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(To~n P—K,). Let 8, be an uncountable Lusin subset of T,. Finally,
let B = | 8,. Then, since 8, CE n T,, E ¢ £. Moreover, recalling that
a countable union of Lusin sets is an element of C and, a fortiori, of N,
it follows that for a> 0,

l/‘a(E) < ,un(ﬁxzj‘x Sﬁ) + /‘a(I—‘ Kn) =0.

Therefore, assuming the continuum hypothesis, if & = N°, then uf(H) > 0.
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Novak’s result by Henkin’s metod

#
by

H. C. Doets* (Bussum)

1. In [1], Novak proved among other things that, if Zermelo-Fraenkel

set theory (ZF) is consistent, so is von Neumann—Bernays-Godel set theory
(NBG). Mostowski extended the result (see [2]) by noting that any theorem
of NBG which speaks about sets only can already be derived in ZF. By
making use of the method of Henkin’s proof of the completeness theorem
for first order theories [3] we show how a very simple proof of the above-
stated fact may be obtained. Essentially, this is done as in [1] by showing
that, assuming the consistency of a ZF-like theory, a model may be
obtained for a related NBG-like theory.
. However, professor Mostowski notified me of the fact that J. R. Shoen-
field’s proof of the theorem (JSL 19 (1954), pp. 21-28) remains the best
result by showing that a primitive recursive function exists yielding
proofs in ZF from proofs in NBG for ZF-sentences, while from our proof
(as well as from Novak’s and Rosser—Wang's, Ji SL 15 (1950), pp. 113-129)
there results a general recursive function only (cf. Shoenfield’s introduction
to his paper).

2. Our symbolism will be one of the usual kinds and accordingly
will not be explained. Free variables are indicated between brackets as
usual; the same for substitution of terms in formulas; it is assumed that
the necessary chafiges always are made to avoid clash of variables. Seman-
tical notions like satisfaction (a finite sequence of a model M may satisfy
a formula without indicating the relation between objects and variables
too precisely) and (M-) truth are assumed to be known but use will be
made of very elementary properties of these notions-only (as in [3]).
For NBG, refer to [4]. We make however the following slight change:
let 8(z) be the formula Vy(x€y); erase axioms Al and A2; rewrite all
axioms in one kind of variables relativizing former set variables to 8.
We denote axioms of the new system by the names of the corresponding
axioms in the old gystem.
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3. TarorEM. Let T be a (deductively) consistent set of sentences in our
object language, including the ZF axiom of general ewtensionality (which
permits no individuals). Then a model M exists for which the following holds:

(i) A3 of [4] is M-true and if T contains the ZF pairing axiom, then
also A4, B1-B8 of [4] are M-irue.

(ii) The relativieation to S of any sentence of T is M-true (taking
care of Cl-3 [4]).

(iil) If T contains every instance of the ZF replacement schema, then C4
of [4] (the NBG class-form of the replacement axiom) is M -true if A4 is.

Remark. Actually, we shall considerably generalize part (iil) of
the theorem to arbitrary sentence-schemas.

Proof of theorem. First we will define the Henkin-model. According
to Henkin—Hasenjaeger, we may extend T in a language which has an
additional denumerable set of individual constants ¢ to a maximal con-
sistent set of sentences T* with the property that, if some existentially
quantified. formula Vap(2) is in. T*, there is an individual constant ¢
in C-such that ¢(c) also belongs to T*. Let F be the set of formulas in the
extended object language in one free variable. Define M = (F, s, s>,
where:

1l g~y if and only if A z(p(s) — p() is in T%

2. gey if and only if ¢ in € exists such that A 2(p(2) — @  ¢) and y(c)
are in T,

3.

an individual constant ¢ from C denotes the formula (z e ¢) in
the model; ¢, = are taken as denoting resp. & and .

A series of lemmas will show that M satisfies the theorem. The first
one agsures that the identity-relation of the model is a good one. Its proof
is trivial from the definitions and the fact that T* is deductively closed:

LEMMA 1. ~ 48 & conpruence relation in the relational system M.

Lmmma 2. A3, the NBG estensionality aviom, is valid in M.

Proof. (*) If not ¢ ~ v, then, by definition and properties of T* it
follows that for some ¢ in C: —|(cp(c) —y(c)) is in T*. As a result, we may
easily derive that {(zec),p,p) satisfies §(y) A Ny ez yew) in M.

Before we proceed, we have the

DEFINITION.AFOI‘ any formula ¢ among whose free variables are
T1y .y ¥n, OCCUITING 2t the right-hand side of the epsilon-sign only, and
any » formulas y,, ..., yu from ¥, ¢ (y,, «+y ¥a) Will be the formula obtained

(*) Added in proof. Here and in the sequel, the following two trivial properties

may be of help: (i) ¢ satisfies § in M iff for some ¢ in O, ¢ (meo); (1) (zec)ep iff
p(e) is in T*.
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Novalk’s result by Henkin’s method 331

from ¢ by replacing every prime formula (¢ e ;) in which a; occurs by
the formula (o) (2= 1,...,%).

The following lemma is a slight but potent generalization of Henkin’s
vesult from which all other lemmas needed merely follow as corollaries:

LeMMA 3. Let @, 9y, ..., yu be as in the definition with the addition
that ¢ contains no more free variables than @, ..., Tn. For @y, ..., ¥n) 10
be in T* it is mecessary and sufficient that {y,, ..., wn> in M satisfies ¢p(s’,
the relativization of ¢ to S.

Proof. As Henkin, we proceed by structural induction: on ¢. For
obvious reagsons we do not treat universal quantification. YWe distinguish
the following cases:

(i) @ is a prime formula (a = b) for some ¢, b in C. The following
assertions are equivalent: (¢ = b) ix in T%; A w(@ea—xeb) is in I
(x e a) ~ (x eb); (a =b) is M-true.

_ (ii) ¢ is a prime formula (a € b) for some a and b in C. Equivalent
are: (@ eb)isin T*; A w{wea+>zea), (acb) are in T%; (zea)e(neb);
{a €b) is M -true.

(iii) @ i3 a prime formula (& € x;) for some @ in € and ¢ <n. Then
PPy -y ) I8 pi(a). Equivalent arve: yi(a) is in T Ay(yeaeoyea),
wi(a) ave in T%; (y € a) epg; y; satisfies (a e ;) in M.

(iv) @ is a negation or a conjunction (ete.); this is trivial.

(v) ¢ is Vyp(y) for some variable y and formula y.

Necessity. If ¢y, ..., va) is in T* then, for some ¢ in C, p(c)(yy, .-
vy W) is in T* Thus, by the inductive hypothesis, <y, ,w(g)\ satisfies
I[)(S)(c) and by an elementary rule, {(2 ¢ ¢), ¥, -.. , ya satisfies " (2). ([11.)

Moreover, since {(ze¢), (z = ¢), satisfies (2 ¢y), we may conclude
that (2 e ¢) satisfies S. Because of this fact and [1], {(zec),p1, ..., Pny
satisties 8 (z) A v*(@), that is, vy, ..., yay satisties ¢®. :

Sufficiency. Let {(py,..., yu> satisfy ¢, that is, for some x in F,
Ny Py ey Yy satisfies S(w,) A (@) Because 7 satisties the left-hand
side of the conjunction, it is easy to show that we may take % to be of
the form (z € ¢) for some variable 2 and ¢ in ¢. By the inverse of the same
elementary rule as before, we conclude that {u, ..., s> satisfies w‘s)((r),
thus, by the inductive hypothesis, ¥ (¢)(wy, ..., pa) is in T* Tt follows
that @(yy, ..., pn) is in I™

As said, rest of the proof is easy-going; it is immediate from
Lemma 3 that:

LeMMA 4. For any sentence in T, the relativization of the sentence
to § is M-true. In particular A4 (the NBG pairing awiom) is M -true if
the ZF pairing axiom belongs to T.
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LEMMA 5. Let @ be an arbitrary formula in the free variables y, @, ..., vy
Then the sentence

) A @ AT V@ AY(8Y) >y €@ o g (Y, a1, .., 7))

i M-true.

Remarks

1. It is well known that, as a consequence, B1-B8 of [4] are M -true
if A4 is.

2. In [1], it is stated (p. 90) that B1-B8 follow from (%) with the
restriction that ¢ contains the free variable y only. This is a mistake.

Proof. First we note (ef. [4], bottom p. 9, top p. 10) that by the
logically true formula

Ly €2 > \/y(S(g/) A®=9y A g/ez)
and the M-true formula
w=2c A &S (@)>(2em—2zey)

we may assume that ¢ satisfies the restrictions of the definition stated
just before Lemma 3. In this way, the truth of (%) is easily established:

Select py, ..., yu from F. We want to show that ¢(y)(y, ..., vu) does
the trick. For let 9 be any “set” from the model. As before, we may assume
that 7 i8 (2 € ¢} for some ¢ in . Then the following assertions are equi-
valent:

(ec)op(y) (W s Pa);  @(C)(Pry wees ) @8 im T
uy ooy Yuy Satisfies ¢°(c) in M; $Ny Wy ey Pu) satisfies o in M .

LeMMs 6. (i) If T’ contains every instance of the Zermelo subset schema,
then

A z(S(z)_> vaS@) A Ay(SW)>(yeroyeznye w))))

8 M -true.

(i) If T contains the ZF pairing awiom and every instance of the
Fraenkel replacement schema, then C4 of [4] is M-true.

(ili) .Analogously for other sentence-schemas.

Proof. We shall work out the procedure for 4 only; it will be seen
that, assuming the pairing axiom to be in T, the lemma, is valid for arbitrary
possible sentence schemas. In the replacement schema, the formula-
parameter ‘p’> functions as a “binary relation”: #(2, ). By means of the
pairing axiom (from which we can develop the theory of ordered pairs, -
cf. [4], pp. 3-4) we may equivalently work with an ‘“unary relation”,
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that is, we may replace every instance of ‘p(w,y) in the replacement
schema by ‘Vz(p(?) A 2= (z,9)). In this new replacement schems,
replace every -oceurrence.of ‘p(2)’ by ‘z€w’ where w is supposed to be

" g mew variable. Let the resulting formula be y(w).

Now, 04 is trivially equivalent in M to the sentence A wy®(w) which
we: shall prove to be valid in M. s

For w, select some 7 from F. We have to show that # satisfies (10).
Now consider y(z). This is exactly an instance of the revised replacement
schema and so it is in 7% By Lemma 3, 5 does satisfy y*(w) in M. This
completes the proof of the theorem.
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