of the proposition follows easily.

Hence, L: peX,, ie.

2. Concept of rank. Let E and M be a fixed ring and R-module,
respectively.
Let 2 be an index set. For every o ¢ 2, consider a pair of Q-families
¥, %% such that
[, o] eV ;5
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put

Je, = Jp v I and H=[)%k,.

W€
Consider the set 2° of all mappings of @ into {1, 2} and, for each
f €2 ~define the subset My of au R-module M by

medM;meM n O@m) e B

we
Since M Jei,‘“’), as well as all J, and %, are Q-families, M, C M*
weR
and My {0} is o union of eyclic submodules of 1. Moreover, it is obvious
that, for fie 2% =1, 2},

(%) My My 2 @ fy = fu (o My = M)

and that
JMi={m| meM A O(m)e[) B} = Mge .
j(ﬂg WwER

The following three lemmas form the background of our investiga-
tions.

Leyma 1. Let X be a maximal independent subset of M such that

X C Mg. Then, for every fe2°
Xp=X My
is a maximal independent subset of My,
Leavis 2. Let, for every fe2% X be a marimal independent subset
of My. Then
T=UX
fea?
8 a mazimal independent subset of My. Thus, {f {#a| we 2} is 2:mired
then X is a marimal independent subset of M. (%)
Lemyua 3. Let X be a Q-family. Let N be an R-submodule of M.
Then, there erists a maximal independent subset X of My, such that
(i) ¥Y=2X~XN is a mavimal independent subset of Ny,
(i) oy = @y with ;¢ I\Y (i = 1, 2) implies 2, mod N == zymod N and
(i) X = {gmod N} z e X\T} is an independent subset of (M/N)x.
If, moreover, X contains no essential ideals of B (i.e. if, for every L e X,
there is a non-zero o€ R such that L ~ Rp = {0}), then X can be chosen
so that, in addition, X is a maximal independent subset of (M|N)se.

_ (*) The conclusion does not hold, in general, if {J€u| o ¢ Q} is not centred (consider
the R-module Rmod T with Oz n N Ry = .
wen

icm
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Proof of Lemma 1. Only maximality requires to be proved.
x e My, we have, according to (C), a relation

I
0 E oL = ‘E il ,
im1

where  O{ox) = O{gsx;) for 1 <i <k

with suitable ¢, o;e¢ B and z; ¢ X. Hence, for each i, 1<i<k,
O{pirs) = O(x): o el for every wef.
Consequently, because of (%),

O(w) e 3 e
weLR

(I’iEXr'\ J[fz .l’f,
as required.

Proof of Lemmuau 2. The independence of X is again a simple
consequence of (C). Also, X is obviously a maximal independent subset
of | My= Mg.

€2

! Since {J€,| w 2} is centred, i.e. since 0 is essential, My is essential
in M according to Proposition 2, and Lemma 2 follows.

Proof of Lemma 3. Denote, for m ¢ M, by M the corresponding
coset mmod N of M|N. Further, denote by & the subset of all elements
m e Myx such that

O(m) = O(m),
and put
My =NxuwSC Mi-

" Take a maximal independent subset Y of Ny and extend it to a maximal

independent subset X D ¥ of M5;. ;
First of all, X is a maximal independent subset of M. For, if
me Msg\M%, i.e if O(m)C O(#), then
L

0#%pomekl.

Hence, by (C), ¥ «w {m} is dependent.

Secondly, (ii) is evident and X = {Z| v e T\¥} is independent
in M/N. For, assume in accordance with (C), that z; e X\Y and ore B
(1 <4< k) exist such that

o

0T == {

4

with 0(0iT) = LeXk ,

T==1

ie.

&
‘Egimi:nu\" with  O(guws) = L.

=1
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k
Then, since 0, osw) = L, n ¢ Nx,. Hence,
i
Yo fw, ..o CX

is dependent — a ‘contradiction of independence of X. _

Finally, assuming that X contains no essential ideals of R, X i,
in fact, a maximal independent subset of (M/N)x. For, if m e (M/N)x
and so O(m) e X, then there is a mon-zero g ¢ K such that

0(m) ~ Rg = {0},

ie.

0 om and O(om)={0}: o=0(gm) with mem.

Therefore, om € M% . Using (C) again, the proof can be easily completed.
In order to get basic invariants of an R-module, let us first apply
our results in the case of 2 = {1}, J&; = J, J&} = 8J. Note that the family
J C ¢ of irreducible ideals is a @-family (cf. Lemma 2.2 of [2]); 93 is the
family of what we shall call strongly reducible ideals. The subsets of all
elements of an E-module M whose orders belong to J and 83 denote by M,

and M,, respectively. In view of Lemmas 1 and 2 and (A), we can fomnulate

THEOREM 1. Any‘R-module M possesses maximal independent subsets X
consisting of elements of irreducible and strongly reducible orders; denote
the family of all such subsets X by Xar. In fact, X belongs to Lar if and only
if X is the union of mawimal independent subsets X, and X, of M, and M,,
respectively. The cardinality card(X,) is an invariant of M in the sense
that, for any X'eTy, card(X' ~ M,)= card(X;). If M, @, then
SuPxex,, card (X ~ M) > §,.

DerInIiroN 1. Define the rank r(M) of an R-module M by
r(M) = cardxem, (X ~ M) .

For the sake of completeness, we can also define, in addition to the
(érveducible) rank r(M), the reducible rank +°(M) and the iotal rank 7(M)
of M by

°(M) = supzxex,, card(X ~ M,)
and
F(M)=r(M)++°(M).

Notice that #°(M) = 0 or r°(M) > n,. If (M) = 0, i.e. if M,= @, M will
be called #dy. In [2], the property (J) (defined there) of a ring R has been
shown to be equivalent to the fact that every R-module is tidy. Since
every (left) noetherian ring has (J) (see [2]), the above definition extends
the definition of rank of A. W. Goldie [8] to arbitrary R-modules.

icm
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Following the foregoing pattern, we can get an invariant of an R-mo-
dule M corresponding to any Q-family:

DEFINITION 2. Let X be a Q-family. Define the ¥-rank ry(M)
of an R-module M as the cardinality of a maximal independent subset
of the set of all elements of M whose orders belong to X ~ 3.

Thus, #(M)=rs(M)=rs(M). Also, in an obvious way, (M)
and 7x(M) can be defined. Notice that 7y (M )= 0 if and only if M has
no elements of qrders belonging to ¥:and that 7 (M) = Py M)+ Fox( M) = 0
if and only if M = {0}.

THEORBM 2. Let X be a Q-family. Then,

(1) r%(N) < rx(M) for any R-submodule N of M;

(i) M= @ M, implies rx(M) = 3 ri(M,);

yer Y

€r
(iii) ro(M) < r(N)+ra(M|N) for any R-submodule Ny if KT
contains no essential ideals of R, then

73 M) = r5(N)+rx(M|N) .
Proof. (i) is trivial. Also, since | J(M,)xny is obviously essential
yer

in Myxng, (i) holds. Finally, (iii) is an immediate consequence of Lemma 3.
THEOREM 3. (i) For any Q-family %, rg(M)+ra(M)=r(M) and
row(M) = ry(M).
(i) If Q-families X, and X, are i-eqm’valent, then rx,(M) = rx( M) (2).

Proof. Applying Lemmas 1 and 2 together with (A) in the case
Q=1{1,2}. ¥, =3, ®=2a), K=K, ¥ =0K, we get the first part
of (i). The second part is a consequence of (i) which in turn, follows from.
Proposition 2 and (A); for, %y >X, implies readily %, ~ 325, A 7.

-In order- to:'get rthe: riost refined “invariants rx(M) let us consider
the smallest, in the sense of Theorem 3 significant, Q-families contained
in J, viz. the families 8%Qy ~ 3 for L e J.

LeMMA 4. Let X € Q and LeJ. Then

1) " HKAO—Q naX= Q(HQLQ@ZJC);
therefore
(ii) 3 CoK v &K, and thus 3w 83 C 80y v 220y
(ili) 2Qz ~ % = @ implies 2%y, C 3°K..

Proof. (i) follows immediately from (B). Furthermore, (ii) and (iii)
(because 629, ~ X @ is equivalent to @~ X # @) is a simple con-
sequence of (i).

(*) On the other hand, if "JGI(M) = ry,(M) for every R-module M, then X; n
NI %N
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THEOREM L. The set of all 8Qg, for L edis a partition of IL; JJBQQL D,
€

Let L,ed, wef, be a set of representatives of the ‘‘equivalence classes”
3y, and put
T,=82QL 3.

Then {§o v 8] e} is contred and thus, for any K-module M,

r(M) = E"%(M) .

wEeD
Moreover, if X is a Q-family, then

ERhnd= )T, for a certain Q' CQ

we”
and
WRnd= Ui, with Q=008

weR'

hence, for any R-module M,

(M) = D re (M) and  rew(M) = ) rgy(M).

we’ wen”

Proof. Clearly, &2z, ~82Q;,= 0@ or 2807, = &%, by (iii) of the
preceding Jemma. In view of (ii) of the same lemma,

MNB.udf,)divel,

weR
and thus, {F, v &7,] w2} is centred. The remaining statements of the
theorem follow then in the previously established pattern from Lemmas 1,
2 and (A), in combinatien with (ii) and (iii) of Lemma 4.

The second part of Theorem 4 enables us to introduce the concept

of torsion rank ry(M) and torsion-free rank (M) of an R-module M.
The question of “torsion” in the theory of modules has been dealt with
in terms of so-called R-families in [4]; two particular definitions of tor-
sion have been suggested in ‘[5]. Here, we show that only one of them
is acceptable provided that we want to retain the relation

(+)  {N)+r/M|N) = /(M) for every R-module N C M .

Denote by & the family of all (proper) essential ideals of E; then,
Ty = 2% is the family of all (proper) mawz: ideals of B of [6]. Referring
to [5], we remark here briefly that, in any R-module M, all elements
of orders belonging to G, form, together with 0, an R-submodule T (M)
of M and that T (M|T(M)) = {0}. Accordingly, an R-module M is said
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to be forsion (x-torsion) or torsion-free (*-torsion-free) if T(M)= M or
T (M) = {0}, respectively.

DEFINITION 3. Define the forsion rank (M) and the torsion-free
rank (M) of an R-module M by

(M) = re (M) (= rg(2))

and
(M) =rgg (M) (= rog(M)),
respectively.
Now, in view of Theorem 4,
Ty nd=_JF, for 2,Cco
weQt
and

0By nI=1)9, with Q= Q\.Qt .
wEQF
In fact, w € 2; if and only if 9, ~ & * @. Making use of Lemma 3, we get
from Theorem 4 immediately

COROLLARY 1.
(1) M) = D re, (M) and ry(M) = %‘!ﬁrﬂ.(ﬂ);

€L

() (M) = ry M)+ re(M);

(iii) 7i( M) = r(T (M)} and r(M|T (M)} = 0; ‘

(iv)" (+)holds; in- particular; v M) = 77(M|T (M)} and (T (1{)) = 0.

Let us remark that the e-torsion-free rank #,(M) of M corresponding
to the family 6, C £ of [5] does not gatisfy (+). (There, G, C & is the famﬂy
of all proper strong ideals of B: Lef is strong if, for any ¢ ¢ R\L and ‘any
0 # o ¢ B, always (L : g)o # {0}.) Let R, be the ring of all triples (z, 9,2)
of integers modulo 2 with component-wise addition and multiplication
defined by

(B3 Y1y 21) (Bay Yy %) = (B1%2, T1 Yot Y182, Tr2a+2,8);

clearly, R, has no strong ideals. Consider R, as an R,-module and the
ideal L = {(0, 0, 0), (0,1, 0), (0, 0, 1), (0,1, 1)} C R, as its R,-submodule.
Then,

V!o(RD) =2 3 ’rfo(L) =2 ¥ Tfo(.RalL) =1 1

and thus (4) does not hold.

To conclude this section, let us formulate another simple consequence
of Theorem 4; note that if B iz a commutative noetherian ring, then
there iy a one-to-one correspondence between the families 2°Qz of The-
orem 4 and the (proper) prime ideals of E.

Fundamenta Mathematicae, T. LXIV 22
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COROLLARY 2. Let R be a commutative noetherian ring, {P,| w e Qs}
and {P,| o < Q) the set of all (proper) prime essential and oll prime non-
essential ideals of B, respectively; put Q = Q;w Qr. Let M be an R-module.
Then, for each o <8, the cardinality of a mazimal independent subset of
elements of order P, in M 13 an invariant: P,-rank rp,(M) of M. Moreover,

r(M) = Y e (M), (M) = D re,(2)
we; weQr
and

r(M) = 7(M) = D rp,(M).

weR

3. Injective R-modules. Here, we generalize some results of
Eben Matlis [9] on injective R-modules. Let H (M) be an injective hull
of an R-module M; H(M) can be characterised as a maximal essential
extension of M. Thus, for any Q-family X, My is essential in [H (M)]x
and therefore we get

THREOREM 5. For any Q-family X,
(M) = r[H (M)] .

In particular, rank, reducible rank, total rank, torsion rank or torsion-free
rank of M equals to the respective rank of H(M); also

roo( M) = r5,[H(M)] for every T, of Theorem 4.

Furthermore, using (B) we can easily prove

LemmA 5. The following properties of an injective R-module H are
equivalent:

(i) H is indecomposable.

(i) #(H) = 1.

(i) For any v e H, O(x) eI and H = H ({2)).

(iv) H = H(RmodL) with a certain L 3.

LeMMA 6. Let Ined (i=1,2). Then

&y, = 8291, — H(RmodL,) ~ H(RmodL,) .

Proof. If 8%, = 8%Qy,, then, for suitable o, and g, of R,

Li:oy=Ly: 0, # R.

Thus, in view of Lemma 5,

H(Bmod L) = H (Rmod(L, : ¢,)} = H (Bmod(L, : ,)) = H(BmodL,).

icm
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On the other hand, let RmodL; = <m;; and RmodL,= {ms).
Furthermore, let @ He an isomorphism of H{{m,>) onto H({m,)). Then,
there are suitable o, and g, of R such that, in H({m,)),

019 (M) = 0oy 5 0.

Since g,¢(my) = @(o:my) and B # O (gimi) = O(ma) :
the reverse implication follows, too.
Now, we are ready to formulate the basic

or=Li: psfori=1,2,

THEOREM 6. Lemma 6 yields a one-to-one correspondence @ between
the Q-families ., of Theorem 4 and the mnon-isomorphic indecomposable
injective R-modules: write O(F,) = H(F,); every H(J,) is either torsion
or torsion-free.

Let

N= ®Hapy,
we

v€la

H,, =~ H(F,) for every yel,,

be a direct sum contained in an injective hull H(M) of an R-module M,
and let N be maximal in the sense that there is mo indecomposable wnjective
submodule H of H(M) such that H ~ N = {0}. Then

card (I',) = rg (M)  for every weQ.
In particular, any two direct decompositions of an R-module into direct
sums of indecomposable injective R-modules are isomorphic and can be
described by a cardinal-valued function defined on Q.

Also, if M is tidy (in particular, if R has the property (3) of [2]), then N
is essential in H (M) and H(AM) is fully characterized by the function f de-
fined by M on Q:

Flo) = re,(3) .

Theorem 6 follows from the results of § 2 and from Lemmas 5 and 6
quite simply. We refrain also from formulating the consequence of Theo-
rem 6 in the case of a (commutative) noetherian ring R which is easy to
deduce (cf. [9]).
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Some remarks on Hausdorff measure
by

R. B. Darst (Lafayette, Ind.)

Let us begin with some notation and terminology. Denote by F
the class of non-decreasing functions k on (0, oo) with Iim h(¢) = 0. If
>0

% eF and E CI=7[0,1], then the h- Hausdorff outer measure my(E) of B
48 the extended real mumber

limint { ' h(bi—ad; B C | (@i, bi), sup (bi—ar) < e}
>0

Denote by J the callection of subsets B of I such that mp(E) = 0 for all
% € F. Denote by 7 the collection of regular non-atomic probability measure-
res 4 on the Borel subsets B of I, and denote by N the collection of subsets E
of I satistying sup{u*(E); u € T} = 0. Denote by C the set of concentrated
gubsets of I (i.e., B e C <> there is a sequence {z¢} of elements of I such
that if {e} is & sequence of positive numbers, then B— UJ ¥ (@, &) 18,
at most, a countable get, where N(x.e)= (z—ef2,a+5/2)). Finally,
denote by D the collection of enumerations {#:} of countable, dense subsets
of T and by & the collection of sequences of positive numbers.

It is easy to show that € C ¥ C N, and the author showed [1] that
if the continuum hypothesis is satistied, then C s N°. The purpose of
this note is to show, assuming the continuum hypothesis, that € 3 K.
To this end, let us begin by giving the following characterizations of the
elements of J.

LemyMA 1. Each of the following conditions is necessary and sufficient
in order that a subset B of I be an element of X.

(i) If {&} € &, then there is a sequence {zi} of points of I such that
E— |J N (24, &) 18 countable.

() If {es} &, then there is {wi} e D such that H— U N (@1, &) 8
countable.

(iif) If {es} €&, then there is a sequemce {m:} of points of I such that
EC N (@4, &1). ‘

(iv) If {es} €8, then there is {m:} ¢ D such that B C U N (w4, &).
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