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Introduction. The theory of framed cobordism was introduced
by L. Pontrjagin in order to study homotopy groups of spheres. Pon-
trjagin has shown in [9] that the problem of homotopy classification
of continuous maps of 8™ into 8™ is equivalent to the problem of cobordism
classification of (m —n)-dimensional framed submanifolds of S™. After-
wards it has turned out to be easier to solve this homotopy classifieation
problem by quite different methods. But it also turned out that Pon-
trjagin’s methods allows to translate some problems in differential
topology to homotopy theory.

Using the idea of Pontrjagin, S. Smale has suggested the following
notion of degree for certain maps of differential Banach manifolds. Let X
and Y be connected 07 Banach manifolds and f: X—Y a proper Fred-
holm CP map of index n, with p > n+1. It follows from Smale’s version
of the Sard Theorem [10] that except for a set of the first eategory all
points of ¥ are regular values of f. If y is a regular value of f, then !
is a (P compact n-dimensional submanifold of X or is empty. ’\f[meover,
it is shown in [10] that if y, and ¥, ave regular values of f, then f~ Hyo)
and f(y,) are cobordant as unoriented n-dimensional manifolds. Thus
there is defined an element y(f) (generalized degree mod 2 of f) of the
unoriented bordism group R(X).

The purpose of this paper is to find a link between the invariant y(f)
and the homotopy theory of so-called compact fields ([4], [5]). Instead
of X and ¥ we consider two infinite dimensional Banach spaces ¥ and F.
We assume that there is given a subset 1" of the set @ (¥, F) of all Fredholm
operators from F to F, satisfying certain conditions (see Section E).
As an example of such a I" we can take ¥ = a convex subset of &(H, F)
and let I'= {4 e ® (B, F); 4 =B+0, BeV, C is compact}.

Let U be an open subset of B. An n-dimensional ¢ I™-framed sub-
wmanifold of U is a pair (M, ) where M is an n-dimensional (7 submanifold
of U and @: M-»I"is a continnous map such that Kerg(z) = the subspace
tangent to M at x, for all # ¢ 3. In the set of all I-framed compact sub-
manifolds of U, there is a natural cobordism relation which we call
w - cobordism.
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We denote by w?(U; I') the resulting collection of equivalence classes:
oP(U; I) is an abelian group with respect to the addition induced by the
disjoint union of submanifolds.

Let X be a bounded and closed subset of #. We consider a set B,(X; )
consisting of certain C” Fredholm maps f: B—F such that S restricted
to any closed ball is proper, Df(#) e I for all z ¢ B and 0 ¢ f(X). We define
also a suitable notion of homotopy of maps in By(X 3 I) which we call
By-homotopy. (For the precise definitions see Section F.)

Consider the simplest case X = the unit sphere of B. Let U denote
the interior of the unit ball in B. If y e F —f(X) is a regular value of
JeBy(X;T), thenlet M = U ~ f Y (y), p = Dfjar. Then (M, ¢) is aI'-framed
submanifold of U. It turns out that if we choose y sufficiently close to 0,
then the class of (M, ¢) in w?(U; I') depends only on the Bp-homotopy
class of f, Thus there is defined a map A from the set By[X; I of B, —homo.-
topy classes into w?(T; I'). Our main result is that the map A is bijective.
This result generalizes to the case where X is an arbitrary closed and
bounded subset of B but the corresponding theorem (Theorem H.4) is
more complicated. i

The main tool used in this paper is the following concept, first in-
troduced by Neubauer [7]. Denote by G(E) the set of all complementable
closed linear subspaces of ¥. G(E) is a metric space with a suitable defined
metric. Then there exists a continuous function z: G(E)—~GQ(F) such that
for each T e G(E), T and 7 (T) are complementary subspaces of . n(T)
can be viewed as a generalization of the orthogonal complement in Hilbert
space.

The contents of the various sections are as follows. In Section A we
collect some known facts from functional analysis and introduce some
not'fntions and conventions we use in the paper. Section B is devoted to
pr0]§ctions in Banach spaces. In Section C we give some technical lemmas
on finite-dimensional submanifolds of Banach space. In Section D we
introduce the notion of o-proper Fredholm maps and give a modification
of Sma-le’s version of the Sard Theorem. In Section B we introduce the
no.tlon of I'-framed submanifold and prove a few technical results. In
this section we define also the group w?(U; I'). In Section F we define
Bp-maps and By-homotopies, the main theorem of this section is the
Thn.sorem F.10. Section G is devoted to a class of maps and homotopies
which we call admissible, the main theorem of the section is the Theo-
rem G4 In Section H we define a map A and prove the main theorem
of this paper. We end this section discussing the relation between B -maps
and co.mpact fields (which were considered in [4] and [5]). We sh(?w that
there is a natural bijection from By[X; I'l to a-n(X)-the generalized
cohomotopy group defined in [5].

In the Appendix we consider the group GL.(E) consisting of all
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linear automorphisms of ¥ which are of the form I-+A4, where I denotes
the identity and 4 is compact. Using the function = we prove that the
homotopy groups of GL.(F) are given by the Bott periodicity theorem.
This is a partial generalization of a theorem of Palais ([11], Theorem B)
and a generalization of a theorem of Svarc ([12], Theorem 4).(%)

The author is indebted to Professor A. Granas for many helpful
suggestions. @

A. Preliminaries. In this section we collect definitions and
theorems of functional analysis we shall need in later sections.

If  and F are real Banach spaces, we denote by L(E, F) the Banach
gpace of continuous linear maps (= operators) of F into F with the norm
14| = sup {|4=]; l#|] = 1}. We put L(E)= L(E,E); L(B) is a Banach
algebra. We denote by I: E—FE the identity operator. We denote by
GL(E) the subset of L(H) consisting of all invertible operators.

By K (H, F) we denote the subset of L(E, ') consisting of all compact
(= completely continuous) operators; 4 ¢ K (¥, F) if and only if A maps
the unit ball of # onto a relatively compact subset of F. K (E,F) is
a closed linear subspace of L(¥#, F). Put K(E) =K (E, B), K (E)is a closed
ideal in the algebra L(E).

By L¢(E) we denote the subset of L(E) consisting of all operators
of the form I+A, where A ¢ K (&, F). We put GLJ{E) = L(B) ~ GL(E).

An operator A ¢ L(E, F)is called a Fredholm operator it Ker A = A7(0)
and Coker 4 = F/A(F) are both finite dimensional. Denote by @ (H, F)
the set of all Fredholm operators from E to F. If 4 ¢ ®(E, F) then the
index. of A is defined by

ind 4 = dimKer A —dim Coker 4 .

We recall the basic facts about Fredholm operators (see e.g. [8], Ch. VII).

1. If AeD(E,F), then A(E) is closed in F.

.If AcD(E,F) and Be K(E,F), then A+ BeP(E,F).

. O(E,F) is an open subset of L(E,F).

.If AeD(B,F) and BeD(F, @), then Bo A e D(H, G).

. The index function is constant on each component of ®(H,F).
.If Ac®(H,TF) and Be E(E,F), then ind(A+ B) = ind 4.

An operator P ¢ L(E) is called a projection if P? = P. If P is a projec-
tion, then every element « ¢ EF can be written uniquely as a sum & = 2,4 @,
where @, = Pz, and Pz, = 0.

Two closed subspaces R, T are ‘complementary if every x ¢ E can be
written. uniquely as « = 2,+,, where 2, ¢ R and «, ¢ T. In this case we
write ROT = E.

St oM W O
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(") Added in proof. The same theorem was proved in [13].
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If R and T are complementary, then P = P(R, T) defined by Py — @,
is a projection. We call P(R, T') the projection on R along T. There is
a ono-to-one correspondence between projections and direct sum de-
compositions of ¥ into two closed subspaces.

We recall the following well-known facts ([3], p. 480).

1. Buery linear finite dimensional subspace of E is closed.

2. If R is a closed linear subspace of E and if either dim R or codimR
is finite, then there is a closed linear subspace T such that R and T are
complementary.

3. If B and T are closed linear subspaces of B such that codim R = dim T
is finite and R ~ T = {0}, then RQT = E.

4. If ROQT = E and LOT = E, then P(R, T) maps L isomorphically
onto R.

5. Let T,@Ry=FE and T@OR=E. Put Py= P(T,, Ry) and
P=P(T, R). Then

(@) Po Py= P, if and only of T,C T,
(b) Pyo P =P, if and only if RCR,.

6. If Bs@T=FE for i=1,2,..,k and t,+tyt...4t; = 1, then
P=Y4uP(T, Ry is a projection on T.

Thus Q= I1—P= Ju,P(R:, T) is a projection lon KerP along T.

Let X be an arbitrary subset of a metric space Z and let 2 € Z, we set

6('{67 'X) = inf{g(w, ZI); K GX} ’
B(X, &)= {y ¢ E; 8y, X) < &}
¥ Y is another subset of Z we set
0(X, ¥) = sup{d(z, ¥); ve X} .

If B is a closed linear subspace of E, we let Dy(R)= {z ¢ B; |l < r}
and CDR)= {z ¢ R; |jz] <7} = the closure of Dy(R). By 8,(R) we
denote the sphere of R of radius r, ie. SH(R) = {2 € B; |la}| = ).

Denote by G(H) the set of all direct summands of F; Re G(H) if
a.;u;a only if there is 7' such that R@®T = E. G(B) is called the Grassmanian
of E.

For E, T ¢ G(B) and R+ {0}, T {0} let

AR, T) = max{8(8,(R), $,(1)), 8(8,(T), SR)) .
Moreover,

{0} T) = a(T, {0h)=1 for T+#{0} and d({0},{0})=0.

It is known that d is a metric on, G(H) (see [1], where d is denoted bj ).
We' (%enott? by Gu(E) (resp., G*(E)) the subset of G(FB) consisting
of all finite dimensional (resp., finite codimensional) subspaces of E.
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For R, T e« G(E), T # {0}, we define
a(T, R) = inf{é(z, R); x < 8,(T)}.
Note that d{ax, R) = |a| - d(z, R), thus

”?1”6(99,1%); weT, o+ 0}.

We end this section by giving some notations and conventions we
follow.

We denote by R" the #-dimensional Buclidean space with the usual
norm. The unit interval [0,1] will be denoted by J. If h: X xJ—Y is
2 map, then h: XY denotes the map defined by lu(x) = h(z,t). By
p: J—~>J we denote a O monotonic function such that u(t)= 0 for
0<t<1/3 and u(t)=1 for 2/3 <t < 1.

Let {Us} be an open covering of a topological space X. A system of
continuous functions {&}, ¥¢: X —J, iy called a partition of unily sub-
ordinated to {U:} if

(2) Suppd = the closure of {x e X; %) # 0} C Uy,

(b) each point & e X has an open neighbourhood which meets Suppd:
for only finitely many 1,

(6) 2Oz =1 for oll xe X (the sum can he formed because of (b)).

It is well known that if X is a paracompact Hausdorff space, then
every open covering of X admits a subordinated partition of unity.

Given two Banach spaces R and T A: T ~ R stands for “4 is a linear
isomorphism of T onto R”.

Throughout the rest of paper F and F denote two infinite dimensional
Banach spaces.

By @ we denote the empty set.

(T, R) = inf{

B. Projections.

ProrosirioNn B.1. Let A e L(E,F) and suppose A(H)=F. Suppose
further that there ewist R e G(E), Ry e G(F), T ¢ G(B), T, < G(F) such that

(a) TOR = E,

(b) T, ®E, = —Fa

(e) Air: R~ R,.

Let P=P(T,R), Q=1I1—P, Py=P(Ty, Ry) and Ar= (1—t)4d+
+1[AdoQ+PyodoP]

Then Ay= A, A;(R)= Ry, 4,(T)= T, and AyE)=F for all ted.

Proof. Let Q,= I—P,. Since A(R)= R,, PyoAo@=0. Thus
AoQ = (Qy-+P)A o =Q,0A Q. Hence we have

A= (1—)A+1[QyoA>Q+PyeAoP)
= QpodoQtPyodoPt(1—1)Q,0doP.
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Take an arbitrary element y ¢ . Then y = 41+ s, %1 = Qo¥, 42 = Pyy.
Since 4 is surjective, there iy o, ¢ B such that A (%) = y». Let 2, = Pa,,
Then Ay = (4 2 Q)2+ (4 o P)xy = ¥,. Thus (Pyo A)2g= (Pyo A o Q)my+
+{(Pood)y=19,. But (PyoAdoQ)s,=0 hence (PyoA)x,=1y,. Let
Yo = Y1 —(1—1)(Qo o A)x,. Since y, ¢ Ry, thereis #, ¢ B such that 4 (z,) = y,.
Let # = x;4#,. Then

Aslir) = Ai(@y+3:) = (QuAQ)my+ (P AP) 2, + (1 —1) (Qy AP) wy
= Yo+ 91 —0)(Gd) %= 11+ 0 = y.
This proves our proposition.
PropositioN B.2. Let T, Ty, R ¢ G(E). We have the following inequality
a(T, B) < a(Ty, B)+d(Ty, T).

Proof. Take an arbitrary &> 0. We can find @, e Sy(Ty), % ¢ S,(T)
and y e R such that |lz,—yl| < a(Ty, R)+e and [z —ay| < a(Ty, T)+e.
From this we have

a(T,; ) < llp—yll < o —all+wa—yll < a(To, R)+d(To, T)+2-¢
and the inequality follows.

CoroLLARY B.3. The assignment (T, R)i-a(T, R) defines a con-
tinuous function a: G(E)x G(H)—->R.

Proposrtioy B.4. Let T,, T;, R < G(E) and suppose T,OR— B,
T.,®R=FE. Let Py=P(T,,R), P,=P(T,,R) and T;— [(1—1) - Py+
+1tP,1(E). Then

a(T¢, B) > min{a(T,, R), «(Ty, R)} .
Proof. Takes ¢ Ty, z # 0. Let 2, = Poz, 2, = Py 2; then & = (1 —1)z,+
ity #—ay, 2—m e B. Thus é6(z, R) = 8(x,, R) = 6(z;, R). Since
llo) < max i, e},
™8 (2, ) > min {Jard| -8 (o, R), sl -6 (1, B)}
= min{a(Ty, R), a(Ty, B)}
and the conclusion follows.

TeeorEM B.5. Lot ROTy= F and let P, = P(T,, R). Then there is
an £ > 0 such that T ¢« G(B) and d(T, T,) < e imply T AR = E. Moreover,
T—P(T, R) is a continuous map from U= {TeGQB); ad(T,T,) < &}
wnto L(E).

Proof. This foliows from the Theorem 5.2. of [1).

G (E) is metric hence paracompact. We can find a locally finite covering
{Us} of G(E) such that for every 4 there is R, ¢ G(B) with Ry@T = E
for all T e U;. Take a partition of unity {#} subordinated to {U.}. Define

(1) = Y6(T)-P(T,R), a(T)=Kerll(T) = [I—I(T))(T).
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TeeorEM B.6 (Neubauer, [7]). The operator II(T) is a projection
on T along 7(T) and the assignment T—IT(T) is a continuous map IT: G(B)—
—L(E).

Proof. It is clear from the definition of /7.

LemMA B.7. Let @,y e B, |o|= 1. If y = 0, then

™y —af < 22—yl -
Proof. We have |lz—y|l = ||zl —|lvil| = |1 —|igll]. Thus

™y —a] <y ™ -9+ ly —all = |1 —ligll| +Hiz—y] < 2|z~ .

From the lemma above we have
CoroLLARY B.8. Let B, T ¢ G(E). If x e 8y(T), then

8z, §,(R) < 2-6(z, R),

PROPOSITION B.9. Denote by PL(H) the subset of L(E) consiting of
all projections. Then the assignment P—P(E) is a continuous map from
PL(E) into G(E).

Proof. Take P,Q ¢ PL(E). For an arbitrary = e S,(P(E))

e —Qall = ||Pz—Qai < |P —@Q|l -
Qz < Q(B), thus by B.8 6(:0, 8,{Q (E))) < 2-P—@| and the conclusion

follows.

THEOREM B.10. The assignment Ti—=(T) defines a continuous map
n: G(B)—G(E).

Proof. By B.6 it suffices to prove that the assignment IT(T)1+m(T)
is continuous. Since #(T)= [I—I(T)](E) and I —II(T) is a projection,
this map is continuous by B.9.

Through the rest of paper we assume that we are given fixed IT
and = in both F and F.

LemmA B.11. Let A,BeL(E,F). Suppose that there is R e G(H)
such that B ~ Kerd = R ~ KerB = {0} and A(R), B(R) e G(F). Thus A
and B map R isomorphically onto A(R) and B(R), respectively. Let
Ay= (Alp)™", By= (Blg)™". Then

(a) d(A(R), B(R)) < 2-||4 —Bljmax {[| 4|, [Boll},

(b) 4|l |4 —Bl| < 1 implies ||B|| < [[4all-[1 —|4ql-Il4 —Bj1™

Proof. To prove (a), take y e Si(4(R)) and let &= 4y, 2= Bax.
We have

ly —2| = |z~ Bz|| < |4 —Bl|[joll < [|4,l- |14 —B]|

and (a) follows from B.7.
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To prove (b) take z € B(R) and let = Bgz, y = Ax. Now
el = |Ba]| = || Az —(4 —B)a|| > [Aa]— (4 —B)a| > |Az| || 4 —B|-llaf .
Clearly 4] = 14| ™ o]l and then [ig]l = [l 4o~ —Il4 — B[/l From this
1Boall = liel] < || 4all- [1—4oll- |4 —BIT el

and thus (b) is proved.

As an immediate consequence of the lemma above we obtain the
following two corollaries. ‘

COROLLARY B.12. Let X be a subset of L(E,F). Suppose that there is
a subspace R ¢ G(B) such that for all 4 ¢ X, A(R)e G(F) and E ~Ker 4
= {0}. Then the assignment A\~ A(R) defines a continuous map from X
wmto G(F).

COROLLARY B.13. Let X be a compact subset of GL(E). Then for every
€> 0 there is a 6> 0 such that |4 —B| < 6 implies d(4(R), B(R)) <&
for A,BeX and all ReG(E).

ProrosrrioN B.id, Let 4 € L(E, F). Suppose that R ¢ G*E), A(R)
€ @*(F) and R @®Ker 4 = E. Then there exists an ¢ > 0 such that B « L(E, F)
and |4 —B|| < ¢ imply B~ KerB = {0}.

. Proof. 4= Alz: R~ A(R) i3 an isomorphism; hence 47" iz con-
tinnous. Set &= |4, I w e B, # # 0 and ||[4 —B| < ¢, then
|Bxj = Azl — (4 —B)a| = |45 &l —I|4 —B| - =,
= (l4s "™ — |4 —Bl)-liw} > 0
and the conclusion follows.

I;ROPOSI.TIO.\’ B.15. If XCO(E,F). is a compact subset, then there is
R e G*(E) such that B ~ Ker 4 = {0} for all A e X. 3Moreover, the assignment
A A(R) is a continuous map from X into 'G"(F)‘

Proof. If 4 « ®(Z, F) and R e« G*(E), then A;p: E—F is & Fredholm
operator. '].“hus {L (B) e G*(F). It follows from B.14 that we can find an
open covering Uy Usy ooy Up of X and Ry, B, ..., Ry e G*(E) such that
Ker(4 ~ Ri) = {0} for all 4 « U;. Then B = (R, is the required subspace.
The map 44 (R) is continuous by B.12.

*PRDPO\L[‘IO\ B.16. Let X be a compact metric space. Let h: X xJ —
-G (E) (1enp*, h: X xd—G(E)) be a continuous map and suppose thal
there is B ¢ G*(B) (vesp., R ¢ G4(E)) such that hyz) = R for all x ¢ X. Then
there is a continuous map H: X X J ~GL(E) such that H(x, 0) = I and
H(z, t){(ho) = () for every e X and ted.

Proof. Define k: Xk J>Gy(E) (vesp., k: X »J—G*(E)) by ke, 1)
= a(h(z, 1)). k is continuous by B.10. Consider the function f: X x
xJ xJ R defined by f(z,t,s) = a(k(z, 1), h(z,s)); B is continuous
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by B.3. Since f(x, ¢ t) > 0 and X is compact, there is a number § > 0
such that B(z,1,s) > 0 for it—s| < é.
Let
P, t)=I(h(x,1), Qx,0)=TI—P(z,1).

Then P, 1) (vesp., @(,t)) maps h(z,s) (vesp., k(z,s)) isomorphically
onto h(z,t) (vesp., k(z,t)) if Jt—s|<d. Take #=0-<t <. <l
<t = 1 such that [t;—tiq] <8 for i=1,2,..,k

Define 4, B: X xJ—=L(E) by

A( ' )- P, t)o P(@, 11-1) e ... o P, 1) e P, &) ,
2, 1) = Q(z, )o@ (@, li1)o..oQr, )o@ r, k),

for 1y <E< Y.

Then 4 and B arve continuous by B.6. Note, that A(r,1) maps b
isomorphically onto ha and B(x,t) maps ko isomorphically onto kea.
Moreover, if h: X xJ->G*(E), then A(z,t)eLJ{B) and B(z,t) e K(E)
for every # e X and ted. If h: X xdJ—=Gy(E), then A(z,t)e< K(E) and

B(#,t) ¢ L(F) for every x ¢ X and t ¢J. Define H by H(x,1) = Az, )+
+B(#,1). Then H is the required map.

PROPOSITION B.17. Let X be a metric space and let f: X —=L(E,F)
be a continaous map. S'uppos’e that there is T € Gy (E) such that Kerf(z) C T
for all red. I f dlmherf ) is constant, then the map @: X —+G(F) (ZPfI ned
by @(x) = (fo)(T) is continuous.

Proof. Take 2, ¢ X. There are an open neighbourhood 7 of i, in X
and a linear subspace T,CT such that Kerf(z) T, = {0}, (fa)(T)
= (fz)(T,) for @ ¢ U. By B.12, ¢ iy continnous on U and the proposition
follows.

C. Submanifolds.

PropositioN C.1. Let X be a metric space and let Y C X be a closed
subset of X whick is C” finite dimensional manifold, possible with the boundary.
If {Us} is an open covering of X, then there exists a subordinated partition
of unity {0} such that Dy is @ C” function for every i.

Proof. Let {Vy} be a locally finite refinement of {U:}. Fiud an open
covering {W;} of X such that WiC V4. There exists a 1e¢1 valued non-
negative O function 4; on Y which is identically 1 on Win Y and iden-
tically 0 on (X —Vi) ~ Y.

Define 9} on IT} (X =T v X by

M) for xeX,
Py =1 1 for we Wy,
0 for reX-—Vy.
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Clearly, 97 is continuous. By the Titze extension theorem there exists
4 continuous function #7: X R which is an extension of 97. Since {W}
is a locally finite covering of X, the sum ) 97(#) is never zero continuoug
function. Define #; by 4(s) = /() 3 9/(x). Then {¢} is the required
partition of unity, .

ProPOSITION C.2. Let ¥ and Z be two closed subsels of a compact
meiric space X. Suppose that ¥ s a C° manifold. Let V be a convex subsei
of a Banach space E. Let U be an open subsel of V. Suppose further that there
is given a continuous map f: (X y Z)>(U, uy), uye U. Then Jor a given
number ¢ > 0 there emisis a continuous map g: (X, Z)—~(U, w,) such that ar
is O° and ||f(2)—g (=) < ¢ for all & ¢ X.

Proof. f(X)is a compact subset of U; hence we can find an g >0
such that B(f(X), s,) A~V CU. Bet &, = min(e s &). Choose a finite covering
Uy, Usy ooy Ug of X and &y Loy ooy k€ X such that

(a) 2ee U, i=1, 2, ey By

(b) Z ~ Ui 0 implies m; e Z,

(©) If @) —fla)ll < & if ze U,.

Let {#4} be a partition of unity subordinated to {Us}. By C.1 we may
assume that &y are O®. Define g by g(z) = Zﬁi(m) -f(®:). Then ¢ is the
required map.

ProrostrioN (3. Let Z be a compact metric space and let ¥ , W be

two closed subsets of Z. Suppose that Y is a C® manifold. Suppose further
that f: Z—~®(B,F) is a continuous map such that

(a) f is homotopic to a constant map,

(b) there is L ¢ Go(B) such that Kerf(z) CL for all 2 eZ,

(e} f(») is surjective for all ze W,

Then there ewist T e Gi(E), ReG*EB), T, G«(F), Rye GYF) and
a continuous map y: ZxJ —>@L(F) such that

1) LCT, TOR= E, T,®R,= F,

(2) 2(z,0) =T for all reZ,

() Kypys 5 a C° map,

() et P=P(T,R), Q=I—P, P,= P(T,, Ry, @y— 17— o then
(A —1) () -f (@) 4 [y yy(2) F(@)-@+ Py yu(2) f(@)P] s a surjective map
of Eonto F for all ze W and ted,

(3) Qoxi(z)f(2)-Q maps E isomorphically onto By for all ¢ Z.

Proof. Let h: ZXJ~>®(E,F) be a homotopy such that #, =f
and h(z, 1) = 4, for all z ¢ 2. By B.15 we can find R « G*(B) such that
R ~Kerh(s,t) = {0} for every ¢ Z and ted. We may assume that
B L=1{0} and then find T ¢ G,(B) with L C T, T®R— E.

icm°®
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Let R, = A(R) and choose T, G«(F) such that T,®R,= F. Con-
sider the assignment (x,?)>h(x, t)(R). By B.15 this is a continuous map
of ZxJ into GYF) and since h(z,1)(R)= A,(R)=R,, there exists,
by B.16, a confinuous map ﬁ: Z;JaGLc(F) such that H(x,0)=1I
; H,z) (fs)}(R) = R, for all z¢Z.
wnd ][:gef;mi (Zf:)]é’—lG*(F) by A(®) = [(Hyz)(f#)](T). By B.17 it follows
from (b) that 1 is continuous. Moreover, Ro@A(#) = F for all ze w.
Thus a(A{z), By > 0 for all ¢ W. Since W is compact and A is con-
tinuous, it follows from B.3 that we can find an ¢ > 0 such that « (l(w), Ro}
>2-¢ for all xe W and a(Ry, Ty) > 2-e. .

It follows from B.13 and C.2 that we can find a continuous map
1 Z xJ —GL(F) such that

(i) x(2z,0)=1I for all x¢Z,
(ii) % is @ O° map on ¥ xJ,

(iil) d(n(®), Bo) < & for all @ e Z, where 1(w) = [1(®) - (f2)](R),

(iv) d(&(@), A(@)) < & for all ©e W, where £(z) = [4u(®)-(f2)](T). '

Note that the assignment zi—+5(2) defines a map 7: Z—@*(¥) which
is continuous by B.15. Similarly, the assignment #1—¢&(2) defines a map
& WG (F) which is continuous by B.17. .

We are going to prove that y is the required map. It is clear that y
satisfies (1), (2) and (3). To prove (4) and (5) note first that by B.2

a(Ry, To) < d(Ry, n(®))+aly(z), T,) for all weZ.
Thus
a(n(@), To) = a(Ry, To)—d(Ry, () >2e—e>0.

Similarly, for all z ¢ W,

ald(@), Ro) < d(A(z), E(@))+ a(E(@), Ry,
and hence
a(é(@), Ry) > a(i(m), R —d(A(z), £(z)) > &> 0.

Thus it follows from B.4 that for all 2e€Z and ted
[(1—1)-P(y(2), To)+1Qc) > xa(2)f(2)Q
maps R isomorphically onto
[(1—)-P(n(), To)+1Qd(E).
Similarly, for all 2z« W and ted,
[(1—2)-P(&(@), Ro)+ - Po) 1u(@) o f () P
maps T isomorphically onto
[(X—t)y-P(&(@), To)+1-Po)(T) .
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(1 —1) 2 @)f (@) + [ Qo xa(@) f () - @+ Poya(w) o f () o F]
= [(1 ——t)-P(n(m), To)+th]X1(w> o f(w) o Q+

+[(1—1)- P (@), Bo) +tPy) 2a(@) o f(z) o P
This completes the proof. .

Prorosrriox C.4. Let M be an n-dimensional CF submanifold of
& Banach space B. Let KCM be a compact subset. Then there ewist
T e Gy(B) and R < G*(E) such that

(a) T and R are complementary, )

(b) P= P(T, R) restricted to K is a homeomorphism,

(¢) if x,yec K, v +#y, then s+ R and y+ R are disjoint.

Proof. For ¢ K let N; = n(T,M). Then it follows from B.5 that
there is an open neighbourhood U, of # in M such that TyM N, for
all y e Uz. Choose a finite subcovering U, Uy, ..., Us, U= Ug,.

Let Ry= Ny~ Nzy~ .. Ny, and choose Ty e G4(H) such that
T.®E, = BE. Let Py= P(T,, R,). Since TolM ~ R, = {0} for all » <K,
Py is a local embedding on K. Then, for a given » ¢ K, there is only finite
number of points ¥, ¥, ..., ¥ « K such that P,»= Pyy;. Denote by L.
the finite dimensional subspace spanned by T, and Yo—8y Yo—Ty ooy Yp — .
Choose Rz ¢ G*(E) such that B, C B, and Ry @I = B. Let Py = P(L;, Ry).
Since £y C Ry, PyPy= P, and thus P,y = Pz implies y = & for y ¢ K.
Tt is easy to check that there is an open neighbourhood V of @ in K such
that 5 € Vs, 2¢ K and Pz = Puy imply z = y.

Now once again choose a finite covering Ve, Vi, ..., Va,. Define R

q
by B = ﬂl Bz, and take T such that T@R = B. Let P — P(T, R). Then

PyP = P,. Thus (a) and (b) are clearly satisfied. Finally, observe that
Py= Py if and only if 4R = y-+ R. Thus (c) follows from (b) and the
proof is completed.

Prorosrrion C.5. Let M be an n-dimensional 0% submanifold of
a Banach space B. Let KC M be a compact subset of M. Suppose further
tifa,t there is a closed subset K,C K and L « G«(B) such that K,C L. Then,
gwen a number &> 0, there emist T e Go(E) and a C° map H: B XJ ~E
Such that

(a) each H; is o diffeomorphism,

(b) DH(w) ¢ GL(E) for every @ ¢ B and ted,

(¢) 1Hiw)—all < & for every x e B and ted,

(d) Hy=1I,

(e) Hyx) =z for every re Ky and ted,

(& H(E)CT.

icm
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Proof. Choose an open neighbourhood U of K in M such that
K, = the closure of U is a compact subset of M. Applying 0.4 we can
find complementary subspaces T, and B, such that T, is finite dimensional
and P, = P(T,, Ry) restricted to K, is a homeomorphism. For each # ¢ K,
define pz: K,—~E by

Pay) = Poly —z)+a .
Since
poly) = Y+ Poly —2)+2—y = y+ (I —Po) (@ —y) ey+ By,
@z is an, imbedding; moreover, gz(x) = . We may assume without a loss
of generality that L CT,. Hence gu(y) =y for z,y ¢ K,. ‘

It is clear from the definition of ¢, that we can find an open covering
U,, U, ..., Ux of K; such that [lpi(y)—yll < e for every y e Ui, where
@t = @u;, € Uz, Moreover, we may assume that if U; meets K, then
n; € K. Liet {9;} be a subordinated 07 partition of unity. Define p: K,—E
by @) = D O(@) -@u(m). It is clear from the definition that |jp(x) —a| < &
for all ze K, and @(x) = x for e K,. Set T = the subspace spanned
by T, and @, %, ..., 7. Then @(K;)C T, because ¢i(y)= Po(y —u:)+
+ oy e To+a:CT. ‘

Define 1y: Py(Ky) B, by n(Py») = x—g(x). Since Py(U) is a ¥
submanifold of T,, there is a C* map n: T,—R, such that n(z)= 1)
for # € Py(K). Define H by H(z,t) = x—in(P,x). For each ted, H; is
a homeomorphism, because Hiz+R)Cz+R for every zeT; and on
each z-+R H; is clearly a homeomorphism. The remaining conclusions
are evident.

LeMMA C.6. Let M be a C° n-dimensional submanifold of R™. Suppose
that there is a continuous map ¢: M—>L(R™, R™™") such that Kerp(x)
= T,M for every @ « M. Then for a given compact subset K C M there exist
a O map f: R"R™™" such that

(@) f(x) = 0 for every » e K,

(b) Ker[(1—1)-p(x)-+t Df(x)] = TxM for every xe K and ted.

Proof. Since the subset of all surjective linear maps is open in
L(R™, R™™) and ¢(=) is surjective for all # ¢ M, there is an &> 0 such
that # ¢ K and ||p(2) —A| < & imply that 4 is surjective. Choose Byy By e
vy @r e K, an open covering Uy, U, .., Up of K in M and Ny, N, ...
vy N € Go(R™) such that

(1) »e Uy,

(2) llp(@) = gl < e for @€ Uy,
(B) Ny@T,M = R"™ for ze Uy,
(4) [Qum)i| <2 for e Uy, where Qi(z) = P(Ny, ToM),

(5) for each ¢ the map yi Usx Ni—~R™ defined by yi(z,v) = 2+
maps U; x N; homeomorphically onto an open subset of R™.

3
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Let {&#} be a O partition of unity on K subordinated to U,, U,, ..., Uy
(i.e. each ¥ is a O” function defined on M with the support contained
in U; and ) %(#) = 1 for @ e K). Define 4: R"—+R by

. Hie) oy =ylx,v),
w = { 0 if yeéys(UsxX Ny).

Then 2, A, ..., & are €7 functions and Y A(z) = 1 for € K.

Define fi: y( Ui x Ni)>R™™ by felydz, v)) = @(x4)(v). Then Dfy(w)
= p()Qu(x) and fiz)=0 for we U;. Define f by f(w)= D Alx)fu(z)
Since fi(z) = 0 for @ € K.

 Df(@)= D u(@)Dfz) for aweckK.
It is clear from the definition of f that T,M C Ker[(1—t)¢(x)+ ¢t Df(x)].

Thus it suffices to prove that (1—t)g(x)-4-1-Df(z) is surjective for all
xeK and ted.

Note, that q:(m) = @(2)Qyx) for z ¢ U;. Thus
be (@) —Dfs(a)l| < llp(2) —p(@0)]- 1Q:(2)]
From this it follows at once that llp(z) —Df (®)|] < & for # ¢ K. Thus
(1—=t)p(x)+1-Df (2) = (2)+ [ Df (2) —¢(2)]
is surjective. This completes the proof.

D. Proper Fredholm maps. Recall that a continuous map
J: XY of metric spaces is proper if for every compact subset K C ¥,
FUK) is a compact subset of X.

Lemma DL If f: XY is proper, then for every ye Y and every
&> 0 there is 1> 0 such-that

olf@),y)<n implies d(w,f'w) <e.

Proof. Suppose that this is not true. Then there exist ¢ >0, yeX
and a sequence {z,} in X such that o(f(au),y) < n ™" and 6(ma, f~ ( N=e
for all ». Since f is proper and f(2,) -y, then by passing to a subsequence
if necessary We can suppose that z,—. Then f(2) = limf(@,) = y. Thus
@ ef (y) which contradicts our assumption. Thus the lemma is proved.

As an immediate consequence we have the following

CororLLARY D.2. Let f: X—~Y be a proper map. Let y ¢ ¥. Then,
given a number &> 0, there is 6 > 0 such that if g XY dis another map
with ¢(f(z), g(x)) < 6 for all w ¢ X, then g(x) =y implies 8(e, fy) <e.

Prorosrrion D.3. If f: XY is proper, then f is closed, i.e. maps
closed subsets of X onto closed. subsets of Y.
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Proof. The proof consists of a standard argument and is omitted.

DEFINITION D.4. Let F and I be two Banach spaces. We say that
a map f: BT is o-proper if fiopus, is proper for every r > 0.

Lemma D.5. Let f: E—~F be a o-proper map and let g: BE—-GL(F)
be a continuous map- such that for every r > 0 ¢(CDy(E)) is a compact subset
of GL(F). Then g: E—F defined by g(x) = (px)(fx) is o-proper.

Proof. Let {w,} be an arbitrary sequence in CD.(E) and suppose
that ¥» = g (@) —y in F. Thus f(z,) = (¢@n) "(yn). By passing to a sub-
sequence if necessary we can assume that @ (@n) >4, € GL(F). Hence
f(zn)—>As (y). Since f is proper on COD{E), {w:} is a relatively compact
gubset of CD/(F). This proves our lemma,

LemmA D.6. If f: E—~F is o-proper and g: BE—~F is a continuous
map such that g(OD,-(E)) 18 relatively compact for every v > 0, then f+g is
o-proper.

Proof. Suppose that {z.} is a sequence in CD.(F) such that
yn = f(@n)-+ ¢{®s) converges in F. We may assume without loss of generality
that g(@s)—>zeF. Let 4y = limy,. Then f(zn)->y—=z. Since f iy proper
on ODA(E), {xn} is relatively compaet. This proves our lemma.

ProposITION D.7. If f: E—~F and ¢: E—~L(F) are C* maps, then the
map g: BE—F defined by ¢(x) = (px)(fz) is a O° map and *

[Dyg(@)}(k) = [gz o Df(@))(h)+ [ Do (@, W) (fz) -

Proof. The proof consists of a standard argument and is omitted.
We remark that De: B—L (B, I{F)) and Dg(z, h) = [Dp(z)](h) denotes
an element of L(F). Dg(x, h) is linear with respect to h.

DeFINITION D.8. (Smale [10]). A map f: B—F is called a Fredholm
map if it is C* and Df(z) e @(E,F) for every z e E.

If f: E-F is a erdholm map the index of f is defined to be the
index of Df(x) for some 2 ¢ E. Since E is connected, this definition does
not depend on x. A point x ¢ B is called a regular point of f if Df(z) is
surjective and singular (or critical) if not regular. The images of the sing-
ular points under f are called singular (or critical) values. An element
yeF iy called regular value of f if it is not singular value.

We uge ‘“almost all” instead of “except for a set of first category?”.

TEEOREM D.9. Let f: BE—~F be a C° o-proper Fredholm map with
p > max {index f, 0}. Then the regular values are almost all in F.

Proof. It is proved in [10] that for each point x ¢ B there exists
an open neighbourhood U of # in E such that the regular values of fiy
are almost all in F (see the proof of 1.3 in [10] and note that the proof
of this local lemma does not use separability of E). Let y be an arbitrary
element of F and take r > 0. Let K = f'y) ~ ODH{(E). Since K is compact,
there is ¢ > 0 such that the regular values of fimx,.) are almost all in ¥

24*
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By D.1 there is an open neighbourhood T~ of ¥ such that
f(CDAB)) ~ V CF(BIK, 8)) -

Thus the regular values of fiop.m are almost all in V. This shows that
the set of eritical values of fiopym 18 locally of first category in F'. Hence
it is globally of first category in F. Since the first category is closed under
countable union, the set of critical values of f is of first category in F.
Thus the theorem is proved.

Tt is a standard fact that if ¥ is a regular value of f, then Yy is
a (P submanifold of ¥ (see [6], Ch. II, § 2). Thus we receive

CoroLLARY D.10. Let f: E—~F be as in D.9. Then for almost all
yeF, f7y) is a € submanifold of E whose dimension is equal 1o the inder
of f or is empty.

TumoreM D.11. Let f: E—F be a (" o-proper Fredholm map with
p > max {1 +indexf, 0}. Let »>0 be a given number. Suppose that y,
and vy, are regular values of f. Then for a given & > 0 there exists o C° map
n: J —F such that 0 is o regular value of the map hopmyxr, where h{x, t)
= f(@) —n(t), and dn(J), oy 1)) < e

Proof. We may assume without loss of generality that 4, == 0.
Since the set of singular points of fiopm I8 & closed subset of CDA(E)
and fiopum is a closed map, the set of critical values of fiop,m is o closed
subseb -of F. Thus the set of regular values of fien,m I8 an open subset
of F. Hence we can find 6 > 0 with £ > ¢ such that all points of B(0, &)
and B(y,, 8) are regular points of fiep,um. Let L = the one dimensional
subspace spanned by 1. Let Fo= F[/L and denote by A: I'—F, the
projection map. Define g: E—~F, by g = Af. Then ¢ is a O” o-proper
Fredholm map of index n-+1. It follows from D.9 that there exists a regular
value zeF, of g such that [¢fl < 6. Find 2, ¢ F' such that dz =2 and.
lloli << 6. Then 2z, = 042, and 2 = y;+#, are regular values of f. Now
let : J —F be a €7 map such that

(a) @) < 6 for 0 <t <13,

(b) () —ult < 8 for 2B <1<,

(e) 7(8t—1) = (1 —t)2+ 12, for 1/3 <t =2 2/3.

Then # is the required map.

E. Framed submanifolds. Through the rest of paper we will

assume that there is given a subset I'C ®(E, I') satistying the following
conditions

(1) indd4 = n > 0 is constant on I
(I if AeI’ and Be K(E, F), then A+B el
(1) 1" is contractidle.

iom®

-1
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e will assume that 4, is a fixed element of I such that Ay(E) = F.
Such an element exists because of (I3). Let [y = {4 <I; A(B)= T},
T, is an open subset of I

By E, we will denote the Banach space E@R with the norm defined
by [z, Ol = max {|lzf, #|}. Define I;: B—E, by Iyx)= (2, 0) and
P BB by Py(z, 1) = @ In what follows we identify points under I,;
so we regard B as a one-codimensional subspace of B;. Let

Iy = {d ¢ DB, F); AL <I%;

the assignment 4 -»>AP; defines an embedding. We regard I'" as a subset
of I, Tt is clear that I"is a strong deformation retract of I7. Thus I3
is also contractible.

For R ¢ G*(H), R, e« G*(F) denote by I'(R, R,) the subset of O(R, Ry)
defined by

I'(R, Ry) = {A « D(R, R,); there is Bel" such that B = A}

Let  be a projection of B onto R; the assignment A 40 defines an
embedding I'(R, Ry) C I Thus I'(R, Ry) is also contractible. Pinally, let

TR, Ry) = {4 e I'(R, Ry); A(R)= R} .

Let U be an open subset of E. Denote by MP(U) the set consisting
of all #-dimensional €’ submanifolds (without boundaries) of U. By
MP(U »J) we denote the set of all “(n41)-dimensional submanifolds
of U «J whose boundaries lie in U x{0} v U x{1}. An n-dimensional
CP I'-framed submanifold of U is a pair (M, @) consisting of M ¢ M™(U)
together with a continuous map : M —T, such that Kerg(z)= .M
for all # ¢ M. We denote the collection of all such pairs by FPMY(U; I
or shortly FMP(U). Similarly, we denote by FMP(U xJ) the collection
of paivs (W, 5) such that We MP(U xJ) and 5: W-—TIy is a continuous
map such that Kern(®,t) = TwaW. )

Demxmriox B.1. Two I-framed submanifolds (Mo, o), (My, @1)
¢« FMP(U) are called I'-cobordant if there exists (W, 7) e FMP(U xJ) such
that

(a) there 48 @ number ¢>> 0 such that
W (UX[O, 8)) = M, x[0,8)
WA ({Ux(1—e,1]) = M, x (1—e,1]
pol@) = n(z,0)0 I, for welMy,
(@)= n(z,1) oI, for melM;.
(W, %) is called a I'-cobordism from (Mo, go) to (M, ¢)-
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ProPOSITION E.2. The relatiow of I-cobordism is an equivalence
relation.

Proof. Symmetry and reflexivity are clear. Transitivity folows at
once from condition (a) of E.1.

ProrosirioN B.3. Let (M, ¢y, (M, @) e FMP(U). Suppose that there is
a continuous map y: M xJ I, such that

(@) %0 =0 11=11,

(b) Kery(z,t) = TeM for every v ¢ M and t<J.

Then (M, @) and (M, @,) are I'-cobordant.

Proof. Let W= M xJ. Define n: W—Iy by n(z,t)= y(x,1)P,.
Then (W, n) is the required I'-cobordism.

DEmNITION E.4. Let T e Gu(B), R« @*(E), ROT = E. We say that
a framed submanifold (M, ¢) e FMP(U) is (T, R)-admissible if

(a) Kerd,CT,

(b) MCT,

() p(x)(T) = AT) for every x e M,

(d) p(z)r = Aor for every = e M.

Similarly, (W, n) e PMP(U xJ) is called (T, R)-admissible if

(a’) Kerd,CT,

(b)) WCTxJ,

(¢') n(z, )(TDR) = Ay(T) for every (z,1) e W,

(A n(z, t)g = Aor for every (z,t) e W.
We say that (M, p) e FM®(U) (resp., (W, n) e FMP(U xJ)) is admissible
if there exist T ¢ G4(H) and R e G*(E) such that (M,e) (resp., (W, 7))
is (T, R)-admissible. : e

Prorosirion B.5. Let (M, ¢) e FM™(U). Suppose there is L € Go(B)
such that M ~ ODi(E) is a compact subset of L. Let M, =M ~ Dy(B).
Then there exist T' ¢ G(B), B ¢ G*(B) and a continwous map z: MyxJ—T,
such that
() %0 = @21y,
(b) Kery(x,t) = ToM for every xe M, and ted,
(e) (My, x,) is (T, R)-admissible.
. JNote, that the condition (b) implies (M,, xi) e FMP(U) for every

€d.

Proof. Let K = M ~ ODy(E). Since I' is contractible, there existy
#: K xJ I such that = px and »(x,1) = 4, for all ¢ K. Since K
is compact, it follows from B.15 that we can find R € @*(E) such that
Kerx(z,1) ~ R = {0} for every z< K and teJ. We may assume that
L~ R= {0}. Choose T ¢ @,(E) such that LC T and T@®R = E. Define
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h: ExJ—~G(F) by h(z,t)=n{x(z,t)(R)). This map is continuous
by B.6; moreover, I(z)= n(AQ(R)). Thus by B.16 there exists a con-
tinuous map H: K XJ —GL{F) such that H(x,0)=I and H (,t)(hx)
= hy(z) for every ¢ K and ted.

Let Q(z) = IT(x(z, t)(R)), @(x) is a projection of F onto =(z, t)(R);
Q(x) is continuous by B.15 and B.6. Let P(z)=I—@(z); P(z) is the
projection on m(%(x,1)(R)} along x(x, t)(R). Define y(x,1) by

y(@, 1) = (L—1t) ¢(x)+1-[Q(®) cp(x) o @+ P(2)p(x) - Q] .
Tt follows from B.1 that y(=,t) is surjeetive for all z ¢ K and t J. Thus
y: K xJ—=Iy.
For (x,1) e K XJ define i(x, 1) by
Ma,t) = x(z,8) e @-+H(m, 1) o (@) o P.

It is clear from the definition that A(z,?) e I. Moreover, since A(xz, 1)
maps R onto x(z,?)(R) and T onto =(x(w,t)(R)), M=,?) iz surjective
for all (z,1) ¢ K xJ. Note that A(z) = 4, o @+ Hy(x) o y3(z) o P and thus
A(@) maps R isomorphically onto R,= A(R) and T onto =(R,). Let
P,= P(Ty, Ry), Q= I—P,. Define &: K xJ I by

E(@, )= A o Q+[(1—1)- I+1Pe]H\(7) o y(2) o P
hen &, = 4, and & is (T, R)-regular. Finally, define the required y by

y(z, 31) for 0<<t<13,
w2, t) =1 A, 3t—1) for 13<t<2[3,
E(w,3t—2) for 23<i<1.

ProrositioNn B.6. Let (M, ), (N,y) e FMP(U) be (T, R)-admissible
ramed submanifolds. Let (W,n) e FM®(UxJ) be a I'-cobordism from
(M,p) to (N,v). Suppose further that there is LeGy(B) such that
W ~ (CDo(E) x J) is a compact subset of L xJ. Then there exist Ty e Gy(E),
TCT,, R, «G*¥), R.CR and a (1., R,)-admissible I'-cobordism (W, &)
from (Mo, piae) to (No, i), where Wo= W (Do(B) xJ), My = M ~ Dy(E)
and Ny = N ~ Ds(H).

Proof. The proof is analogous to the proof of E.5.

Denote by CFM?(U) the subset of FM”(U) consisting of all framed
submanifolds (M, @) such that M is compact. Similarly, CFM®(U x J)
denotes the subset of FMP(U xJ) consisting of all (W, n) such that W
is compact. Say that (My,qa), (My, ) e CFM?(U) are o-cobordant if
there is a I'-cobordism from (M, @) to (M,,q) which belongs to
OFMP(U x J). It is clear that w-cobordism defines an equivalence relation
in OFMP(U). We denote by o®(U; I), or v”(U), the set of all w-cobordism
clagses.
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Prorosiriox E.7. Let (M, ) e ORMP(U). Then there ewists an ad-
missible framed submanifold (N ,v) e OF M (U) such that (M, @) and (N, y)
are -cobordant.

Proof. Since M is compact, there is ¢ > 0 such that B(M,¢) C U.
Applying C.5 with K= M, we can find a ¢ map H: B xJ+E and
T e« G4 (E) satistying conditions (a)-(f) of C.5. Set

W= {(2,t) e By; 2= Huy),y < M}.

Let My= HyM), M, is a " submanifold. Note that W = {(z,1) e H,;
x ¢ Mg} From this it follows at once that W is a 0* submanifold. From
the definition of H it follows that TinW = T.M+ L(», t), where L(x, t)
is the one-dimensional subspace of B, spanned by (Hiz)—e,t). For
(z,%) e W let Q(x,1) = P(E, L(x, t)). Define n: W17 by

(2, 1) = @(H; ') o [DH{x)]7'Q (s, 1) .

Set N = W~ (Ux{1}) and define p: NI by y(x) = 4(x, 1)I,. Then
N CT. Now the proposition follows from B.5.

Prorostriox E.8. Let (M, @), (N, ) c CEMP(U) and let (W,n) be
an -cobordism from (M,q) to (N,y). Suppose that there is L e Gy(B)
such that M, N C L. Then there exist T ¢ G4 () and an - cobordism (W, &)
from (M, @) to (N,v) such that W, C T xJ.

Proof. Since W is a compact subset of U xJ, there is an &> 0
such that B(W,e)C UxJ. Applying C.5 with K = W and K, = M x
{0} v N x {1} we can find a diffeomorphism H: E,—E, such that
1H (@, 1) —(2, O)| < & for all (z,?) e By, H(z, )= (%, t) for (z, 1) e K, and
H(W)CTxJ. Set Wy=H(W) and define £ W,—I} by &z, 1)
= 7(H®,1)) o [DH (x,1)]. Then (W,, &) is the required cobordism.

From the above proposition and from E.6 we obtain

CoroLLARY E.9. If (M,q), (N,v) e CFMP(U) are admissible w- co-
bordant framed submanifolds then there ewists am admissible - cobordism
Jrom (M, @) to (¥, ).

For a, p e wP(U) we can assume, in view of B.7 that there is 7' « Gy (B)
and (M,p)ca, (N,p)ep with M, NCT. Since N is a compact subset
of U there is z; ¢ T such that [0, 2,]+N C U. Let Ny = ®,+ N and define
¥o: No>Ly bY po(@+2) = p(w). Then (N, )« CFM(T), (¥,v) and
(Mo, p0) are w-cobordant and N, ~ M = &. Define a-Ff = the w-co-
bordism class of (M u Ny, &) where & M U Ny—T, is defined by

ple) H sel,
w(®) if zedN,.
In view of E.8 a4 p iy independent of the choice of (M, ) and (N, ).

) =1

Fredholm a-proper maps of Banach spaces 361

TurorEM 1E.10. o?(U) is an wbelian group with respect to the above
defined addition. :

Proof. Itisevident that this addition is commutative and associative.
The zero class consists of those I'-framed submanifolds which w-bord,
i.e. are w-cobordant to the empty submanifold. It remains to prove that
given an element a e w?(U) there is f e w?(U) such that a+p= 0.

Choose (M, @) such that M C T for some 7' e Gi(H). Choose xye T
guch that @-txye U for all e M, ted. Let N = M-+uxz,. Denote by L
the one-dimensional subspace of B spanned by z,. Choose R ¢ G*(H) such
that TC R and LA R = K. Let P = P(L, R), @ = I—P. Define y: NI}
by w(r) = @*)-Q—g¢a) e P. It is evident that (N,y)e CFM(U). Set
f = the w-cobordism class of (N, ).

Consider the subspace L, == L@ R of B,. We can find an one-dimensio-
nal submanifold W, of L, and a continuouns map ¢y Wy—L(L,, L) such
that

(a) 6Wo= Wy~ L =1{0,0} v {x, 0},

(b) there exists & number &> 0 snch that

Wy (L = [0, 5)) = {0} x[0,¢e) v {‘770} x[0,¢),
(¢) if (2, t) e Wy, then 0Kt <1, 0 < flxff < fizoll,
(d) Xerqy(,t) = TuyW, for all (z,t) e Wy,
(e) p(0, 0)(v,t) = v for (v,1) ey,
Py, 0) (v, 1) = —1 for (v, 1) e L.
Define WCUxdJ by W= M xW,={o+yeT+L; wxeM,ye W} and
define »: W—I7 by
(@, 1) (0, 1) = @le)- (@) +[p(e) - gl P, )] (Po, 1)
for ve B, t e R. Then (W, 1) is an w-cobordism from (M v N, &) to the
empty submanifold. Thus a- 4 = 0. This completes the proof.

F. The set B,[X;I']. In this section X will denote a Dbounded
and closed subset of B, We set U=E—X, Ur=Un DBE)={zcU;
llz|| < #}. We will assume also that p > max(1-+n, 0).

We denote by Ap(E, F; I} or shortly A,(E, F) the set consisting of
all (7: o-proper maps f: E—F such that Df(z) eI’ for all ze¢E. By
ApfExJ,F; ') or Ap(E xJ,F) we denote the set consisting of all C”
o-proper maps h: B xJ+F such that Dh(z,t) eI, for all (z,t) e Fx
XdJ C HBy.

Denote by Bp(X; I') or, shortly, Bp(X) the subset of 4p(E,F) con-
sigting of all maps f: E—F such that

(a) 0¢5(X),

(b) there is h e Ap(E xJ, F) such that h, = f and b = 4,.
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Two maps f,geBp(X) are called Bp-homolopic if there is
heAp(E xJ, F) such that k= f, hy= g and h e Bp(X) for all teJ. We
call b a B,-homotopy connecting f and g. We denote by Byp(X xJ) the subset
of Ap(E xJ,F) consisting of all Bp-homotopies.

PropostTioN F.1. Let &, k € Ap(E X J, F) and suppose hy = ky. Then
there emists le Ap(B xJ,F) such that ly=hy, and 1= k.. Moreover, if
by ke By(X xJ), then 1e By(X X J).

Proof. The required ! is defined by

h{z, u(21) for 0<t<1/2,

Lz, t) =
@ bz, u(2t—1) for 12<i<1.

The relation of Bp-homotopy is clearly symmetric and reflexive. By
the above proposition it is also transitive, hence

CoROLLARY F.2. The relation of By -homotopy is an equivalence relation.

For f ¢ By(X) we denote by [f] the equivalence class of f. We denote
by Bp[X] the collection of all B,-homotopy classes.

Let feBy(X). By D.3 f(X) is a closed subset of F—{0}. Let

f)=8(0,f(X)). Then &(f)> 0. Similarly, if h € By(X xJ), then 6(h)
=60, h(X xJ)) > 0.

ProrosiTioN F.3. If fe Bp(X), then there is g e Bp(X) such that f
and g are By-homotopic and 0 is o regular value of g¢.

Proof. Find a-regular value y of f with |ly|| < é(f). Define k by
k(z,t) = f(z)—t-y. Let g =hy,. Then h is a Bp-homotopy and ¢ is the
required map.

ProposITION F.4. Let fe Bp(X). Then, given an arbitrary number
r> 0, there exist T e Go(E) and g € Bp(X) such that 0 is o regular value
of g, ¢7Y0)C D{EB) ~ T and g is Byp-homotopic to f.

Proof. By F.3 we may assume that 0 is a regular value of f. Choose
e> 0 such that B(f™'(0), &) C U. Applying 0.5 with K = the closure of

Vf"l(O) A Upse we find T e Gu(B) and a (° map H: ExJ—E satisfying
conditions (a)-(f) of C.5. Define h: BxJ—F by hiz,t)=f(Hi (v)).
It follows from C.5 that % is a Bp-homotopy and hy = f. Set ¢ = k;; ¢ is
the required map.

ProposITION F.5. Let he Ap(B xJ,F) and suppose hy, by € Bp(X).
Then, given two numbers r > 0 omd e> 0,there is T e G(B) and k € Ap(H X
XdJ, F) such-that

(a) 0 is a regular value of k,

(b) ~(0) ~ (Dy(B)xJ)C T xd,

(¢) 8(k7(0) ~ (CDHB) xJ), h™}(0) ~ (ODH(E) xJ)) <,

(d) %t e Bp(X) and k; s Bp-homotopw to hy for i=0, 1.
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Proof. The proof is analogous to the proof of the preceding prop-
osition.

LeyMa F.6. Let XCDJE). Let heAy(ExJ;F) be such that
Tigy Py € Bo(X). Suppose that there is (W,n) e FM"(UxdJ), where s> r,
such that
(a) WCh“(O),

(b) W ~ (CDos(E) xJ) is a compact subset of B,
(C) DhIW == 1,
(@ (h*(0 )r\p“ )) X {0} = W A (Usy x {0}),

(h(0) ~ Dag(B)) % {1} = W ~ (Uze x {1}).
Then hy and hl are Bp- homotopic.

Proof. Let Z,= W n (CDuyy(B) xJ), Z, = h™}(0) ~ ((DsyB) x J)—Z,.
Since W consits of regular points of h, Z, and Z, are disjoint.
‘Moreover, Z,C UxJ and Z,CEx(0,1). Since Z, and Z, are compact,
we can choose &> 0 so small that

(1) e< s—1,

(2) B(Zor 8) n B(ZH e) = @1

(3) B(Z,, &) C U xd,

(4) B(/u &) CHx(0,1).

Applying F.5 with r replaced by 2s we can find k and T satisfying
conditions (a)-(d) of F.5. From conditions (¢) and (1), (2) it follows that
o) A (ODoso(B) xJ) = ¥, v ¥, where ¥, and ¥, are compact and
disjoint subsets with 5(Y¥,, Zy) < ¢, (¥, Z;) < e. Thus by (3) and (4)
Y,CUxJ and Y., CEx(0,1). Find x,¢E such that || <r+ and
leo+y|l = r for all ¥ € T. Choose R ¢ G*(F) such that @oe¢ B and TOE = K.
Let P= P(T, R). Let i: TxJ-»J be a C* function such that

for (@,1) e X,,
for ||| = 2s,
for t=0,1,
for (x,t)eX;.

Ma, t) =

O O C

Define le Ap(E xJ,F) by l(w, ) = klg—i(Px, 1) a, 1).

Since A(w,0)= A(z,1) =0, L=k and I, =k To complete the
proof we. will ghow that ! e By(X xJ). To prove this assume that |jz]| <+
and U, 1) = k(x—2(Px, )@, 1) = 0. Thus (y,%) = (@—A(Pz, )z, 1)
eY,u ¥, It (y,1) e Y, then, since Px= Py, A(Pw,t)=0 and #=y.
Hence (2,%) ¢ Y,C UxJ. If (y,1) ¢ ¥, then y = o—m,. Thus v =y+ %
and hence || > r. Since X C Dy(B), (#,?) e U xJ. This completes the

‘proof.
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DrriNimiony F.7. Let I ¢ MP(Us). We say that o map fe d,(H, )
is M -regular if

(a) MCf7(0),

(b) all points of M are regular points of f.

Let f, g e Ap(B, F) be two M-regular maps. We say that f and ¢
are M-equivalent if there is h e Ap(E xJ, F) sueh that = f, hy =g
and & is M xJ-regular.

Note that the relation of M -equivalence is an equivalence relation
in the set of M-regular maps. In fact, let i, k € Ap(B xJ, F) and suppose
that &, % are M xJ-regular and h; = k. Let I be the same as defined
in the 1)100f of F-1. Then I is M xdJ -regular and Il == hy, {, = k,. Thig
shows that M-equivalence is transitive. Clearly it is symmetric and
reflexive. ‘

Lemma F.8. Let f, geByp(X). Suppose that there is s=1 and
Me MP(Us) such that :

(@) F7H0) A Tag = g7(0) A Uss = M,

(D) f and g are M-regular and M -equivalent.

Then f and g are Bp-homotopic.

. Proof. If follows from (a) that M ~ CDy(H) is compact for g < 2s.
Since f and g are M-equivalent, there exists h e Ap(F xJ, F) such that
hy = f, h~1 = g and Dh(x, ) is surjective for all (%, t) e M x J. Let W == M xJ
and define #: W-I by n(»,t) = Dh(z,t). Then f and ¢ are Bp-homo-
topic by F.6. .

‘ Levma F.9. Let he Ap(B XJ, F), f=hy, g=h,. Suppose that there
exist T ¢ G (B), R e« G*(B), Ty e Gu(F), By e @*(F), M « M°(Us) and (W, n)
e FMP(Us % J) such that

(a) T®OE=E, T,®R, = F,

(b)y W= MxJChr0),

(¢) MCT,

(d) nlz,1): R~ R,

7@, Y(T) =Ty, { for all (z,1)e W,
Dh(x,t): R~ R,,
(e) f and ¢ are M-regular,
1) if g <s, then M ~ ODy(E) is compact.
l’hen for a given q < s there exists N ¢ M”(U, such
that
N-reqular and N -egquivalent. g L ¥hat [ ond g are

Proof. Set K = (M xJ) ~ (CDo(E) :

o B) xd), N = Dy(B) ~ M. By (f), K is
a compact subset of M xJ. Define &: W—L(T®R, T by E(fc(t;’(v 7)
=n(®,1)(v,7) for (@,8)e W, (v,7) e TORC B,. By C.6 there exists
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a OF map A: T xdJ T, such that (1—7)i(z, t)4-7 - DA(m, t) is surjective
tor all (z,1) e K. Let P= P(T,R), Q= I—P. Detine k: ExJ~F by
f(@)+ u(3) [ (P2, 0) —f(Px)] for 0<i<1f3
Bz, 1) = Rz, 3t—1)o0 Q+ A(Pex, 3t—1) for 13<<t<2(3,
g(@)+ u(3 —3)[M{Pr,1)—g(Pe)] for 2B<t<1.,
Then k ¢ Ap(BxJ, F), ky=f and &, = g. Moreover, Dk(z, 1) is surjective
for all (2, 1) e NxJ. Thus f and g are N-equivalent.
TupoREM F.10. Let X C Dy(E). Let f, g « Bp(X) and suppose that 0 is
a regular value of f and g. Suppose further that there exist L € G4(E), a number
s> and (W, n) e FMP(U xJ) such that
(@) £7H0) A Usg == g7H0) ~ Usgs = M C L,
(L) W= M xJ,
(e) (W, ) 48 a I'-cobordism from (M, Dfjar) to (M, Dgyar)-
Then f and g are By-homotopic.
Proof. From the definition of By(X) it follows that there is
h eAp(E xJ, F) such that hy=f, by =g. Set Wo=Wn (CDsir( B) % J),
(L A CDgpyf ) )) xJ. Then W, and ¥ are compact. Take the disjoint
union of ¥ and W, and identify the points of the form (2, 0) and (@, 1)
of W, with the corresponding points of X. Denote the obtained space
by Z. Define l: Z—Iy, by
Dh(z,t) for (#,f)eX,
Uz, ) = { ‘
(%, t for (x,t) e W,.
Sinee DA (ir, 0) = 5 (2, 0) and Dh(x, 1) = (¢, 1) for z € M, 1is a continuous
function.
Applying C.3 we find TeG(B) with LCT, Re G*E), R, e (),
Ty e G(F) and y: Z xJ—~GL(F) which satisfy the conditions (a)-(e)
of C.3. Set. g=2r-+1/3(s—7). Let #: L—J be a C* function such that
H@) = 1 if o] < ¢ and (@) = 0 it o] = 2r +2/3(s—7). Define y: L xJ
-—=GL(1") by
pla,td@) i el <s+r,
I it )l = s
Let P’ be a projection of B onto L. Set k(z,t)=[y(F's, ] (e, 1))
ke Ap(E xJ, F). It is clear from the definition of % that ks is B,, -homotopic
for i=10,1.
Set N = M ~ Dg(B), W, =N xJ and define ¢: W,-Iy by &z,1)
=y (@, 1)-1(z,t) (we regard W, as a subset of Z). Set

1w, 1) = (1—1)Teo(@)+ 1 [(Qo° ko ° @) (2) + (Po o ko o ) ()]
hm(oc,t Qolk (@, 1) t)+P0( (Pz, 1),
B = thy(#)+ (L —1)[(Qq © By o @) (@) + (Po o kyo P-)(0)]

7’("”71)=

) =
)

&,
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Define 7 Wy—I by
7@, 1) = Qoo £, 1) 0 Q-+ Poo£(@, 1) P

Then k=AY, 10 =nd, B =h, B =Fk. Moreover, it follows
from C.3 that &, B, R are N x J -regular. Thus %, is ¥ -equivalent to 3y
and 1Y is N-equivalent to k. Moreover, K and (Wi, 7™) satisty the
assumptions of F.9. Thus h§’ and A{" are N-equivalent. Therefore ko
and k, are N-equivalent. Hence, by F.8, & and %, are Bp-homotopic.
Thus f and ¢ are Bp-homotopic. This completes the proof.

G. Admissible maps. In this section we keep the notation of the
preceding section. We assume X C D.(E).

DEFINITION G.1. Let TeGu(E), ReG*E) and TOR=E. Let
P—=P(T,R), Q=I—P. We say that a map feBy(X) is (T, E)-ad-
missible if

(a) Kerd,CT,

() F(T) T 4(T),

(e) f=AooQ+foP.

Similarly, a homotopy h e Bp(X xJ) is called (T, R) - admissible if

(a’) Ker4,C T,

(') B(T xJ) C 4o(T),

(¢') hiz, 1) = (440 Q)(z)+ (P2, 1) for all (@,1) e B xJ.

We call feBp(X) (resp., h e By(X xJ)) admissible if f (vesp., ) is
(T, R)-admissible -for some T and K. .

Note that if fe Bp(X) (resp., h € Bp(X xJ)) is (7, R)-admigsible and
T,®R,= E, TCT, and R, CR, then f (resp., h) is (T, R,)-admissible.

Denote by "RpfX) (resp., Rp(X xJ)) the subset of Bp(X) (resp.,
B (X xJ)) consisting of all admissible Bp-maps (resp., Bp-homotopies).

LEMMA G.2. Let h e Bo(X xJ) and suppose hy, hy e Rp(X). Let s> 0.
Then there ewists k e Bp(X xJ) such that

(a) 0 is a regular value of k,

(D) ko By fRzl(X);

(e) 0 is a regular value of kiy 1= 0,1,

(d) for i=0,1 let Mi= k7' (0) ~ DE), @i = Dhya, then (Mq,pi)
18 admissible,

(e) let W="L"'0)n (Do B) xJ), 1= Dky; then (W,n) is a I-co-
bordism from (My, @) to (My, ¢,).

Proof. Define I(z, 1) by I(z, t) = k(z, u(1)}. Then lis a B,-homotopy
and L= I, for 0 <t <13, L =h, for 2/3<t< 1. Find a regular value
of 1 with [yl < é(l). Define k by k(z,t)= l(z,1)—y. Assume that R,
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and b, are (T, R)-admissible. Let T, = the subspace of ¥ spanned by
AT) and y. Set Ty = AY(T) and choose R, e G*(E) such that R,C R
and T,®R, = E. Then ky, %k are (T, B,)-admissible. Clearly & is the
required homotopy.

From E.6 and G.2 we have

CorROLLARY G.3. Let fo, fi e Rp(X) and let h be a B,-homotopy con-
neoting f, and fi. Let s > 0. Then there exist gq, g € By(X) and (W, 5)
e PMP(U xJ) such that

(a) gi s Rp-homotopic to fi, i=0,1,

(b) 0 s a regular value of g:,

(¢) Tet Mi= gi*(0) ~ Do(B), ps= Dgijsr,, then (Mq,p:) is admissible,

(@) (W, n) i8 an admissible cobordism from (My, @) to (My, @),

() W~ (ODy(B) xJ) is compact for q < s.

Note that the R,-homotopy defines an equivalence relation in Ey(X). ~
Symmetry and reflexivity are clear. To prove transitivity assume that we
are given h, %k e By(X xJ) such that h is (T, R,)-admissible and & is
(Ty, B,)-admissible. Let T, = T,4-T,. Since B,, B, ave finite-codimension-
al, R, » R, e @(E). Thus there is R e G*(H) such that RCR, n R, and
B~ T,= {0}. Hence there is T ¢ G4(H) such that 7, C T and T®E = EB.
Thus % and & are both (7, R)-admissible. This implies that our relation
ig transitive.

Denote by R,[X] the set of all R,-homotopy classes of admissible
maps. Then there is a natural map

%2 Rp[X]—By[X]

induced by the inclusion Ry(X)C Bp(X).
. THEOREM .G.4. The map x: R[X]—>B[X] is bijective.
Before px‘bving the theorem we prove the following two lemmas.
Lemya G.5. Let s> r. Let (M, q) e FMP(U) be a (T, R)-admissible

framed submamifold such that M ~ CDy(E) is compact. Then there exist
feRyX) and (W,n) e FMP(U XJ) such that

(a) 0 is o reqular value of f,

(b) let My = M ~ Dy(B); then f7(0) ~ Do(B) = My, .

() (W, n)is aI'-cobordism from (My, gaz,) to (Mo, Dfia), W = My xJ,

(@) if r < g <s, then W ~ (ODy(E) xJ) is. compact.

Proof. Let T,= A4T) and define & M—L(T,T,) by &(=)(v)
= g(a)(v) for @ ¢ M, v e T. Applying C.6 with K = M ~ CDs(E) we find
a O map g,: T—T, such that

(1) K ~ g,(0) and Ker[(1—1)-&(w)+1-Dgy()] = ToM for every @ ¢ K
and ted.


GUEST


icm°®

o 1y _ ace S . .

Choose fff): X '7‘19(1)“'11(1 let ™= t(l;x)e ‘}u(]f)“l)g(ie 5p<mm_16d }’J\ T a B,-homotopy connecting f and g. Choose a regular value y of k such
ard @,. Let T4 = A((T"). Define g: T"~To' by 6:(®@) = go(Pw) + that |lyll < 6(k). Note that from the definition of % it follows at once
+4(Qa), where P=P(T,R), Q=I—P. mEVldently, (@) = go() for that  is a regular value of f and g. Set
zeT and gi'(0)= go*(0) C T. Choose @, ¢ T such that |z, +y| = s for
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all y e T and -2+ = s for all y e T such thegt ¥l > s and all teR. W= k‘l(o)'n (D,(E) XJ) , 1= Dk, M=f"0)nA DJE), o= Dfx,
Since all points of K are regular points of g,, then g1 (0) "nODy(T)=K v ¥, i
where K and ¥ are closed disjoint. Tet 4: T% J be a €% fumlz)tion(such N=g (0)nD(E), yp=Dgx.

> B . 8 1)
that A(z) =0 for ¢ K and }“(m()l)= 1 formaa 6(11)' De(f,‘,“e ME T“)*)T“ by Then (M,q), (N,v)e CFM*(U,) and (W,#) is an o-cobordism from
fol@) = g{®—A(Pr)-2,). Let P = P((11; , B 21,) Q= {~.P , Where (M,5) to (N,p). Thus the assignment f—(M,¢) induces a map
RYCR. Define f: E—F by f= Ao0 Q"'+ f- P . Let W= My d and
define 5 by n{x,t) = (1 —t)-&{x)+1t-Df(2). Then fis the required map an A: B X]—w?(Ty) .

it follows easily from (1) that (W, #) is the required cobordism.
LevMA G.6. Let f,, f, € Bo(X). Let s > r and suppose that 0 is a reqular
value of f, and f,. Suppose further that there is an admissible 1 ~cobordism
(W, ) from (M, Dfya,) to (My, Dfsar,), where My=f7'(0) ~ Do(E), such
that W ~ (GDQ(E) xJ'} is compact for some s> q>r. Then fo and fi are
R,-homotopic.
Proof. The proof is analogous to the proof of the preceding lemma,.

TarorEM H.1. Let X satisfy Condition (v). Then the map A: By[X]—
—w?(Ty) is bijective.

Proof. To prove that A is surjective take o ¢ w?(Uy). By B.7 we can
find an admissible I'-framed submanifold (M, ¢) which represents a.
Then by G.5 there is fe By(X) such A[f]= a.

To prove that A4 is injective take f,, f; ¢ B (X) with A[fy] = A[fi].
We may assume without loss of generality that 0 is a regular value of f,

Proof of Theorem G.4. To prove that x is surjective, take u e B[ X]. and f,. Let M= 73(0) ~ Dy(B), i=0,1. By F.5 we can assume that
?Ez\ke s > 7. Choose f which repres.ents a. By F.4 we ma;y_zllssume. that 0 there is L ¢ Gy(B) such that My, M, C L. Let (W, 7) be an w-cobordism
is a regula;l;lvalue of f and there is L e Gy4(F) such that 'f (0) ™ Dag CL from (M,, Dfis) t0 (My, Dfjar,). By B.8 we can assume that W C L xJ.
Let M = f7(0) ~ Ds(B). It follows from E.5 that there is a I -cobordlsm Thus f, and f; are B,-homotopic by F.8. This completes the proof of our
(W, n) from (M, Dfjx) to (M, p), where (M, ¢) is admissible and W = M xJ. theorem.

Take a number ¢ with 8 > ¢ > r. Then it follows from G.5 fhztt there is Now, passing to the general case we relax Condition (r), instead we
g € Rp(X) such that 0 is a regular value of ¢ and there is a [I'-cobordism assume that X C Dy(B).
(Wy, &) from (X, gyv) to (N, Dgin), where ¥ = M n Dy (E). Thus, by F.8, Let V3, V, be two open subsets of H. Assume V; CV, and denote by

f and ¢ ave Bp-homotopic. Hence » is surjective.

4: V1V, the inclusion map. Thus 4 induces in a natural way the map
To prove that x is injective take f,,fi € Rp(X) and let ke By(X xJ)

be a B,-homotopy connecting f, and f;. Then it follows from G.2, G.3 byt @P(Vy)—>o?(V,) .

and G.3 that f, and f, are R,-homotopic. This completes the proof of our Clearly, i, is a homomorphism. ‘

theorem. Take a number s>r and let V= Ds(H)—CD.(E). Consider the
following commutative diagram in which ¢,j,% denote corresponding

H. The main theorem. In this section we keep the notations

from the sections E, F and G. For a while we restrict our attention to X inclusions
which satisfy the following condition. Uf\
Coxprtion (r). X C CD{E) and S,{(E)C X. ! i\_l
Let fe By(X). By D.9 we can find a regular value y of f with [yl V—— Di(B)
< 4(f). Since X satisfies Condition (r), f™(y) ~» D) is a compact Thus we obtain the following commutative diagram
n-dimensional (" submanifold of U,. Define (M,¢) e CFM*(Uy) by
M =" y) ~ Ur, ¢ = Dfjsr. Then it follows from D.11 that the class of i @ U{l
(M, ) in o?(T)) is independent of y. Let f, ¢ ¢ By(X) and let % be Bp-ho- Y. :
motopy connecting f and g. Define k by k(z,t) = hlz, u(t)). Then k is M(V)—B-aw”(D,(E))
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Tt is easily seen that k&, is an isomorphism. Thus Keri, is a direct summand
of w?(Us). Set &?(Us) = Kerty .

" PropostTioN H.2. Let s>r. If f,q¢Ry(X) are (T, R)-admissible
and fipym = Gioum, then f and g are R,- homotopic.

Proof. Let T,= Ay (T). Since f and g are (T, R)-admissible, we
can find a regular value y e T, with |ly|] < max (8¢, 8(g)). Define f;, g, by
(@) = 7(#)—7, p@) = g(@)—y. Then f,, g, are (T, R)-admissible, 0 is
a regular value of f; and ¢, and fipum = 1oy Thus, by G.6, f; and g,
are R,-homotopic. Since f is Ep-homotopic to fi and g, is Bp-homotopic
to g, the proposition is proved.

Now let ¢ > r be a fixed number. Take f € By(X) and suppose that f
is (T, R)-admissible. Let P= P(T, R), @ = I—P. Denote by fo: T'—1T,
the map defined by fo(#) = f(z) for @ e T. Take s with 7 < s < ¢ and let
go: T—T, be a C” map such that gopyn = foipm and go(®) = yo # 0
for @ € §y(T). Define g by g= Ao Q-+ gooP. Then g is (T, R)-admissible
map which, by H.2, is Ep-homotopic to f. Moreover, there exists a C°
map z: T XJ—T, such that

(2) %o = o>

(b) x(z,1) =1y, for all we T,

(¢) x(z,%) =1y, for all ® e 8y(T) and teJ.

Define b by h(m, )= dooQ-+z(Pz,t). Then heRy(Sy(E)xJ),
To= g and 0 ¢ hy(Se(E)). Hence if we consider g as a map in Bp(X v 8y(B)),
then A[g]e®(Ug). It is evident that A[g] depends only on the
B,-class of f. Thus the assignment fi>g define a map

g Rl X1—07(T).

ProrosiTioN H.3. The map Aq is bijective.

Proof. It follows at once from the inclusions Rp(So(H) v X) C Ry(X),
Ry((84(B) v X) xJ) C By(X xJ).

Define Ag: B X]+a7(Uy) by Ag = Agx™*. From the preceding prop-
osition we have

COROLLARY H.4. The map Ag: By[X]-3"(Uy) is bijective.

This fact can be interpreted as follows. Suppose that f, g e Bp(X),
0 is a regular value of f and g, 0 ¢ f(So(H)) v ¢(Sy(H)). Then M = f~0) ~
A Dy(B), N=g7'(0) ~n Dy(E) are compact submanifolds of U,. Let
a = the class of (M, Dfjar) in w?(Uyg), f = the class of (¥, Dgy) in w?(Ug).
Then f and ¢ are B,-homotopic if and only if a—p € Keri,, , where ¢ denotes
the inclusion i: Uy—Dg(E).

Finally we discuss briefly the connection between B,-maps and
compact fields considered in [4] and [5]. We assume that » > 0 and iden-
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tifty F with an #-codimensional subspace of E. In this case we may
agsume that A4, is a projection of ¥ onto F along an n-dimensional sub-
space of E. In what follows we use terminology of [5].

For p = 0 we denote by Op(X) (resp., Op(X x J)) the subset of By(X)
(vesp., Bp(X xJ)) consisting of all C? compact fields (resp., of all (7 compact
homotopies). Denote by Cp[X] the corresponding set of homotopy classses.
From the inclusions

Rp(X) C Cp(X) C By(X), Ry(X xJ)C OpX xJ) C By(X xJ)

and G.4 we obtain the following theorem

TeporEM H.5. If p > n-+1, then the inclusion Cp(X)C By(X) induces
a bijective map p: Cp[X]—-By[X]

On the other hand, it follows from (4.3) in ([5], II) that

TasoREM H.6. For every p = 0 the inclusion Cp(X)—Cy(X) induces
a bijective map y: Cp[X]—O[X].

Thus gy~ O[X]—B,[X] is a bijective map. The set C,[X] has been
denoted by #*~™(X) in [4]; it has an abelian group strueture with addition
patterned after Borsuk’s cohomotopy addition. On the other hand By[X]
can be regarded as an abelian group with the addition induced by the
Dbijection A: B[ X]-+0"(Us). It turns thab By~ is an isomorphism of
abelian groups, the proof of this will be published elsewhere.

1. Appendix. For a notational convenience we establish a ome-
to-one correspondence between the symbols a, §,.. and the elements
Ry, Rg, ... of G*(B). Set a< g if R;C B, and denote by 9% the set G*(H)
ordered by the relation <. Clearly, ¥ is a directed set. For aed let

L) = {4 < L(B); A(z) = for s R} and GLJH)= GL(E) ~ Ld(E).

Clearly, o< g implies L,(B) C Ly(E) and GLJ(E) C GLs(E).

ProrostrioN I.1. Let X and ¥ be two compact subsets of GLe(H)
with Y CX ~ GLJE). Then there ewist = a and a continuous maep
ki (X xJ, X XJ)—>(GLB), GLy(B)) (a deformation of the pair (X, ¥))
such that for all A eX, h(4,0)= A and h(A,1) e GLy(E).

Proof. For 4 « X set k(4,8) = I—(1L—t)(I—4). Then k(4,0)= 4,
%(4,1) = I. Moreover, if 4 ¢ ¥, then for all teJ, k(4, ) ¢ Lo(E). Thus
we have a continuous map k: (X xJ, ¥ xJ)—(L{H), LJ{B)). By B.15
we can find Rj e G*(E) such that Ry~ Kerk(4,?)= {0} for all (4,1)
€ X xJ. Without loss of generality we may assume that EsC R.; hence
a< f.

Seb T = w(Rp), @ = II(Rs) = P(Rs, T), P =I1—Q. Consider the map
At X xJ —>Gy(B) defined by A(4,1) = =(k(4, t)(R)). By B.10 and B.15,
1 is continuous. By B.16 there exists a continuous map y: X xJ K (B)
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such that y(4,0) is a projection onto A(4,0) and y(4,?) maps A(4, 0)
isomorphically onto A(A4,t). Define k by
AoQ+(1—20)AcP+2t-y(4,0) AP for 0<

hd,t —{ <12,
(A0 =\ 44, 2—1)oQ+p(4, 2—1). AP  for 1<t

1
<1.

It is easy to check that & is the required map.

For o< f denote by 4wy GLo(E)—>GLyE) and i,: GL.(E)-GLJ(H)
the corresponding inclusions. For every p >0 {mp(GLo(B)); (ia)s) is a
divect system of abelian groups indexed by . From I.1 we obtain

ProposITION L.2. For every p =0

Lim {(io)a}: Lim {my(GLa(B); (iug)s} ~ 7p(GTo(B)) .

For aeW let
Ta:”(Ra)’ Q-=H(Ru)=P(Ru7Ta)7 Pa=I“Qa=-P(Ta,Ra)-
For A< @L(T,) define jo(d)= Q.+ A oP,. The assignment Ai>j,(d4)
defines a continuous map jo: GL(T,)—GLy(E).

ProrosrrioN 1.3. The map ja: GL(T.)—GL(E) is a homotopy equi-
valence.

Proof. For A e GL(E), teJ, let
#(A,1) =@+ (1—t)AoPy+t-PodoP,.
Clearly #{4,0)= A for all 4 ¢ GL(E). By B.1 %(4,t) € GL,(H) for all
(4, %) e GL(H) xJ. Moreover, =(4,1)ejs (GL(T,) for all A e GLJ(E)
and #(4,1) = A for all 4 €j,(GL(T,)). Thus » is a deformation retraction
of GL(E) onto j.,(GL(Ta)). Sinee j, is an embedding, this proves our
proposition.
THEOREM I.4. For every p > 0,
7(GLo( B)) ~ Lim {mp(GL (R™)}
Proof. For a<< § define kup: GL(To)+GL(Ty) by Fup(d) = (jod)iz,-
Then we have the following commutative diagram
7p((GL(To)) 2>y (QL(B))
(kaxp)e . (Tap)e
p(GL(Tp)) L2, (GLy( )

Thus, by L3, it dim7, is large enough, (a8)s 18 an isomorphism. Now
the theorem follows from I.2.
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Finally note that the above proof carries over to the case where ¥
is a complex Banach space. Thus

TemoreM LB. If B is o complex Banach space, then for every p = 0

72 GLo( B)) w5 {Lim 7, (GL(C™)}
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