W. Holsztyński

icm[©]

since for any bounded set $G \subset \mathbb{R}^2$ we have

$$\operatorname{Fr}(p(G)) \subset p(\operatorname{Fr} G)$$
.

Thus

$$p(G_n) \cap p \circ f_a(A)$$

is a closed-open set in the subspace $p \circ f_a(A)$ for n = 1, 2, ..., and, since $p \circ f_a(A)$ is connected,

$$p \circ f_a(A) \subseteq \bigcap_{n=1}^{\infty} p(G_n)$$
.

Hence $A \subseteq u$, v. This proves Lemma (7.4).

References

- [1] K. Borsuk, A theorem on fixed points, Bull. Acad. Polon. Sci 2 (1954), pp. 17-20.
- [2] W. Holsztyński, Universal mappings and fixed point theorems, Bull. Acad. Polon. Sci. 15 (1967), pp. 421-426.
- [3] V. L. Klee, Jr., An example related to the fixed-point property, Nieuw Arch. Wisk 8 (1960), pp. 81-82.
- [4] G. S. Young, The introduction of local connectivity by change of topology, Amer. J. Math. 68 (1946), pp. 479-494.
- [5] Fixed-point theorems for arcwise connected continua, Proc. Amer. Math. Soc. 11 (1960), pp. 880-884.

Reçu par la Rédaction le 28. 8. 1967

Rank theory of modules

by

Vlastimil Dlab (Canberra)

1. **Preliminaries.** The application [2] of the general algebraic dependence scheme of [1] to modules resulted in obtaining some basic information on dependence over modules. The aim of the present paper is to extend these investigations and build up a rank theory of modules parallel to that of abelian groups (cf. e.g. L. Fuchs [6]). In particular, the theory offers a generalization of some results of A. W. Goldie [8] and, when applied to injective modules, it enables us to generalize some results of E. Matlis [9]. In the latter, invariants $r_3(M)$ are derived which coincide with the invariants of P. Gabriel and U. Oberst in [7]. The value of our approach rests on the fact that, in contrast to [7], we define $r_3(M)$ for an R-module M without any reference to its injective hull H(M) and can then use these cardinals $r_3(M)$ to characterize H(M).

Throughout the paper, R denotes a fixed (associative) ring with unity, Γ — the family of all its proper (i.e. $\neq R$) left ideals and $\Gamma \subseteq \Gamma$ — the subfamily of all (meet —) irreducible ideals. For $L \in \Gamma$ and $\rho \in R$, the symbol $L: \rho$ stands for the (left) ideal consisting of all $\chi \in R$, such that $\chi \rho \in L$. Following [3], a subfamily \mathcal{K} of Γ is said to be a Q-family if

(Q)
$$\forall L, \, \varrho (L \in \mathbb{K} \, \land \, \varrho \in R \backslash L \rightarrow L \colon \, \varrho \in \mathbb{K}) .$$

Denote the least Q-family containing a given ideal $L \in \mathcal{L}$ by \mathcal{Q}_L ; thus, $\mathcal{Q}_L = \{L: \ \varrho | \varrho \in R \setminus L\}$. Define in the set Q of all Q-families \mathcal{K} the "duality" map ∂ by

$$(\partial) L \epsilon \partial \mathcal{K} \leftrightarrow L \epsilon \, \mathfrak{L} \wedge \, \mathfrak{A}_L \cap \mathcal{K} = \emptyset .$$

Thus, ∂ defines in Q a Galois connection (cf. O. Ore [10]). In particular,

$$\mathcal{K}_1 \subseteq \mathcal{K}_2 \rightarrow \partial \mathcal{K}_1 \supseteq \partial \mathcal{K}_2$$
,

and ∂^2 is an (idempotent) closure operator; in fact, $\partial^{2n+i} K = \partial^i K$ for any two positive integers n and i. Making use of ℓ , we can introduce the symmetric relation $V \subset Q \times Q$ by

$$(V) \qquad \qquad \lceil \mathfrak{K}^1, \, \mathfrak{K}^2 \rceil \in V \longleftrightarrow \partial^2 \mathfrak{K}^1 = \partial \mathfrak{K}^2 (\longleftrightarrow \partial \mathfrak{K}^1 = \partial^2 \mathfrak{K}^2) \; .$$

The square V^2 is easily seen to be an equivalence $\stackrel{Q!}{\sim}$ in Q. As a matter of fact,

$$(\overset{Q}{\sim}) \qquad \mathfrak{K}_1\overset{Q}{\sim} \mathfrak{K}_2 \leftrightarrow \partial \mathfrak{K}_1 = \partial \mathfrak{K}_2 \leftrightarrow \nabla \mathfrak{Q}_L (\mathfrak{Q}_L \subseteq \mathfrak{K}_1 \cup \mathfrak{K}_2 \rightarrow \mathfrak{Q}_L \cap \mathfrak{K}_1 \cap \mathfrak{K}_2 \neq \emptyset)$$

and $\partial^2 \mathbb{K} = \bigcup_{\mathfrak{X}} \mathfrak{X}$ is the greatest element in its $\stackrel{\mathbf{Q}}{\sim}$ -equivalence class. If

 $\mathcal{K}_1 \overset{Q}{\sim} \mathcal{K}_2$ and $\mathcal{K}_1 \subseteq \mathcal{K}_2$, \mathcal{K}_1 is said to be essential in \mathcal{K}_2 . Notice that

$$[\mathfrak{K}^1,\,\mathfrak{K}^2]\,\epsilon\, V\! o\!\mathfrak{K}^1 \,\cap\, \mathfrak{K}^2 = arnothing$$

and that V is stable under the equivalence $\stackrel{Q}{\sim}$, i.e.

$$[\mathfrak{K}_1^1,\,\mathfrak{K}_1^2]\,\epsilon\,V\,\wedge\,\mathfrak{K}_1^i \overset{\mathsf{Q}}{\sim}\,\mathfrak{K}_2^i\,\,(i=1,\,2)\!\rightarrow\![\mathfrak{K}_2^1,\,\mathfrak{K}_2^2]\,\epsilon\,V\,.$$

Also, if $[\mathfrak{K}^1,\mathfrak{K}^2]\in A$, then the Q-family $\mathfrak{K}=\mathfrak{K}^1\cup K^2$ is $\overset{\mathbf{Q}}{\sim}$ -equivalent to \mathfrak{L} ; thus \mathfrak{K} is essential (in \mathfrak{L}). A set $\{\mathfrak{K}_{\omega}|\ \omega\in\Omega\}$ of essential Q-families \mathfrak{K}_{ω} is essential; evidently, every finite set of essential Q-families is centred.

Let M (always) denote a (unital left) R-module; put $M^{\#}=M\setminus\{0\}$. The order (annihilator) of $m\in M$ is denoted by O(m); hence, $O(m)\in \mathfrak{L}$ if and only if $m\in M^{\#}$. Evidently, $O(\varrho m)=O(m)\colon \varrho$ for any $\varrho\in R$ and $m\in M^{\#}$. Also, for a cyclic R-submodule $\langle m\rangle$ generated by m we have $\langle m\rangle\cong R \mod O(m)$.

A subset $X \subseteq M^{\#}$ of M is said to be independent if

$$\langle X \rangle = \bigoplus_{x \in X} \langle x \rangle = \bigoplus_{x \in X} Rx;$$

otherwise, X is said to be dependent. X is a maximal independent subset of a set $S \subseteq M$ if it is the only independent subset of S containing X. Two independent subsets X_1 and X_2 are defined to be ε -related if both X_1 and X_2 are maximal independent subsets of $X_1 \cup X_2$. Thus, any two maximal independent subsets of a set $S \subseteq M$ are ε -related. The following extension of the definition of an essential R-submodule of an R-module will be also needed: A subset $S_1 \subseteq M$ is called essential in $S_2 \subseteq M$ if every maximal independent subset of S_1 is a maximal independent subset of S_2 .

We refer to [1] and [2] for the following basic result:

(A) Let X_1 and X_2 be two independent ε -related subsets of M. If O(x) is irreducible for every $x \in X_1$, then

$$\operatorname{card}(X_1) \geqslant \operatorname{card}(X_2)$$
.

Also, the following two simple results (cf. Lemma 2.1 and 3.2 of [2]) will be used repeatedly:

$$\mu\alpha - \nu\beta \in L$$
 and $\mu\alpha \notin L$.

(C) A subset $X \subseteq M^{\#}$ is dependent if and only if there exist $x_i \in X$ and $\varrho_i \in R(1 \leqslant i \leqslant k)$ such that

$$\sum_{i=1}^k arrho_i x_i = 0 \quad ext{ with } \quad R
eq O(arrho_1 x_1) = O(arrho_i x_i) ext{ for } 1 \leqslant i \leqslant k ext{ .}$$

Our investigations will be closely connected with the subsets $M_{\mathcal{K}}$ of M; for $\mathcal{K} \subseteq \Gamma$, $M_{\mathcal{K}}$ is defined by

$$m \in M_{\mathcal{K}} \longleftrightarrow m \in M \wedge O(m) \in \mathcal{K}$$
.

First, we present two simple preliminary results.

PROPOSITION 1. $\mathcal{K} \subseteq \mathcal{L}$ is a Q-family if and only if, for every R-module M, $M_{\mathcal{K}} \cup \{0\} \subseteq M$ is the union of cyclic R-submodules.

PROPOSITION 2. Two Q-families K_1 and K_2 are $\stackrel{\circ}{\sim}$ -equivalent if and only if, for every R-module M, any two maximal independent subsets X_1 and X_2 of M_{K_1} and M_{K_2} , respectively; are ε -related. In particular, if $X_1 \subseteq M_{K_2}$ then X_1 is also a maximal independent subset of M_{K_2} . Thus, K_1 is essential in K_2 if and only if, for every R-module M, M_{K_1} is essential in M_{K_2} (or, equivalently, if $M_{K_1} \cap \langle m \rangle \neq \{0\}$ for every $m \in M_{K_2}$).

Proof. Let $\mathcal{K}_1 \overset{\mathcal{Q}}{\sim} \mathcal{K}_2$ and $m \in M_{\mathcal{K}_2} \backslash X_1$, so $O(m) \in \mathcal{K}_2$. By $(\overset{\mathcal{Q}}{\sim})$, there is $\varrho \in R$ such that $\varrho m \in M_{\mathcal{K}_1}$. Therefore, in view of (C), $X_1 \cup (m)$ is dependent, as required.

On the other hand, take $L \in \mathcal{K}_2 \setminus \mathcal{K}_1$ and consider $M = R \mod L = \langle m \rangle$ with $X_2 = \{m\}$. According to (C),

$$O \neq \varrho m = \sum_{i=1}^{k} \varrho_{i} x_{i}$$
 with $O(\varrho m) = O(\varrho_{i} x_{i}) \epsilon \mathcal{K}_{1}$

for suitable ϱ , $\varrho_i \in R$ and $x_i \in M_{\mathcal{K}_1}$ $(1 \leqslant i \leqslant k)$. Hence, $L: \varrho \in \mathcal{K}_1$, i.e. $\mathfrak{Q}_L \cap \mathcal{K}_1 \neq \emptyset$ and thus $\mathcal{K}_1 \overset{\mathsf{Q}}{\sim} \mathcal{K}_2$.

The rest of the proposition follows easily.

2. Concept of rank. Let R and M be a fixed ring and R-module, respectively.

Let Ω be an index set. For every $\omega \in \Omega$, consider a pair of Q-families \mathcal{H}^1_{ω} , \mathcal{H}^2_{ω} such that

$$[\mathscr{H}^1_\omega,\,\mathscr{H}^2_\omega]\;\epsilon\;V\;;$$

put

$$\mathcal{H}_{\omega} = \mathcal{H}^1_{\omega} \cup \mathcal{H}^2_{\omega} \quad ext{ and } \quad \mathcal{H} = \bigcap_{\omega \in \Omega} \mathcal{H}_{\omega} \;.$$

Consider the set 2^{Ω} of all mappings of Ω into $\{1,2\}$ and, for each $f \in 2^{\mathcal{O}}$, define the subset M_t of an R-module M by

$$m \in M_f \longleftrightarrow m \in M \wedge O(m) \in \bigcap_{\omega \in \Omega} \mathcal{R}_{\omega}^{f(\omega)}$$
.

Since $\bigcap \mathcal{R}_{\omega}^{f(\omega)}$, as well as all \mathcal{H}_{ω} and \mathcal{H} , are Q-families, $M_f \subseteq M^{\#}$ and $M_t \cup \{0\}$ is a union of cyclic submodules of M. Moreover, it is obvious that, for $f_i \in 2^{\Omega} (i = 1, 2)$,

$$(\divideontimes) \qquad \qquad M_{f_1} \cap M_{f_2} \neq \emptyset \leftrightarrow f_1 = f_2 \ (\leftrightarrow M_{f_1} = M_{f_2})$$

and that

$$\bigcup_{f \in 2^\varOmega} M_f = \{ m | \ m \in M \ \land \ O \left(m \right) \in \bigcap_{\omega \in \varOmega} \mathscr{R}_\omega \} = M_{\mathfrak{JC}} \ .$$

The following three lemmas form the background of our investigations.

LEMMA 1. Let X be a maximal independent subset of M such that $X \subseteq M_{\mathcal{H}}$. Then, for every $f \in 2^{\Omega}$,

$$X_f = X \cap M_f$$

is a maximal independent subset of Mf.

LEMMA 2. Let, for every $f \in 2^{\Omega}$, X_f be a maximal independent subset of M_t. Then

$$X = \bigcup_{f \in 2^{\Omega}} X_f$$

is a maximal independent subset of Mx. Thus, if $\{\mathcal{K}_{\omega} | \ \omega \in \Omega\}$ is contrad then X is a maximal independent subset of M. (1)

LEMMA 3. Let K be a Q-family. Let N be an R-submodule of M. Then, there exists a maximal independent subset X of $M_{\mathfrak{K}}$ such that

- (i) $Y = X \cap N$ is a maximal independent subset of N_K ,
- (ii) $x_1 \neq x_2$ with $x_i \in X \setminus Y$ (i = 1, 2) implies $x_1 \mod N \neq x_2 \mod N$ and
- (iii) $\overline{X} = \{x \mod N \mid x \in X \setminus Y\}$ is an independent subset of $(M/N)_{\mathcal{K}}$. If, moreover, K contains no essential ideals of R (i.e. if, for every $L \in K$, there is a non-zero $\varrho \in R$ such that $L \cap R\varrho = \{0\}$, then X can be chosen so that, in addition, \overline{X} is a maximal independent subset of $(M/N)_{36}$.

Proof of Lemma 1. Only maximality requires to be proved. For $x \in M_f$, we have, according to (C), a relation

$$0
eq \varrho x = \sum_{i=1}^k arrho_i x_i \,, \quad ext{ where } \quad O(arrho x) = O(arrho_i x_i) ext{ for } \mathbf{1} \leqslant i \leqslant k$$

with suitable ρ , $\rho_i \in R$ and $x_i \in X$. Hence, for each $i, 1 \le i \le k$.

$$O(o_i x_i) = O(x); o \in \mathcal{H}_m^{f(\omega)}$$
 for every $\omega \in \Omega$.

Consequently, because of (*),

$$O(x_i) \in \bigcap_{\omega \in O} \mathcal{H}^{f(\omega)}_{\omega}$$
, i.e. $x_i \in X \cap M_f = X_f$,

as required.

Proof of Lemma 2. The independence of X is again a simple consequence of (C). Also, X is obviously a maximal independent subset of $M_f = M_{30}$. $f \in 2^{\Omega}$

Since $\{\mathcal{H}_m | \omega \in \Omega\}$ is centred, i.e. since \mathcal{H} is essential, $M_{\mathcal{H}}$ is essential in M according to Proposition 2, and Lemma 2 follows.

Proof of Lemma 3. Denote, for $m \in M$, by \overline{m} the corresponding coset $m \mod N$ of M/N. Further, denote by S the subset of all elements $m \in M_{\mathcal{K}}$ such that

$$O(m) = O(\overline{m}),$$

and put

$$M_{\mathfrak{K}}^* = N_{\mathfrak{K}} \cup S \subseteq M_{\mathfrak{K}}$$
.

Take a maximal independent subset Y of N_K and extend it to a maximal independent subset $X \supset Y$ of $M_{K_0}^*$.

First of all, X is a maximal independent subset of M_{X} . For, if $m \in M_{\mathfrak{K}} \setminus M_{\mathfrak{K}}^*$, i.e. if $O(m) \subseteq O(\overline{m})$, then

$$0 \neq \varrho m \in N$$
.

Hence, by (C), $Y \cup \{m\}$ is dependent.

Secondly, (ii) is evident and $\overline{X} = \{\overline{x} | x \in X \setminus Y\}$ is independent in M/N. For, assume in accordance with (C), that $x_i \in X \setminus Y$ and $\varphi_i \in R$ $(1 \le i \le k)$ exist such that

$$\sum_{i=1}^k \varrho_i \overline{x}_i = \overline{0} \quad \text{with} \quad O(\varrho_i \overline{x}_i) = L \in \mathcal{K} \,,$$

i.e.

$$\sum_{i=1}^k \varrho_i x_i = n \, \epsilon \, N \quad \text{ with } \quad O(\varrho_i x_i) = L \, .$$

⁽¹⁾ The conclusion does not hold, in general, if $\{\mathcal{H}_{\omega} | \omega \in \Omega\}$ is not centred (consider the R-module $R \mod L$ with $Q_L \cap \bigcap_{\omega \in \Omega} \mathcal{H}_{\omega} = \emptyset$).

Then, since $O(\sum_{i=1}^k \varrho_i x_i) = L$, $n \in N_{\mathfrak{K}}$. Hence,

$$Y \cup \{x_1, x_2, \ldots, x_k\} \subseteq X$$

is dependent — a contradiction of independence of X.

Finally, assuming that K contains no essential ideals of R, \overline{X} is, in fact, a maximal independent subset of $(M/N)_K$. For, if $\overline{m} \in (M/N)_K$ and so $O(\overline{m}) \in K$, then there is a non-zero $\varrho \in R$ such that

$$O(\overline{m}) \cap R\varrho = \{0\}$$
,

i.e.

$$\overline{0} \neq \varrho \overline{m}$$
 and $O(\varrho \overline{m}) = \{0\}$: $\varrho = O(\varrho m)$ with $m \in \overline{m}$.

Therefore, $\varrho m \in M_{K}^{*}$. Using (C) again, the proof can be easily completed.

In order to get basic invariants of an R-module, let us first apply our results in the case of $\Omega=\{1\}$, $\mathcal{R}_1^1=\mathbb{I}$, $\mathcal{R}_1^2=\partial\mathbb{I}$. Note that the family $\mathbb{I}\subseteq\mathbb{C}$ of irreducible ideals is a Q-family (cf. Lemma 2.2 of [2]); $\partial\mathbb{I}$ is the family of what we shall call strongly reducible ideals. The subsets of all elements of an R-module M whose orders belong to \mathbb{I} and $\partial\mathbb{I}$ denote by M_1 and M_2 , respectively. In view of Lemmas 1 and 2 and (A), we can formulate

THEOREM 1. Any R-module M possesses maximal independent subsets X consisting of elements of irreducible and strongly reducible orders; denote the family of all such subsets X by \mathfrak{X}_M . In fact, X belongs to \mathfrak{X}_M if and only if X is the union of maximal independent subsets X_1 and X_2 of M_1 and M_2 , respectively. The cardinality $\operatorname{card}(X_1)$ is an invariant of M in the sense that, for any $X' \in \mathfrak{X}_M$, $\operatorname{card}(X' \cap M_1) = \operatorname{card}(X_1)$. If $M_2 \neq \emptyset$, then $\sup_{X \in \mathfrak{X}_M} \operatorname{card}(X \cap M_2) \geqslant \aleph_0$.

DEFINITION 1. Define the rank r(M) of an R-module M by

$$r(M) = \operatorname{card}_{X \in \mathfrak{X}_M} (X \cap M_1)$$
.

For the sake of completeness, we can also define, in addition to the (irreducible) rank r(M), the reducible rank $r^{\circ}(M)$ and the total rank $\bar{r}(M)$ of M by

$$r^{\circ}(M) = \sup_{X \in \mathfrak{X}_{M}} \operatorname{card}(X \cap M_{2})$$

and

$$\bar{r}(M) = r(M) + r^{\circ}(M)$$
.

Notice that $r^o(M) = 0$ or $r^o(M) \ge \aleph_0$. If $r^o(M) = 0$, i.e. if $M_2 = \emptyset$, M will be called *tidy*. In [2], the property (3) (defined there) of a ring R has been shown to be equivalent to the fact that every R-module is tidy. Since every (left) noetherian ring has (3) (see [2]), the above definition extends the definition of rank of A. W. Goldie [8] to arbitrary R-modules.

Following the foregoing pattern, we can get an invariant of an R-module M corresponding to any Q-family:

DEFINITION 2. Let K be a Q-family. Define the K-rank $r_K(M)$ of an R-module M as the cardinality of a maximal independent subset of the set of all elements of M whose orders belong to $K \cap J$.

Thus, $r(M) = r_{\mathfrak{I}}(M) = r_{\mathfrak{I} \cup \mathfrak{I} \mathfrak{I}}(M)$. Also, in an obvious way, $r_{\mathfrak{K}}^{\circ}(M)$ and $\bar{r}_{\mathfrak{K}}(M)$ can be defined. Notice that $\bar{r}_{\mathfrak{K}}(M) = 0$ if and only if M has no elements of orders belonging to \mathfrak{K} and that $\bar{r}(M) = \bar{r}_{\mathfrak{K}}(M) + \bar{r}_{\mathfrak{L} \mathfrak{K}}(M) = 0$ if and only if $M = \{0\}$.

THEOREM 2. Let K be a Q-family. Then,

- (i) $r_{\mathfrak{K}}(N) \leqslant r_{\mathfrak{K}}(M)$ for any R-submodule N of M;
- (ii) $M = \bigoplus_{\gamma \in \Gamma} M_{\gamma} \text{ implies } r_{\mathfrak{K}}(M) = \sum_{\gamma \in \Gamma} r_{\mathfrak{K}}(M_{\gamma});$
- (iii) $r_{\mathfrak{K}}(M) \leq r_{\mathfrak{K}}(N) + r_{\mathfrak{K}}(M/N)$ for any R-submodule N; if $\mathfrak{K} \cap \mathfrak{I}$ contains no essential ideals of R, then

$$r_{\mathcal{K}}(M) = r_{\mathcal{K}}(N) + r_{\mathcal{K}}(M/N)$$
.

Proof. (i) is trivial. Also, since $\bigcup_{\gamma \in \Gamma} (M_{\gamma})_{\mathfrak{K} \cap \mathfrak{I}}$ is obviously essential in $M_{\mathfrak{K} \cap \mathfrak{I}}$, (ii) holds. Finally, (iii) is an immediate consequence of Lemma 3.

Theorem 3. (i) For any Q-family K, $r_{K}(M) + r_{\partial K}(M) = r(M)$ and $r_{\partial^2 K}(M) = r_{K}(M)$.

(ii) If Q-families \mathcal{K}_1 and \mathcal{K}_2 are $\stackrel{\mathbb{Q}}{\sim}$ -equivalent, then $r_{\mathcal{K}_1}(M) = r_{\mathcal{K}_2}(M)$ (2). Proof. Applying Lemmas 1 and 2 together with (A) in the case $\Omega = \{1, 2\}$. $\mathcal{K}_1^1 = J$, $\mathcal{K}_2^2 = \partial J$, $\mathcal{K}_2^1 = \mathcal{K}$, $\mathcal{K}_2^2 = \partial \mathcal{K}$, we get the first part of (i). The second part is a consequence of (ii) which in turn, follows from

Proposition 2 and (A); for, $K_1 \overset{\frown}{\sim} K_2$ implies readily $K_1 \cap J \overset{\frown}{\sim} K_2 \cap J$.

In order to get the most refined invariants $r_{\mathcal{K}}(M)$ let us consider the smallest, in the sense of Theorem 3 significant, Q-families contained in J, viz. the families $\partial^2 \Omega_L \cap J$ for $L \in J$.

LEMMA 4. Let $K \in Q$ and $L \in J$. Then

- $(i) \ {\mathfrak Q}_L \cap {\mathfrak K} \neq \emptyset \leftrightarrow {\mathfrak Q}_L \cap \partial {\mathfrak K} = \emptyset (\leftrightarrow {\mathfrak Q}_L \subseteq \partial^2 {\mathfrak K});$ therefore
 - (ii) $\mathfrak{I} \subseteq \partial K \cup \partial^2 \mathfrak{K}$, and thus $\mathfrak{I} \cup \partial \mathfrak{I} \subset \partial \mathfrak{Q}_L \cup \partial^2 \mathfrak{Q}_L$;
 - (iii) $\partial^2 Q_L \cap \mathcal{K} = \emptyset$ implies $\partial^2 Q_L \subseteq \partial^2 \mathcal{K}$.

Proof. (i) follows immediately from (B). Furthermore, (ii) and (iii) (because $\partial^2 Q_L \cap \mathcal{K} \neq \emptyset$ is equivalent to $Q_L \cap \mathcal{K} \neq \emptyset$) is a simple consequence of (i).

^(*) On the other hand, if $r_{\mathcal{K}_1}(M) = r_{\mathcal{K}_2}(M)$ for every R-module M, then $\mathcal{K}_1 \cap \mathcal{I} \overset{Q}{\sim} \mathcal{K}_3 \cap \mathcal{I}$.

Theorem 4. The set of all $\partial^2 \mathbb{Q}_L$ for $L \in \mathfrak{I}$ is a partition of $\bigcup_{L \in \mathfrak{I}} \partial^2 \mathbb{Q}_L \supseteq \mathfrak{I}$.

Let $L_{\omega} \in \mathfrak{I}$, $\omega \in \Omega$, be a set of representatives of the "equivalence classes" $\partial^2 Q_L$ and put

$$\mathfrak{T}_{\omega}=\partial^2\mathfrak{Q}_L \cap \mathfrak{I}$$
 .

Then $\{ \mathfrak{T}_{\omega} \cup \partial \mathfrak{T}_{\omega} | \omega \in \Omega \}$ is centred and thus, for any R-module M,

$$r(M) = \sum_{\omega \in \Omega} r_{\mathcal{T}_{\omega}}(M)$$
.

Moreover, if K is a Q-family, then

$$\dot{c}^2 \mathbb{K} \cap \mathbb{J} = \bigcup_{m \in \Omega''} \mathfrak{I}_m \quad \text{for a certain } \Omega' \subseteq \Omega$$

and

$$\partial \mathbb{X} \cap \mathfrak{I} = \bigcup_{w \in \Omega'} \mathfrak{I}_w \quad with \quad \Omega'' = \Omega \backslash \Omega';$$

hence, for any R-module M,

$$r_{\mathfrak{K}}(M) = \sum_{\omega \in \mathcal{O}'} r_{\mathfrak{T}_{\omega}}(M) \quad \ \ and \quad \ r_{\mathfrak{FK}}(M) = \sum_{\omega \in \mathcal{O}'} r_{\mathfrak{T}_{\omega}}(M) \;.$$

Proof. Clearly, $\delta^2 \mathfrak{Q}_{L_1} \cap \delta^2 \mathfrak{Q}_{L_2} = \emptyset$ or $\delta^2 \mathfrak{Q}_{L_1} = \delta^2 \mathfrak{Q}_{L_2}$ by (iii) of the preceding lemma. In view of (ii) of the same lemma,

$$\bigcap_{\alpha} (\mathfrak{T}_{\omega} \cup \partial \mathfrak{T}_{\omega}) \supseteq \mathfrak{I} \cup \partial \mathfrak{I} ,$$

and thus, $\{\mathcal{I}_{\omega} \cup \partial \mathcal{I}_{\omega} | \omega \in \Omega\}$ is centred. The remaining statements of the theorem follow then in the previously established pattern from Lemmas 1, 2 and (A), in combination with (ii) and (iii) of Lemma 4.

The second part of Theorem 4 enables us to introduce the concept of torsion rank $r_t(M)$ and torsion-free rank $r_t(M)$ of an R-module M. The question of "torsion" in the theory of modules has been dealt with in terms of so-called R-families in [4]; two particular definitions of torsion have been suggested in [5]. Here, we show that only one of them is acceptable provided that we want to retain the relation

$$(+)$$
 $r_f(N) + r_f(M/N) = r_f(M)$ for every R -module $N \subset M$.

Denote by \mathcal{E} the family of all (proper) essential ideals of R; then, $\mathcal{E}_{\star} = \partial^2 \mathcal{E}$ is the family of all (proper) maxi ideals of R of [5]. Referring to [5], we remark here briefly that, in any R-module M, all elements of orders belonging to \mathcal{E}_{\star} form, together with 0, an R-submodule T(M) of M and that $T(M/T(M)) = \{0\}$. Accordingly, an R-module M is said

Rank theory of modules

to be torsion (*-torsion) or torsion-free (*-torsion-free) if T(M) = M or $T(M) = \{0\}$, respectively.

DEFINITION 3. Define the torsion rank $r_t(M)$ and the torsion-free rank $r_t(M)$ of an R-module M by

$$r_t(M) = r_{\mathfrak{F}_{\bullet}}(M) \quad (= r_{\mathfrak{F}}(M))$$

and

$$r_f(M) = r_{\partial \mathcal{B}_{\bullet}}(M) \quad (= r_{\partial \mathcal{B}}(M))$$

respectively.

Now, in view of Theorem 4,

$$\mathfrak{T}_{ullet} \cap \mathfrak{I} = \bigcup_{oldsymbol{\omega} \in \Omega_{oldsymbol{t}}} \mathfrak{I}_{oldsymbol{\omega}} \quad ext{ for } \quad \Omega_{oldsymbol{t}} \subseteq \Omega$$

and

$$\partial \mathcal{C}_{ullet} \cap \mathfrak{I} = \bigcup_{w \in \Omega_f} \mathfrak{I}_w \quad \text{ with } \quad \Omega_f = \Omega \backslash \Omega_t$$

In fact, $\omega \in \Omega_t$ if and only if $\mathfrak{T}_{\omega} \cap \mathcal{E} \neq \emptyset$. Making use of Lemma 3, we get from Theorem 4 immediately

COROLLARY 1.

(i)
$$r_t(M) = \sum_{\omega \in \Omega_t} r_{\mathfrak{T}_{\omega}}(M)$$
 and $r_f(M) = \sum_{\omega \in \Omega_f} r_{\mathfrak{T}_{\omega}}(M)$;

(ii)
$$r(M) = r_t(M) + r_f(M)$$
;

(iii)
$$r_t(M) = r_t(T(M))$$
 and $r_t(M/T(M)) = 0$;

(iv) (+) holds; in particular,
$$r_f(M) = r_f(M/T(M))$$
 and $r_f(T(M)) = 0$.

Let us remark that the \circ -torsion-free rank $r_{t_0}(M)$ of M corresponding to the family $\mathfrak{C}_0 \subseteq \mathfrak{L}$ of [5] does not satisfy (+). (There, $\mathfrak{C}_0 \subseteq \mathfrak{L}$ is the family of all proper strong ideals of R: $L \in \mathfrak{L}$ is strong if, for any $\varrho \in R \setminus L$ and any $0 \neq \sigma \in R$, always $(L : \varrho) \sigma \neq \{0\}$.) Let R_0 be the ring of all triples (x, y, z) of integers modulo 2 with component-wise addition and multiplication defined by

$$(x_1, y_1, z_1)(x_2, y_2, z_2) = (x_1x_2, x_1y_2 + y_1x_2, x_1z_2 + z_1x_2);$$

clearly, R_0 has no strong ideals. Consider R_0 as an R_0 -module and the ideal $L = \{(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)\} \subseteq R_0$ as its R_0 -submodule. Then,

$$r_{f_0}(R_0) = 2$$
, $r_{f_0}(L) = 2$, $r_{f_0}(R_0/L) = 1$,

and thus (+) does not hold.

To conclude this section, let us formulate another simple consequence of Theorem 4; note that if R is a commutative noetherian ring, then there is a one-to-one correspondence between the families $\partial^2 \Omega_L$ of Theorem 4 and the (proper) prime ideals of R.

COROLLARY 2. Let R be a commutative noetherian ring, $\{P_{\omega} | \omega \in \Omega_t\}$ and $\{P_{\omega} | \omega \in \Omega_f\}$ the set of all (proper) prime essential and all prime non-essential ideals of R, respectively; put $\Omega = \Omega_t \cup \Omega_f$. Let M be an R-module. Then, for each $\omega \in \Omega$, the cardinality of a maximal independent subset of elements of order P_{ω} in M is an invariant: P_{ω} -rank $P_{P_{\omega}}(M)$ of M. Moreover,

$$r_t(M) = \sum_{\omega \in \Omega_t} r_{P_\omega}(M) , \quad r_f(M) = \sum_{\omega \in \Omega_f} r_{P_\omega}(M)$$

and

$$r(M) = \bar{r}(M) = \sum_{\omega \in \Omega} r_{P_{\omega}}(M)$$
.

3. Injective R-modules. Here, we generalize some results of Eben Matlis [9] on injective R-modules. Let H(M) be an injective hull of an R-module M; H(M) can be characterised as a maximal essential extension of M. Thus, for any Q-family K, M_K is essential in $[H(M)]_K$ and therefore we get

THEOREM 5. For any Q-family K,

$$r_{\mathfrak{K}}(M) = r_{\mathfrak{K}}[H(M)]$$
.

In particular, rank, reducible rank, total rank, torsion rank or torsion-free rank of M equals to the respective rank of H(M); also

$$r_{\mathfrak{T}_{\omega}}(M) = r_{\mathfrak{T}_{\omega}}[H(M)]$$
 for every \mathfrak{T}_{ω} of Theorem 4.

Furthermore, using (B) we can easily prove

Lemma 5. The following properties of an injective R-module H are equivalent:

- (i) H is indecomposable.
- (ii) $\tilde{r}(H) = 1$.
- (iii) For any $x \in H$, $O(x) \in \mathfrak{I}$ and $H = H(\langle x \rangle)$.
- (iv) $H = H(R \mod L)$ with a certain $L \in \mathfrak{I}$.

LEMMA 6. Let $L_i \in \mathfrak{I}$ (i = 1, 2). Then

$$\partial^2 \mathcal{Q}_{L_1} = \partial^2 \mathcal{Q}_{L_2} \leftrightarrow H(R \operatorname{mod} L_1) \cong H(R \operatorname{mod} L_2)$$
.

Proof. If $\partial^2 Q_{L_1} = \partial^2 Q_{L_2}$, then, for suitable ϱ_1 and ϱ_2 of R,

$$L_1: \varrho_1=L_2: \varrho_2\neq R$$
.

Thus, in view of Lemma 5,

 $H(R \operatorname{mod} L_1) \cong H(R \operatorname{mod}(L_1 : \varrho_1)) \cong H(R \operatorname{mod}(L_2 : \varrho_2)) \cong H(R \operatorname{mod} L_2)$.

On the other hand, let $R \mod L_1 = \langle m_1 \rangle$ and $R \mod L_2 = \langle m_2 \rangle$. Furthermore, let φ be an isomorphism of $H(\langle m_1 \rangle)$ onto $H(\langle m_2 \rangle)$. Then, there are suitable ρ_1 and ρ_2 of R such that, in $H(\langle m_2 \rangle)$.

$$\varrho_1\varphi(m_1)=\varrho_2m_2\neq 0.$$

Since $\varrho_1\varphi(m_1)=\varphi(\varrho_1m_1)$ and $R\neq O(\varrho_\ell m_\ell)=O(m_\ell)$: $\varrho_\ell=L_\ell$: ϱ_ℓ for i=1,2, the reverse implication follows, too.

Now, we are ready to formulate the basic

THEOREM 6. Lemma 6 yields a one-to-one correspondence Φ between the Q-families \mathfrak{T}_{ω} of Theorem 4 and the non-isomorphic indecomposable injective R-modules: write $\Phi(\mathfrak{T}_{\omega}) = H(\mathfrak{T}_{\omega})$; every $H(\mathfrak{T}_{\omega})$ is either torsion or torsion-free.

Let

$$N = \bigoplus_{\substack{\omega \in \Omega \\ \gamma \in \Gamma_m}} H_{\omega,\gamma} , \quad H_{\omega,\gamma} \cong H(\mathfrak{T}_{\omega}) \quad \textit{ for every } \gamma \in \Gamma_{\omega} ,$$

be a direct sum contained in an injective hull H(M) of an R-module M, and let N be maximal in the sense that there is no indecomposable injective submodule H of H(M) such that $H \cap N = \{0\}$. Then

$$\operatorname{card}\left(\varGamma_{\omega} \right) = r_{\mathfrak{T}_{\omega}}(M) \quad \text{ for every } \omega \in \Omega \ .$$

In particular, any two direct decompositions of an R-module into direct sums of indecomposable injective R-modules are isomorphic and can be described by a cardinal-valued function defined on Ω .

Also, if M is tidy (in particular, if R has the property (3) of [2]), then N is essential in H(M) and H(M) is fully characterized by the function f defined by M on Ω :

$$f(\omega) = r_{\mathcal{T}_{\omega}}(M)$$
.

Theorem 6 follows from the results of § 2 and from Lemmas 5 and 6 quite simply. We refrain also from formulating the consequence of Theorem 6 in the case of a (commutative) noetherian ring R which is easy to deduce (cf. [9]).

References

- V. Dlab, Algebraic dependence structures, Z. Math. Logik Grundlagen Math. 12 (1966), pp. 345-377.
 - [2] Dependence over modules, Czechoslovak Math. J. 16/91 (1966), pp. 137-157.
 - [3] Distinguished submodules, J. Australian Math. Soc., 8 (1968), pp. 661-670.
 [4] Distinguished families of ideals of a ring, Czechoslovak Math. J., 18/93 (1968),
- pp. 560-567.

V. Dlab

324

- [6] L. Fuchs, Abelian groups, Budapest 1958.
- [7] P. Gabriel und U. Oberst, Spektralkategorien und reguläre Ringe im Von-Neumannschen Sinn, Math. Z. 92 (1966), pp. 389-395.
 - [8] A. W. Goldie, Torison-free modules and rings, J. Algebra 1 (1964), pp. 268-287.
- [9] E. Matlis, Injective modules over noetherian rings, Pacific J. Math. 8 (1958), pp. 511-528.
 - [10] O. Ore, Galois connections, Trans. Amer. Math. Soc. 55 (1944), pp. 493-513.

AUSTRALIAN NATIONAL UNIVERSITY

Reçu par la Rédaction le 16. 1. 1968

Some remarks on Hausdorff measure

by

R. B. Darst (Lafayette, Ind.)

Let us begin with some notation and terminology. Denote by \mathcal{F} the class of non-decreasing functions h on $(0, \infty)$ with $\lim_{\epsilon \to 0} h(\epsilon) = 0$. If $h \in \mathcal{F}$ and $E \subset I = [0, 1]$, then the h-Hausdorff outer measure $m_h(E)$ of E is the extended real number

$$\liminf_{\epsilon \to 0} \left\{ \sum h(b_i - a_i); \ E \subset \bigcup (a_i, b_i), \ \sup (b_i - a_i) < \varepsilon \right\}.$$

Denote by $\mathcal K$ the collection of subsets E of I such that $m_h(E)=0$ for all $h \in \mathcal F$. Denote by $\mathcal F$ the collection of regular non-atomic probability measureres μ on the Borel subsets $\mathcal F$ of I, and denote by $\mathcal F$ the collection of subsets E of I satisfying $\sup\{\mu^*(E); \mu \in \mathcal F\}=0$. Denote by $\mathcal F$ the set of concentrated subsets of I (i.e., $E \in \mathbb C \Longrightarrow$ there is a sequence $\{x_i\}$ of elements of I such that if $\{\varepsilon_i\}$ is a sequence of positive numbers, then $E-\bigcup N(x_i, \varepsilon_i)$ is, at most, a countable set, where $N(x, \varepsilon)=(x-\varepsilon/2, x+\varepsilon/2)$. Finally, denote by $\mathbb F$ the collection of enumerations $\{x_i\}$ of countable, dense subsets of I and by $\mathcal F$ the collection of sequences of positive numbers.

It is easy to show that $C \subseteq \mathcal{K} \subseteq \mathcal{N}$, and the author showed [1] that if the continuum hypothesis is satisfied, then $C \neq \mathcal{N}$. The purpose of this note is to show, assuming the continuum hypothesis, that $C \neq \mathcal{K}$. To this end, let us begin by giving the following characterizations of the elements of \mathcal{K} .

LEMMA 1. Each of the following conditions is necessary and sufficient in order that a subset E of I be an element of \mathcal{R} .

- (i) If $\{\varepsilon_i\} \in \mathcal{E}$, then there is a sequence $\{x_i\}$ of points of I such that $E = \bigcup N(x_i, \varepsilon_i)$ is countable.
- (ii) If $\{\varepsilon_i\} \in \mathcal{E}$, then there is $\{x_i\} \in \mathcal{D}$ such that $E \bigcup N(x_i, \varepsilon_i)$ is countable.
- (iii) If $\{\varepsilon_i\}$ $\in \mathcal{E}$, then there is a sequence $\{x_i\}$ of points of I such that $E \subset \bigcup N(x_i, \varepsilon_i)$.
 - (iv) If $\{\varepsilon_i\} \in \mathcal{E}$, then there is $\{x_i\} \in \mathcal{D}$ such that $E \subset \bigcup N(x_i, \varepsilon_i)$.