An extended arithmetic of ordinal numbers *

by
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Introduction

In this paper we shall define a transfinite sequence of binary opera-
tions 0, on and to ordinals and establish the basic arithmetical properties
of these operations. The operations O, are indexed by arbitrary ordinals.
The first two, O, and Oy, are addition and multiplication; O, differs but
slightly from exponentiation (and actually coincides with the latter
except in the cases 1% and o). The sequence of operations O, is defined
in a uniform way by means of a simple recursive formula; the definition
iz a natural extension of the well-known definition of multiplication in
terms of addition, or exponentiation in terms of multiplication. In most
of the arithmetical theorems concerning arbitrary operations 0, the
reacder will readily recognize natural generalizations of familiar results
from the traditional arithmetic of ordinals referring to the three lowest
operations; however, he will also find here some rather interesting ex-
ceptions to this rule.

Detailed proofs will not always be given in this paper. Many theorems
whose proofs are omitted can be obtained by a straightforward application
of the principle of transfinite induction. The material is arranged in such
a ‘way that the reader will easily be able to reconstruct less obvious
arguments. Sometimes we indicate the principal theorems previously
stated from which a given result can be derived. In a few more difficult
cases we supply more complete proofs.

We shall use the customary set-theoretical notation. Lower case
Greek letters a, f, ... will represent ordinals; in particular x, 2, .. wil
normally be used to represent finite ordinals. Greek capitals will represent

* This paper was prepared for publication when Tarski was working on a research
project in the foundations of mathematics conducted at the University of California,
Berkeley, and sponsored by the U.S.A. National Science Foundation, Grant No. 6232 X.
The paper is a slightly modified version of a report, SP-2811/000/00, published under
the same title by the System Development Corporation, Santa Moniea, California,
in 19€7. In particular, some corrections have been inecorporated, notably in Theorem 17.
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arbitrary classes of ordinals. In particular, o will denote as usual the
least infinite ordinal; £ will be used to denote the class of all ordinals,
As is customary in contemporary set theory, we identify an ordinal with
the set of all smaller ordinals; in consequence, the relation < among
ordinals coincides with the membership relation ¢ and also with the
relation of proper inclusion C. Some other consequences of this identifica-
tion are: w is the set of all finite ordinals, i.e., natural numbers; a clasy I
of ordinals is a set if and only if there is an ordinal ¢ such that I"C a or,
equivalently, if the union | JI" of I" is an ordinal; if I"is a set of ordinals,
then its union is what is usually called the least upper bound of I';'the
intersection (1) I" of a non-empty class I' of ordinals is the least ordinal
in I". Expressions of the form | J,<s7(n) and of various related forms will
have the usunal meaning; e.g.,

Un<slatn) = U {6: 6 = a-+n for some < B}.

The union | a of an arbitrary ordinal a iy either the ordinal immediately
preceding a or the ordinal « itself, depending on whether or not a has
an immediate predecessor. Hence the formula a= Ja expresses the
fact that o is a limit ordinal; thus, in particular, we regard 0 as a limit
ordinal. For more information concerning ordinals the reader may consult
Sierpinski [12].

This paper is divided into three sections. In Section 1 we formulate
the definition of the operations 0, and draw from it a number of elementary
consequences. One group of these consequences are monotony laws.
Another such group are various recursion formulas which in many cases
simplify the general recursion schema used in the definition of 0, and
facilitate the application of transfinite induction in the development of
the extended arithmetic. In Section 2 we concern ourselves with identities
satisfied by the higher operations. Only few such identities have been
discovered so far, and their derivations are more intricate than the argn-
ments used in other portions of the paper. Moreover, none of the really
interesting identities which are known at present are satisfied wvuncon-
ditionally by all ordinals upon which the operations are performed. This
applies in particular to operations O, with finite indices y > 4; an in-
teresting open problem is that of the existence of nontrivial and uncon-
ditionally satisfied identities involving these operations.

Section 3 contains a detailed discussion of main numbers of opera-
tions 0,, i.e., those ordinals which, when construed as sets of all smaller
ordinals, prove to be closed under these operations. In the course of this
discussion we come upon many far-reaching analogies and some rather
striking differences between the traditional operations of the arithmetic
of ordinals and the newly introduced higher operations. In particular,
it is known from the traditional arithmetic that the main numbers of 0,
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and O, respectively coincide with the ordinals of the form «'*7 and ",
i.e., with ©0y(1+417) and o 0;(1+n) in our notation; however, no analogf)us
analytic representation can be found there for main numbers of 0,, i.e.,
the so-called epsilon numbers. The explanation of this phenomengn
appears in Section 3. It turns out that analytic expressions for. the main
numbers of any operation 0, are always provided by corresponding higher
operations, in fact by O+ o 0,4 In case y is even, ffnd by Ops1 o1 ‘0,,+2
in ease y is odd. In particular, to get such expressions for the epislon
numbers we have to use 0, or Oy; the main numbers of 0, turn out to
coincide with the ordinals of the form wO;(1-+ ).

In the appendix following Section 3 we discuss briefly some I_neta-
mathematical problems concerning the extended arithmetic of or.dmal.s.
A detailed presentation of the results mentioned in this appendix will
appear in later publications. .

We wish to express our gratefulness to Jean Rubin, w?w read an
earlier draft of this paper and advised us of several defects, which we have
corrected. (*)

Section 1. Definition. Monotony laws and recursion formulas

DrriNrTioN 1. For every y €2, 0, is the binary ope?aiicm on QxQ:
to Q determined recursively by the following formulas which are assumed
1o hold for any a,f € Q: '

(i) a0, = a+ B in case y=0;
(i) a0,8= Un<ﬂ,§<v[(aoy’7) 0;a) in case y > 1.

COROLLARY 2. (i) 0,0 =00,a=0 for y >1;

(ii) 0,1 =10,a=a for all y =1;

(iii) 20,2 =4 for all v;

(iv) if @, B,y < o, then a0,p < . (%) '

(*) The definition of the operations O, actually used. in this paper is flue to ’I(‘la.ri];
Related ideas, which to some extent influenced our digcu.ssmn, can be {oundm [8] an 1:[ ‘].
After a preliminary version of the paper received limited distribution (see foot:o e *),
our attention was called to the fact that several years ago a sequence of opex:; ions q;.,
clogely related to our O, Was introduced and discussed in [6] and subseqttxfln fy mug‘a]s
and [9]. (The essential relationship between ¢, and O, is expressed byo ;a (:917)1;1 o
@psa(Brad) = a0, (1-4-f) for a>o0 and y >3, and @8, a) = Upey [20:(1+ .
av; w’ and y = U, # 0. These formulas were also obtained mdepm_xdently ]‘Jy H. Levx zsj‘u)1
The discussion in these papers differs considerably from ours in goals and gel;:fl
character, and the results overlap in but few p]ace;. C’l‘hus, sogxec:i tel;ze ;]ii(:;fy by';
laws given here in Section 1, such as Theorem 4 a{: orollary 5, .
fiﬁmfl in [6]; certain arithmetical lemmas proved in [9], wher:\ expreised 1—:;; ht:]i:;]souf
the operations O,, yield some special cases of the «limit type identity” es
Section 2 as Theorems 27(i) and 32(ii). . rale the

() In formulating definitions and theorems we omit as a rule
expressions “For oll ordinals a, B, ...".‘ .

initial quantifier

Fundamenta Mathematicae, T. LXV


GUEST


98 J. Doner and A. Tarski

Corollary 2(iv) can be considerably generalized; in particular, it
remains valid if o is replaced by an arbitrary initial ordinal w,. 3

TEEOREM 3. (i) a0, = a-f;

(ii) a0y = of for a #1 and B # 0;

(ill) aOg(1+p) = a for a1 (and hence aOyf = o for a 1 and
B = o)

In deriving 3(ii),(ili) from 1 we make use of the known fact that
atp<a-p<of for a,p>=2.

From 1(i) and 3(i),(il) we see that the first three operations 0,
actually coincide, or almost coincide, with the ordinary arithmetical
operations. (However, by 2(i),(ii), a0,f differs from of in case =0
or ¢ = 1.) We shall make some comments on 3(iii) in our later discussion.

We wish to give some idea of the values of a0, for y > 4. These
values increase indeed very rapidly. An easy computation gives:

20,2 =4 20,2 =4 20,2 = 4 _
20,3 = 256 20,3 = g18 222“2 20,3 < 222“3
20,4 = 2% 5™ £ 90,4 < 22 :
20,5 = 222059 R

22039 522060
9% £ 90,6 < 2°
30,2 = 3° 30,2 = 3310
30,3 = 3"

33310 <30,4< 383“
404;2 — 454 444105 < 4052 < 4:44“5
4043 — 441!5

el

4 404 < 2

Note that 40,2 =20;3 and 40,4 = 40,2 = 20,3.

On the basis of Definition 1, assuming the theory of ordinal addition,
we could develop in a uniform way the general theory of the operations 0,,
from which we could derive as particular cases the basic results concerning
multiplication and exponentiation. Actually, however, it proves more
f:onvenient for our purposes to apply a somewhat different procedure:
in developing the extended arithmetic of ordinals we shall freely use, in
an explicit or implicit way, various known results from the traditional
arithmetic, i.e., the theory of addition, multiplication, and exponentiation.

A number of monotony laws hold for the operations O,; these are
1.‘he:orems 4(i), 6, and 8. The corresponding strict monotony laws (more
limited in secope) are Theorems 4(ii), 11, and 13.
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TurorEM 4. (i) If =B, then a0,p > a0,p'.

(i) If a=1 and > f', then 00,f> a0,p".

Proof: directly from 1; no use of induction is required.

Obviously equivalent formulations of 4(i),(ii) are, respectively,

(i) If «0,8< a0,p, then f<p'.

(i) If a =1 and a0, < a0,f', then B <f'.

Analogous remarks apply to other monotony laws.

CororLARY 5. (i) If =1, then a0,f > a.

(i) If a1 and B =2, then a0,f> a.

THEOREM 6. If a = o, then a0, = o’ 0,f.

Proof: by 1 and an elementary induction on both g and y.

COROLLARY 7. If a1, then 20,8 > B.

TaEoreM 8. Ify =y and either a, f =2 0ory' > 1,then a0, > a0, B.

Proof: by applying 1 directly in case 3’ =1, and using the formula
a+p < a-f to extend the result to the case of a, > 2 and " = 0.

The following consequence of 4(i), 6, and 8 is very useful in further
deductions:

THeoREM 9. If a2 and =1, then aOp(f+1)= (20,418)0, 0.

COROLLARY 10. If a =2, then 0,2 = aOya.

TaeorREM 11. If a> o, then aOya(f+1) > o 0,11 (8+1).

Proof: by 4, 5(i), and 9. .

Theorem 11 fails if either y+1 or f-+1 is replaced by a limit ordinal;
see Theorems 26 and 29 below. }

TrEorREM 12. If a > 3 and f =2, or a =2 and f > 4, then a0,f > y. )

Proof. With the help of 2(ii) and 4(ii), we show by induction on y
that 30,2 > Up<y({+1) = 7. Another induction on y, using 2(iii), 6,
and 4(ii), shows that 20,4 > y. The general result is then obtained by
means of 4(i) and 6. _

Theorem 12 does not hold in case e = 2 and § = 3; e.g., 20,413 = ©.

THEOREM 13. Assume that either a2 3 and f =1, or else a,f=>2
and y # \Jy' 1. Then y >y implies a0, (B+1) > a0y (f+1).

Proof. If y' = 0, the result follows from Theorem 8 and the fradi-
tional arithmetic; thus we may assume y’ > 1. Except when y' = Uy’
it is sufficient, by Theorem 8, to assume y = ¥ 4+1. -

In the case a3 and §>1 we have by 9 and 4(ii) -

1) a07’+1(/3+1) = (aov'+1ﬁ)0v’a > (a07'+1ﬁ)07’2 .
But since y’ > 0, Definition 1 and Theorem 2 imply

(a0y118)0y2 = Urey[(@0y418) Oc(aOy 4181,
7*


GUEST


100 J. Doner and A. Tarski

from which, by means of 8, 6, 5(i), and 4(i), we obtain
(2) (a0y418)0,2 = U<y [(20y ) Oza] -
Now let 5 < f. Then, by 4(i) and 6,

(a0y118)Ora = (@0y4a17) Oca,
and hence

(3) U<y (2 Oy ) Oral = Uﬂ<ﬂ+lyt<y’[(a0v’7]) Ocal.
The union on the right-hand side of (3) is just a0,(f+1), so from (1), (2),
and (3) we obfain

CLO,,'+1(/5'+1) > aOv'(ﬁ-l—l) .

Next, assume 3’ # {Jy and @, § > 2. Letting Uy =1, we get
y'=t+1 and y={+2. By 9, 10, and the monotony laws we readily
obtain .

a0¢s2(B+1) = (00;12) Or(aOrseff) -
Now a0praf = aOppaf and aOziof > o by 8 and B(ii), respectively. Hence,
by 6 and 4(ii),
a0¢so(f+1) > (a0p1$) Oz

The right-hand side of this inequality is «Opi1(f+1); see Theorem 9.

Rinally, consider the case y' = |Jy' and qa, B = 2. Here, because
y # |y +1, we cannot have y = y'+1 and we must assume y > »'+1.
However, we can now replace y' by »'+1 in the argument for the case
¢ # |Jv', obtaining a0, (8+1)> aOyy1(f+1), and then we need merely
apply Theorem 8 to complete the proof. :

The conclusion of Theorem 13 may fail in case a, f > 2 and both
y= Uy 41, ¥ = Uy In fact, it is easily seen that, e.g., 20,13
=20,3= w.

By combining two or more monotony laws we obtain results of
related character but more complicated structure, e.g.:

Ifaxl,azd, >4, and y=vy =1, then a0,8> o' Opf .

The result just stated can be used, for instance, to simplify the proof
of the following ‘ '

THEOREM 14. If & + 0, then the set {8: a0, = & for some a and y}
s finite. :

The proof of a much weaker result by which the set {f: a-f=0

for some a} is finite can be found in the literature; see [12], page 277.
Essentially the same argument can be applied to establish 14.

. In opposition to Theorem 14, the set {a: 0,8 = 8 for some 8 and y},
with a fixed 4, is in general infinite, and the same applies to the set

©
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{a: a0,f =& for some B}, with fixed y and §. It is known from the tradi-
tional arithmetic that, for any given 6> 0 and for y =0, 1, 2, the set
I'= {a: a0,B =& for some B} is closed in the sense that {J 4 e I" when-
ever /A is a non-empty subset of I'; for y =1, 2 see [4]. It turns out that
this result extends to arbitrary y; in a somewhat different form, the
general result has been announced in [11].

Using the monotony laws we can simplify in various particular cases
the recursive part of our definition of the operations O,. In other words,
in addition to the formula 1(ii), we can establish several other recursion
formulas of related bub simpler structure and more restricted in scope.
One such formula was given in Theorem 9. In the next theorem three
other formulas of this kind will be established.

TreorEM 15. (i) If ¥ =1, then a0,(f+1) = U<,[20,8)0:a].

(.ii) If a, f =2, then a0y = Llrl<ﬂ[(a07+}7l)0ya]-

(iity If = \JPB and ecither § #0 or y # 0, then a0,p = Un<p(aOyn).

TrmoreM 16. If ¥ =1 and cither a= Ja or f=1U B, then a0,8
= J(a0,B), i-e., a0,p is a limil ordinal.

Proof. In view of 2(i), we may assume a, = 0. If f= B, the
conclusion follows easily from 15 (iii) and the strict monotony law 4(ii).
T a=|Ja#0but P say f= n+1, then, by 15(i),

(1) a0,8 = Uz<p[(aOym) UL

Now a= |Ja0, so by the preceding remarks concerning the case
B = |UB (or by a property of addition in case ¢ = 0) we see that each
term in the union on the right-hand side of (1) is a limit ordinal. Hence
50 is a0, p.

Theorems 9 and 15 suggest various equivalent transformations of
our basic definition 1. For instance, a commonly used definition of multi-
plication in terms of addition is:

(i) a-0=0;

(il) a-(B+1)=af+a;

(iii) if f= UB #0, then a*f= Ussla)-

In an entirely analogous way exponentiation is defined in terms
of multiplication. It is natural to attempt to apply the same schema in
the general definition of O,; indeed, this was the present authors’ original
approach. Theorems 9 and 15 suggest (correctly) that the resulting se-
quence of operations will not differ essentially from our sequence {0,3ye0-
Specifically, the following theorem can be easily established:

TaroREM 17. Consider the sequence of operations (Oh>yea determined
recursively by the following siz. conditions:
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(i) a0gf = a+ B,
(i) 0,0 = 00,0 =0 for y =1,
(iii) ¢0;1=10,a= e for y =1,
(iv) @0l4q(B+1) = (¢0y11B)0ya for a 22, =1,
(v) a0y(B+1) = Ur<y[(a0;p) Otal for f=1 and y = Jy #0,

(vi) 0,8 = Up<p(aOpn) for p=Jp#0 and y > 1.

The sequence thus determined coincides with {0)>yen; T, for all a,B,yeQ
we have
a0, = aO0,f.

We see, therefore, that we could replace the original definition of 0,
Dby an equivalent one based upon Theorem 17. The new definition would
be much more complicated, but would also be more closely related to
the usual recursive definition of multiplication and exponentiation.

Notice that a recursion on f based upon the schema embodied in
conditions (i)-(vi) of 17 begins with B = 1. Hence 17(ii) plays an in-
signifieant role in the whole development and ean be modified almost
at will. Essentially the same remarks apply to 17 (iii).

In general, the theory of the operations 0, depends very little on the
way in which the values of these operations have been fixed for the lowest
values of the arguments.

We may mention here the possibility of taking for the initial term
of the sequence of operations Oy, not addition, but the practically trivial
successor operation Of: aOff does not depend on f§ and is simply the
successor of a, in set-theoretical notation a v {a}. O; will then be addition,
and, in general, Oy, will coincide with the old O,. The definition of the
sequence <0%>,co can be obtained from the one implicitly given in Theo-
rem 17 in the following way: 17(i) assumes the form aO¢f = a v {a},
in 17(ii) and 17(ili) the formula y > 1 is replaced by y > 2, the phrases
“q 0,0=0 O,a=qa for y=1" and “when y= 2, and for a, =1 when
y=1", are added to 17 (i) and 17 (iv), respectively, and in 17(v)
the subscript { <y is replaced by 0 <{ <y. Using this definition of
{0;>yeq We can develop the whole ordinal arithmetic “from scratch’,
obtaining the theories of addition, multiplication, and exponentiation
as particular cases. In the context of the present paper we see little to
be gained by this procedure.

Another possible modification of the definition of the operations Oy
should be considered at this point. We may replace parts (v) and (vi)
of 17 by the following:

() a0y = Upraa(aOypam) for p=JB +# 0,
(vi) a0;8 = Usct<y(a0tf) for y =y # 0.

icm
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The relationship of the operations O, thus defined to the original O, is
simply expressed: for y < w, 0, is the same as O,, and for y > o, O;4,
coincides with O,, but the operations 0, with y = |y # 0 are distinet
from all the O,. The development of the theory of the new operations 0,
presents some advantages and disadvantages as compared with that
of the operations O,. Thus, the important monotony law 4(ii) fails for
the operations O, with y = [Jy % 0. In fact, we have, e.g., a0, = @
for any a,f such that 2 <a, f< w and either a2 or §+#2. As
a consequence, a0,y treated as a function of » (with ¢ and y fixed) is
not normal in the sense of Definition 18 below, provided a>1 and
y=|Jy # 0. On the other hand, «0;f treated as a function in { is
normal, assuming a> 3 and 8= g'42 for some f’>1; this fact has
some interesting consequences which will not be discussed here.

Theorems 4 (i) and 15 (iii) show that each of the operations O, treated
as a function of its second argument (with the first argnment assumed to
be fixed but different from 0) is a normal function in the following sense:

DEFINITION 18. 4 function p on Q to Q is called normal if it satisfies
the following two conditions:

(i) @ 48 strictly ncreasing, i.e., for any 71,7 €Q, n<n' implies
a(n) < e); .

(i) @ s comtinuous, i.e., for any nefy n=n#0 implies @(n)
= Us<n@(0).

COROLLARY 19. For any given a =1 and y, the function ¢, determined
by the formula @.,(n) = aO,n for every 7 eQ is normal.

Proof: by 4(if) and 15(iii).

Several general laws concerning normal functions are commonly
known and some of them can even be found in the literature; see in
particular [2], pages 25 and 32 ff. For the convenience of the reader we
shall state them explicitly in the next few theorems, and then apply
them to the operations O, by means of Corollary 19.

TusoreM 20. Let ¢ be any normal function.

() If T C Q is a nonempty set, then p(J Iy = Uyere(n)-

(il) ¢(B) = B for every B.

" (i) If 8 > p(0), then there is exactly one f such that
p(f) <o <e@(f+1)

in fact, p(B) is the largest ordinal £ <6 and ¢(f 1) the least ordinal &> &
which belong to the range of .

Proof. Let I be a nonempty subset of 2, and let f = UL I gel,
then @(B) = Unerg(n) follows from 18(i). If B¢l then f=JB#0,
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and we have @(B) = Uy<p@ () by 18(ii). Now for each 5 < B there exists
an »' eI’ such that n <7’ and ¢(n) < p(n'). Hence,

Un<s@(n) < Unere(n)

ie., @(8) < Uherg(n). On the other hand, f> 17 for each 7 eI, so that
@(8) = Usere(n). Thus, (i) is proved.

Ow proof of (i) is by induction on . That ¢(0) >0 requires no
proof; suppose f > 0, and ¢(n) > n for every # < g. Now, for any 5 < f,
@(n+1) > @(n) > 7, and hence

@ p(n+1) = q+1  for every n < f.

It is well known that f = Us<p(n+1) for any ordinal . Thus, by (i)
and (1),

@(8) = Un<sp(n+1) = Unsln+1) = 5 .

Finally, we consider (iii). By (ii),. §< 0+1 < p(6+1), from which
we conclude that the set {5: d < ¢(n)} is not empty. Liet ¢ be the least
element of this set. If we had o= {J o, then (i) would imply

B<olo)=9(Uo)= U (®),

whence 8 < g(n) for some # < o, thus contradicting the minimality of o.
Therefore, ¢ is not a limit number; o = f+1 for some §, and, since g < o,
the definition of o leads directly to

p(B) <o<e@(f+1).

Assume now that some other ordinal B’ satisfies the same formula, i.e.,
P(f) <o <o@(f+1).

We then have both ¢(8) < ¢(8'+1) and ¢(f') < e(f+1). It follows that
B < p'+1 and B’ < p+1, so that finally = p'. ¢(B) is the largest ordinal
£ < & in the range of p, for if this were otherwise, say ¢(B8) < ¢(n) <4,
then ¢ would not be strictly increasing; i.e., we would have either n < f
and ¢(f) < @), or f+1 <7 and ¢(n) < p(f+1). Similarly, ¢(8-+1) is
the least ordinal £> § in the range of ¢.

) From each of the three parts of Theorem 20 we can obtain as a par-
ticular case a corollary concerning the operations O,. The conclusion
which can be derived this way from 20(ii) has already been stated as
Corollary 7 and proved by a direct method. The corresponding conclusions
from 20(i), (iii) will now be formulated explicitly:

CoroLLARY 21. (i) aO,(IJI) = Uper(aO,m) for all a,y and any
nonempty set I'C Q. k

(i) If @=1 and y =1, then for every § there is ewactly one f such
that ¢0,8 < 8 < a0,(f-+1). ‘
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Proof: by 4(i), 19, and 20(iii).

Corollary 21(i) can Dbe referred to as the general continwity law.

Notice that Corollary 21(ii) still holds for y = 0, provided ¢ > a.
Moreover, in this case the conclusion simplifies: it turns out that there is
exactly one B such that aOgf = 8, a well-known fact from the theory
of addition.

THEOREM 22. Let I'C Q. In order that there exist a normal function @
whose range is T' it is necessary and sufficient that I' satisfy the following
two conditions:

(i) I' is not a set (i.e., there is no & e for which I'C £);

(i) I" is closed.

Moreover, for every such class I' there is just one normal function @
with range I

Proof. The necessity of the two conditions is immediate from 20 (ii)
and 20(i). To establish sufficiency, we assume that I'is a class satisfying (i)
and (i), and define a funetion ¢ on 2 by recursion:

pO)=N1T1,
p(B+1) = {&: E<T and £>9()},
P(f) = Un<s®(n) B=UB=#0.
Now we prove simultaneously by induction on f:
1) if n< B, then o) <ef)
(2) e(B) el

In fact, if f= 0, then (1) is vacuously satisfied, while (2). follows
immediately from the fact that I satisfies (i), and hence is not empty.
Now assume that > 0 and that (1) and (2) hold for every §'< g. In
case B = f+1 for some f', we have #(B) < ¢(B) by the definition of ¢,
and @(n) <g@(p") for every n< B by the inductive hypothesis. Hence,
(1) holds for £, and (2) follows at once from the definition of ¢. If, finally,
g = B, then for every n < B there exists an 5’ such that n <7 < B,
and by the inductive hypothesis we obtain at once

o) < @) <o) -

Thus, (1) again holds for g, and (2) is an immediate consequence of the
inductive hypothesis, the definition of g, and the property (ii) of I

That ¢ is a normal function follows from its definition and (1). To
complete the proof we must show that I' is included in the range of ¢.
Suppose that this is not the case; let 6 be the least member of I" not in
the range of p. By 20(iii), there exists exactly one p such that

o(f) <d<o(f+1).

in case
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From (2) and our assumption concerning & we obtain @(f) < 4. If there
were any &' such that ¢(f) < &’ < and &' I, then, by the minimality
of 8, we could conclude that ¢’ is in the range of @. But this is precluded
by the definition of § and 20(iil). Hence, ¢ is the least ordinal of {&: &e I
and £ > @(f)}. Then, by the definition of ¢, § = p(f+1), which is a contra-
diction. Thus I is included in, and therefore equal to, the range of g.
The proof of 22 is completed by an easy induction, showing that, if ¢’
is any other normal function with range I', then ¢'(8) = ¢(f) for every g.

It may be noticed that Theorem 22 continues to hold if we replace
“pormal” by “stricily increasing” and omit condition (ii).

If p is the function correlated with the class I' by Theorem 22, then
for any ordinal 5 we refer to () as the #-th successive element of I" (in
the natural order); we also say that the function ¢ enumerates the class I'.

THEOREM 23. Let ¢ be a normal function and let I' be the class of all
fized points of ¢, i.e., I'= {&: @(£) = & We then have:

(i) I' satisfies the conditions (i),(ii) of Theorem 22;

(il) there is just one normal function v whose range is I

Proof. Since (ii) is an immediate consequence of (i) and Theorem 22,
weneed only prove (i). Let £ be an arbitrary ordinal; we seek a fixed point 5
of ¢ such that & < 5. By 20(iii), there exists a, B such that & < ¢(8). Let 7
be the least upper bound of the sequence f, ¢(f), (p((p )), --.; MoTe precisely,
let A be the least class contammg f and such that ¢(a) e 4 whenever
aed, and then let n= ) 4. (®) It is easy to show that ¢(%) = ». Thus,
r batlshes condition (i) of 22

Now let @ be any non-empty subset of I', and let 9 = U 6. By 20(i),

= Uscop(8)

Since each element of @ is a fixed point of ¢, we have

n) = Useo = Ue=n,

ie., nel. Thus, I" satisfies condition (ii) of 22 as well.
. The. function ¢ correlated with a given function ¢ by Theorem 23
is s?metlpes called the first derived fumction of ¢ and denoted by ¢'. For
a diseussion of the transfinite sequence of functions derived in this way
from a normal function ¢ see [15].

COROLLARY 24. For any a > 1, B, and y there is an w such that n > f
and aO,n= 7.

In Sectipn 3 we shall caleulate, using the operations 0,4, and O,..,
the legst ordl‘nal 7 which is a solution of the equation a O,y = 7, i.e., the
least fixed point of the function ¢, defined by the formula p,,(n) = a0,

(%) The construction used here is the same as that used in [8] and [15].
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We shall also give an explicit formula for the function that enumerates
all fixed points of g, i.e., for the first derived function ¢;,. Compare
the remarks following Theorem 48.

Section 2. ldentities

The discussion in this section leads to some of the most interesting,
useful, and probably unexpected results of the extended ordinal arithmetic.
\Ve shall establish certain arithmetical equations involving the operations 0,
whieh prove to be satisfied by arbitrary ordinals provided that either
the indices or some of the arguments of the operations involved are assumed
to be limit ordinals. These facts will be stated in Theorems 27 and 32.
The proof of these results is based upon several lemmas and theorems
of lesser interest. We begin with a result closely related to Theorem 15(i);
under more restrictive premises, it provides a formula that considerably
generalizes the conclusion of the latter.

TEMMA 25. If a2, f=1, and y =y # 0, then
a0, (B+1) = Ut<y{(20,8)0; ']

for any ordinal o such that 2 < o' < a0,p.

Proof: by a straightforward application of the monotony laws,
Corollary 10, and Theorem 15(i).

THEOREM 26. If >3, =2, and y= [y # 0, then

(a4+1)0,8 = 0,8 -
Proof. We first take up the case p= 2. By 15(i) and 2 we have
a0,2 = Ul<r(aol‘a) s
while 25 gives
(a+1)0,2 = Lo [(a+1)0ca].

The equality of the right-hand sides in these two formulas follows from the
inequalities aOpq10 = @03 = (20;412)Ora and a0;q2 2 a+2 > at1.

Having proved the theorem for B = 2, we proceed by induction on f
without meeting any difficulty.

TarorEM 27. If f =1 and y= Uy # 0, then

(i) a0,(B+8) = (20,B)0,(1+p) for a2,
whence

(i) a0,(B+B") = (a0,)0, for a =2 and B = o;

( ) (14 @) Oys1 (B+F) = [(A+ @) 0ps1p10, (L + 0 ) for a =1,
whence

(") aOys1(B+B) = (20y416) 0y (a-p') for a >0 and f'>1
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Proof. (i) is obtained by induction on f'. Using 17, (ii) can be derived
from (i) by another induction on f'.

Note that conclusions (i) and (ii’) of 27 also hold when y = 0.

We proceed to establish results that are analogous to Theorems 26
and 27, but in which the operation O, is almost arbitrary while some of
the arguments are supposed to be limit ordinals. The proof of these results
is more difficult.

LepMmA 28. For a > 2 and any f§ we have:

(i) (a4+1)0,8 < a0,(1+2f);

(ii) there exists x» < o such that (a+1)0,8 < a0, (B x).

Proof. For y = O, 1, (i) is a result from the traditional arithmetic
of ordinals. For y > 2 it is proved by induction on §. If = 0, (i) follows
from Coro].lary . Assume that (i) is true for every f < §’ and that p’ > 1.
It g’ = | A’y (i) follows from the inductive hypothesis and Corollary 21.
If g =341 for some f, we distinguish two cases according to whether
or not y is a limit ordinal. First, suppose y = »'41, ¥’ > 1. Then

(a+1)0,(8+1) < [a0,(1+2-$)]Op(a+1)
by Theorem 9 and the inductive hypothesis. By Theorem 15(i),
(@4+1) 05 (B+1) < Us<y {{(20,(1+28)) 0y 0] 0;[a 0, (14-2-8)]) .

Then, applying the inductive hypothesis, monotony laws, and 10, we have

(a-+1)0,(B+1) < Ur<y [[20, (142 B4+1)]0p412] -
However, ¢ > 2, and hence
(a+1)0,(B+1) < U 1<[(20, (142 +1)]0;a] .

The union on the right-hand side of the latter formula is just aO,(L+2-
-(f}—}—l)). Now consider the case y= |Jy+#£0. If p’'=1, (i) follows
from 3(ii). If p' > 2, then, by Lemma 25,

(@+1)0,(f+1) = Ur<y [[(a+1)0,$10; ] ;

an ap;_ﬂication 0? the inductive hypothesis and monotony laws yields (i).
_ (ii) follows immediately from (i), since, for any ordinal f, 1-+2-f
iz of the form S« for some » < w.

As an immediate consequence of Lemma 28 we obtain

TrmoREM 29. If a2 2, f= |J B, and y > 1, then (a+1)0,8 = a0, p.

LE\IMZA 30. dAssume a>2, =1, and y=2. Then, for every f,

1) a0y (B+8") < (2024 8) 0z ( 1+,
(11) (@02y118) Oy (Lt af') < (L4 @) O yya (B+ B').

Proc_)f. (1) will be proved by induction on £, and then will he used
to establish (ii), also by induction on g’
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For /' = 0 both (i) and (ii) are immediate consequences of Corollary 2.
Assume that p’ > 0, and that (i) with g’ replaced by % holds for every
< §'. Now, by 4(i) and 6,
a0s,(B+B) = Un<pipi<esl(@02,1)Ora] =
and hence

Un<pe<z [[@020(B-+m)]10:4]

@0sy (B4 B) < Uneprg<as|[(¢0) 02 (1-+ )]0z
by the inductive hypothesis. Noting that a < a0s.,f, we obtain in turn

@05y (B+B") < Un<pz<zs][(2 02 8) Oz L+ m]10:(a 02, P)] -

The right-hand side is just (a0s.yf)02.,( (1+p'), independently of whether
or not "= |Jp". Thus we have shown that (1) holds for every g’
Now assume that g’ > 0 and that (ii) with g’ replaced by % holds for
every 5 < f'. We distinguish two cases according to whether f’ is a limit
ordinal or not. If # = | #’ # 0, then (ii) is readily proved by an argument
baged on the continuity law, Corollary 21. Suppose §’ = 7+1; the induetive
hypothesis states that (i), (i) hold with 8" replaced by 7. Thus

(@0s.y418) Oz (L4 @+ (n+1)) = (@ 02y11p) Oz (L+ a7+ a)
< [(202y+18) Oy (L4 a-)] 02y (1+ )
<[(1+ @) Ozpa(B+m]02y (L +a)
and the last expression is equal to (14 a)Osyna(B+F')-
Lesinia 81 If y = 2, then for every a =2, B> 1, and B’ we have
(i) (¢028) 02" < a0s.y(f+3-8),
(1) ¢Osps1(B+B) < (202y41B) Ozy(1+3-a-F).

. Proof. First we shall show that, for each y, (ii) is actually a con-
sequence of (i). This is done by induction on f’. Suppose that (i) holds

for some y =2, > 2, and f > 1. If 8’ = 0, then (ii) follows immediately
from Corollary 2. Assume that f'> 0 and that
1 @ 0spya (B4 1) < (@02p128) Opy (143" 1)

for every n < f’. From (1) and the monotony laws we get
aO0zyi1(f+6) = Un<g|[@ 02y (B+ 7)102.,0]
< Unep|[(€02y428) 025 (14 3-a-m)] 0240 -
Now we apply (i) obtaining
2) 0051 (B B) < Un<pl(2029416) 02y (1430043 -a)]
< Unep|(@025516) 02-7[1+3'a‘(77+1)]] .
The lagt union in (2) is just (¢0zy41B) 05, (1+3-a-f).
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The proof of (i) is carried through by an induction of a more com-
plicated nature: an induction on y in which each of the cases y = 2 and
y # Jy>2 is handled by an ‘‘inner induction” on . We begin with
the case y = 2. If /=0, (i) becomes trivial. Assume that "> 0 and
take as the inductive hypothesis

(3) (a0,8)04m < aOy(B+3-7) for every a>2, f>1, and n<fp .

Now, if 8'= |JB" #0, we note that 3-p'= f', and a simple argument
using the continuity law 21 suffices to show that (3) still holds if 4 is
replaced by £/, ie., to obtain (i) for y = 2. If B’ % (U f', say B’ == +1,
then

(20:8) 04(n+1) = [(20,8) 0,11 05 (2 04 B)
< [a04(B+3-1)]05(a04p8)
by (3) and the monotony laws. Let § = a0,(f-+3-%). Noting that a O, < &,
we have by 3(iii)
(@0,B) 0, (+1) < E0,& < & < (£0,2)%%9 < (£0,2)0,2
Since a > 2, we then have
(a0,8)04(n+1) < (£050) 030
However,
(6030) 030 = aO,(ﬂ—}-S'?j—f—Z) < a04(ﬂ—-}—3'(17—i—1)) )

so that (i) again proves to hold for y = 2.
Now assume that y = {+1 >3 and that

(4)  (a0:2:8)0208" < aOp;(f+3-8') for every a>2, =1, and f'.

Since we have previously shown that (i) implies (ii), we immediately
obtain from (4)

(3)  @0ez41(B+B) <(a02410) Onr (14 3-a- ')
for every a > 2, =1, and §.

We now proceed by induction on 8. Again, if B’ = 0, (i) becomes trivin.i.
Assume that 8> 0 and take as the inductive hypothesis

(6) (@054 8)02ym < @05, (f+3-m)  for every n< .

A continuity argument suffices to derive (i) in case ' = | J #’. Otherwise
let {Jp' =7, so that ' = n+1. Now we apply (6):

M (0055,8) 02, " = [(a0s., B) 01,11 02011 (0 02, B)
<[20sy(B+3 1)) 0s11(a 02 B) .
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Let &= a0.,(f+3'7); we then get from (7) and the monotony laws

(8) (0029 B) 02 ' < E0sp11 8.
From (3), by setting ea= g’ =& and g =1, we obtain
(9) §05041(1+8) <02 (1+3-£-8);

a fortiori, £0ssr18 < E0spqi(1+3-£-£), so that, by combining (8) and
(9), we arrive at
(10) (1102--//3 03,8 < §0~’§ 14+3-£-8).
Since £ 3> 2, we have 3-£-£< (£0,2)0,2. Noting that £0,2>2 and
2-(4+1> 2, we apply the monotony law 8 and obtain
1+8-£8 < (6022412) Oz 1a2 .
Then, by Corollary 10 and the monotony laws,
(11) £02: (14 3-£-8) <[(£020412)05.0412] 020412 -

Noting that a > 2, we use inequalities (10) and (11) to get
(00:258) 02y " <[(£02241@) 020410] 020110
< a0sy (B4 3-0+3) = a0, [B+3-(n+1)] -

Thus (i) holds for f' = n--1. This completes the inner induction on B';
and hence (i) holds whenever y # [ y.

In case y= | Jy # 0 the desired result follows at once from Theo-
rem 27. This completes the proof of Lemma 31.

Under the assumption « >3, or a= 2 and f§ > 2, the coefficient 3
in both parts of 31 may be replaced by 2. Notice that, for any ordinal 4,
3-8 = -+« for some finite x

THEOREM 32. Assume f,p =1 and y #1.

iy If /= JB #0 and a = 2, then

aoiw(ﬁ“"ﬁlj = (aoi-wﬁ)02-rﬁ’ .
(i) If a= Ua, or if a =2 and §'= B #0, then
QOZ ,+1(ﬂ+ﬁ ao’)’-l—lﬁ 02? ﬂ)

Proof. For y = 0, (i) and (ii) are special cases of well-known laws
of the traditional arithmetic. For y > 2, (i) follows immediately from 30 (i)
and 31(i). If a = 0, (ii) follows directly from 2(i). If either a= {Ja # 0,
or else a2 and g'=|Jpf #0, we observe that 1+43-a- g =1+
+a-f = a-p" and obtain

(1) a0syp1 (B+8) < (a0zy41) 02y (a a-f'),
(@) (@035418) Oz (a-f') < (1+ @) Ozpsa (B4 )
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from 31(ii) and 30(ii), respectively. Next, we note that
(3) (14 @) Ozp1 (B4 ') = ¢ O2ppa (B+ ) s

forif > o, then14-a = o, whileif 2 < ¢ < wand ' = |J " # 0, then (3)
follows from 29. Taken together, (1), (2), and (3) establish (ii).

The restrictions of 32(i),(ii) to limit ordinals are necessary. For
instance, 20,(2+3) = 2" while (20,2)0,3 = 2", so that 32(i) fails
for a=2, f=2, p'=3, and y= 2.

Notice the connection between Theorems 27 and 32. In case y is
a limit number, we have, as is well known, y = 2-y. Hence in this cage
the conclusion of 32(i) goes into 27(i"), and the! conclusion of 32(ii)
into 27 (ii"); at the same time the hypotheses of 32(i),(ii) can be con-
siderably relaxed.

Setting =1 in 31(ii), 27(il), and 32(ii), we obtain

CoROLLARY 33. Assume a;y > 2. We then have:

(1) a0spsaf < a0sy(1+3-a-B);

() if f#0 and y={y#0, then (1+0)0,s:(1+4) = (1+a)0,
(1+a-); ‘

(iii) if either a= Ja, or else a =2 and f= B +#0, or, finally,
azw, p£0, and y= [Jy # 0, then aOsyp1(1+ ) = a0y, (a-f).

In connection with 33(iii), recall that the formula y = | Jy always
implies y = 2.y (and conversely). Still simpler forms of 33 (ii), (iii) are
obtained when f > w, since then g = 1+ 4.

Corollary 33(i) throws some interesting light on the relationship
between the operations 0., and 0O,,.; for y > 2. Roughly speaking,
the two operations are equally powerful; neither increases essentially
faster than the other. More precisely, although O,.,.,; majorizes 0,., by
Theorem 8, 0., proves to be majorized by a simple composition of 0.,
0y, and O;. (Notice that this lagt remark applies also to the case y = 1;
in fact, by 3(iii), we have a0;8 < a0,(a0,p) for any a and B.) However,
no analogous connections hold between 0, and Oy, or Dbetween Os.,4;
and Oy,s for any value of y; cf. the remarks following Theorem 52 in
the next section. ’

The close relationship hetween operations 05, and 0Oyyy will be
further emphasized by the discussion in Section 3; it will be seen, e.g.
from Theorem 43 (iii), that in some constructions either of these operations
can be replaced by the other.

The fact that the operations 0, and Ooy41 have essentially the
same power may seem to be a defect of our construction. It appears that
each operation in our sequence beginning with 0, is unnecessarily dupli-
cated—an even operation O, by the corresponding odd operation Os.,.,

and conversely. It might even seem at first sight that the defect could

icm

©

Extended arithmelic of ordinal numbers 113

easily be removed by a simple modification of our basic recursion schema,
in fact, by changing Definition 1 in the following way:

(i) aOfp = a+p;

(ii) a07f = Uy<pr<y[2OF (¢ 05 n)].

(Another alternative would be to make corresponding changes
in 17(iv), (v).)

The matter, however, is not so simple. In the finite domain the
operations O} with y < « indeed prove to be of interest and, since they
avoid duplication, are probably more natural there than our original
Oys. (*) In the transfinite domain, however, the new operations prove
to be trivial. Consider, for instance, the case of y = 1. As is easily seen,
a0ff = a0,f for every finite § and even for f= o (a is arbitrary).
However, it is also easily seen that a0ff = a0t o for every f> w. The
situation deteriorates even further when we consider higher operations 0;.

In Theorem 32 we have established two limit type identities. These
are arithmetical equations involving two or more operations 0,, which
are satisfied for all argument values (with the possible exception of 0
and 1), provided, however, that one of the arguments is a limit ordinal.
In this connection we want to discuss here the problem of the existence—
in the extended ordinal arithmetic—of identities in the sirict semse, i.e.,
not subject to any restriction to limit ordinals.

Several such identities for the lowest operations are well known
from the traditional arithmetic of ordinals. These are:

(I) @04(B040) = (a0yB) Oqd.
(IT) @ 04(£046) = (a0, 8)0y(a0;6).
(ITL) a0,(80,6) = (a0,p)0,.
(IV) ¢0,(8000) = (2 0,$) 0,(20,0).
(V) @05(80,0) = (¢ 0,8)0,6.
In 3(iil) an identity for O, was given in which a constant numeral 1
occurred in one argument place; we exclude such identities from the
present discussion. However, with the help of 3 (iii) we can easily establish
the following identity:

(VI) a05(80,6) = (a038)05(a0y0).

The equations (I)-(III) are satisfied by all values of the variables
a, B, 6 without exception. On the other hand, (IV)-(VI) may fail for
the few smallest values of these variables, in fact, for 0 and 1. When
referring. here to some equations as identities (in the strict sense), we

(*) In the finite domain, the functions 0%, % < w, are essentially the same as
those used in Ackermann [1], in the construction of a computable function which is
not primitive recursive.

Fundamentia Mathematicae, T. LXV 8
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only assume that they hold for all sufficiently large finite ordinals and
for all infinite ordinals. It is instructive to examine similarities. and
differences between identities (I)-(VI) and the limit-type identities
39,(1), (i).

In addition to the identities listed above, there are some further,
more special and less familiarly known, identities which also involve
the operations O, and 0,. The commutative laws for 0, and O, are known
to fail in the ordinal arithmetic, but some particular cases and weak
consequences of these laws turn out to hold, for instance,

(a0,8) 00(a0o) = (8Os @) Oa(a00f) ,
(@0,8) 0y (a0, ) = (809} Op(a01f) - (%)

The situation changes radically when we turn to the next operation, 0,.
We do not know a single identity involving exclusively operations
0Oy, ..., 0y, Which is not a purely logical consequence of those identities
that involve exclusively operations Oy, ..., O3 (and which therefore remains
valid if O, is replaced by any other binary operation on and to ordinals).
The problem whether such identities exist is open. This problem can be
formulated more sharply if we are interested in all identities in the finite
domain, i.e., equations which are identically satisfied by arbitrary
(sufficiently large) finite ordinals. We can then supplement the list of
identities (I)-(VI) by three new formulas:

(VIT) a0yf = f0q0,

(VIII) a0, = f0saq,

(IX) (a0,a')0,8 = (a0,8)0,(a’ 0,f).

The problem now assumes the form: are there any identities in the
finite domain involving the operations Oy, ..., O, which are not purely
logical consequences of (I)-(IX)?

Our problem, in both infinite and finite domains, remains open if,
instead of O, ..., 0,, we consider operations O, ..,, 0, for any finite
y > 4. However, the answer to the problem proves to be affirmative
if we turn to operations with infinite indices. Here essentially. new iden-
tities do appear. We give some ingtances of such identities in Theorem 35;
they are simply particular instances of the limit-type identities from
Theorem 32, derived with the help of the following

IzmMa 34. If y2 0, 22, 822, and a= f= 2 does mot hold,
then 0,8 is a limit ordinal.

Proof. The proof is carried through by induction on y with an
”inner induction” on f. We begin with y = w. If a > 3 and f = 2, then

(*) Such ‘“unorthodox” identities for addition and multiplication were noticed
by Tarski several years ago.
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It =2 and p = 3, we have
20,3 = Ur<al(2002)0:2]= Ur<a(40:2),
and again we refer to 13. Next, assume f=n+1 and a0, is a limit
ordinal. Then a0uf= Ui<al(a0un)0;e], and, since (a047) Oga <
< (a0,%) 0,0, we also have
aomlS = UD<§<®[(a0w7)) 0;(1];

thus «0, 8 is a nnion of limit ordinals by 16. The case f = U B # 0 presents
no difficulty. Finally, assume that y > w and that the theorem holds
for each £ such that o <{ < y. Again we proceed by induetion on f.
In the basic cases, f = 2 and =3, we apply the inductive hypothesis
together with Definition 1(ii), and in the inductive step we use the in-
ductive hypothesis in combination with Corollary 16.

TEEOREM 35. If y> 0, f=1, a,d,f, 8" > 2, and neither a= a
=2 nor §' = " =2 holds, then

203, [B04(B 02y ")] = (2024 8) Oz (B 02 5")
(0025 @) Osp31(BO') = [(2020") 0254151 02, [ (¢ 02, a") O: '] -

Proof: by 34 and 32. v

Tt may be pointed out that none of the operations O, is commutative,
i.e., for no value of y is the equation

a0,8= 30,0

identically satisfied by all ordinals. For instance, it can easily be shown
that

.

(0+1)0,0 # 00, (w-+1)

for every y (cf. 29 and 4(ii)).
So far we have been concerned with the existence of identities in

-which no constant symbols denoting particular ordinals appear. In our

earlier discussion, however, we have come acCross several identities in-
volving constant symbols; cf.,e.g., 9 and 26. We shall conclude this section
by establishing in Theorem 37 another gimple; but not trivial, example
of such identities. To this end, we begin with a technical lemma.

LenMa. 36, If y = Uy # 0, then for every y' <y and any k<
there is a y'" <y such that x0y % < 30,2

Proof. Let » be the largest of the ordinals 2, x, and 2, ie.,
W= {2, %, =20xvi We have 30,2> o by Theorem 12, and
30,2 = \Ur<y(30;2). Thus, 830;2 > «' for some ¢ < y. Now we obtain

203 < ' Oy = # Op12 < (30;2)0y122 < (30:3)03,
where ' = (y'+1) v £. However, (30;3)0,3 is simply 30413 = 30p422.
/*
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THEOREM 37. For every y such that y = (Jy # 0 and every B we have
20,3+8)=30,(2+8)
and, more generally,
20,8+p)==x0,(2+§),
where » is any finite ordinal > 3.
Proof. Only the first equality need be proved, since the second

follows from it by Theorem 26 and an easy induction. We proceed by
induction on f$. If §= 0, then, on the one hand, we have

(1) 30,2 = U<y (30:2)

by Lemma 25. On the other hand, 25 also yields
20,3 = Ur<y[(20,2)0:2] = Us<,(40,2).

Hence, from 36 and the monotony laws we obtain

(2) 20,3 = [;<,(30:2).

(1) and (2) imply 20,3 = 30,2. Now suppose f = n-+1 for some 7, and
20,(34%) = 30,(2+n). Then, by 25,

30,24 7+1) = Us[(30,(2+m)0:2]
= Us<{(20,(3+1) 0;2]
=20,(3+7+1).

The case § = {_J B 0 is handled by a simple continuity argument, thereby
completing the induction.

Section 8. Main numbers

The notion of a main number was first introduced by Hessenberg
in [7]), page 578, for the operation of addition and then extended by
Jacobsthal in [8], page 153, to an extensive class of binary operations 0
on and to ordinals which, in particular, comprehends all the operations 0,.
The definition which we formulate below refers to all operations O on
£2x 2 to 2. In the general case it is not equivalent to the definition in [8].
However, the two definitions prove to be equivalent when applied to
the operations 0,.

DEFINITION 38. Let O be an arbitrary binary operation on QX Q
to Q. A main number of O is any ordinal 6 = w such that o , B < 6 always
implies aOp < 8. M(0) denotes the class of all main numbers of O.

The restriction of main numbers to transfinite ordinaly is more
a matter of convenience than necessity. Removing it would sometimes
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result in the inclusion of finite ordinals as main numbers; in fact 0 sould
be (trivially) a main number of every operation 0 on Qx 2 to 2, 1 would
be a main number of every operation 0,, and 2 of every operation 0,
with y > 1. No operation 0, would have, however, finite main numbers > 3.

THEOREM 39. Let O be any operation on 2x Q to O,

(i) For every ordinal a there exists an ordinal 8 > a such that 6 € I (0);
in other words, M (0) is not a set.

(i) If A is a non-empty subset of M(0), then | A e M(0); in other
words, M (0) is closed.

Proof. (i) Given any ordinal o, we define a sequence of ordinals
{O,)nce DY Tecursion:

oy=a,
Gup1 = (0x+1) © U< (EOn) for each < w.

Clearly, o, < 6,11 for x=0,1,.. Now let 6 = | J,<n0,. Then 6 > o, for
every x < o and, in particular, § > « = ¢,. Moreover, if &, 5 < §, there
are %, 2 << o such that £ < g, and # < ¢;. Setting u= » v 1, we obtain
sucessively

&<y,

§07 < o < Opye
and, finally,

. E0n<é.

Thus 6 ¢« M (0).

(ii) Let 4 be a non-empty subset of M(0). We have { JA > o> w
for every oed, whence | J4 > w. If &, 7 < | J4, then there is & ged
such that &, n < g; since g e M (0), we conclude that £0% < p and hence
EO0n < |JA. Thus |J 4 e M(0), and the proof is complete.

According to 39 the class M (0) satisties the premises of Theorem 22,
and hence there is exactly one normal function with range M (0). We
now define:

DEFINITION 40. For any operation O on 2 X 210  and any ordinal »,
the value at  of the unique normal function with range M (0) is denoted
by u(n, 0). The ordinal u(n, O)is referred to as the n-th successive main
number of 0. .

CorOLLARY 41. For any operation O on QX Q to Q we have:

(@) p(U T, 0)= Unerp(n, 0) for every non-empty set I' C 2;

(i) m(n, 0) = n for every ordinal =; :

(iil) &f 8 = (0, O), then there is ewactly one 5 such that u(y, 0) <8
< p(n+1, 0); in fact, w(n, O) is the largest main number of O which is <8,
and u(n+1, 0) is the least main number of O which is > §;

(iv) for every o there ewists n> 8 such that u(yn, 0) =1.
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Proof: by 20, 23, and 40.

We now turn to the discussion of properties specific to the main
numbers of the operations 0,.

THEOREM 42. (i) All main numbers of O, are limit numbers.

(i) If v < w, then the least main number of O, is w; in other words
10, 0,) = o.

Proof. These are easy consequences of the monotony laws and 2 (iv)

TaEOREM 43. (i) If y <y', then M(0,)D M (0,).

(i) M(0¢) D M(0,)D M(0y).

(iii) If v = 1, then M (0s,) = M(Ospi1).

Proof. (i) is immediate from the monotony law 8, and (ii) is a result
from the traditional arithmetic. M(0,.,) = M(0z.,41) for y = 1 follows
from (i), 3(ili) (in case y = 1), and Lemma 31 (in case y > 2).

Some important supplements to this theorem will be provided later
in 52 and 57.

In the next three theorems we give new characterizations of the
classes M (0,), different from the one that was used in our general de-
finition of main numbers. ,

THEOREM 44. For any & and y the following conditions are equivalent:

(i) &€ M(0,);

(ii) =2 and &+ a0f for all a,f <& and & <.

Proof. If (i) holds, then £ > » by 38 and, a fortiori, & > 2; moreover,
for any a, f < § and { <y we have £ ¢ M(0;) by 43 (i), whence a0,f < £
and £ # a0;f. Thus (i) implies (ii). ‘

To establish the implication in the opposite direction, suppose to the
contrary that, for a given y, (i) holds while (i) fails; we may assume that ¥
is the least ordinal such that .

@ E¢ M(0,).

By (i), £>2, and &+ a+p for any o, < & Hence, clearly, £ > .
Together with (1) this implies the existence of two ordinals a and £ such
that

(2) ‘ a,B< &
and .
(3) ' E<a0,p. - :

By fixing a we can assume that 5 is the least ordinal satisfying (3). By (2),
there is an ordinal §' such that £ = a+ g, If y were equal to 0, (3) would
give a+p" < a+p and hence §’ < B; thus, in view of (2), we would have
b=1a(.—i.-) B with a, g’ < £, which contradicts (ii). Therefore y s 0. Hence,

y L{u), ’ ’ ’ '

(4) » 20, = Uﬂ<ﬂ,t<v[(a0777) 0;a].

©
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(ii) and (3) imply
(5) E<a0,p.
From (4) and (5) we conclude that
(6) &= (a0,7)0za

for some 7 < 8 and { < y. We have, however, & M(0;) by (1) and the
minimality of y; also, a0,n < & by (3) and the minimality of 8, and a < £
by (2). Consequently, in view of 38,

(7) (a0,n)Ora < &.

By (6) and (7) we have again arrived at a contradiction. Thus we must
assume that (ii) always implies (i), and the proof has been completed.

COROLLARY 45. (i) & € M(0,) if and only if £ 5= a0, for all a, f < &,
and & e M(0;) for every ¢ < y.

(i) e M(0y41) if and only if &e M(0,) and &+ a0,y f for all
o, f<é.

Let us say that an ordinal £ is O,-indecomposable if & # a0, 8 for
all a, B < & Theorem 44 can then be expressed in this way: the main
numbers of O, are just those ordinals which are O,-indecomposable for
every { < y. From Corollary 45(i) we obtain at once the following result
of the traditional arithmetic (cf. [12], p. 279): the main numbers of addition
are just those ordinals which are additively indecomposable. It is known
that this result cannot be extended to 0,, i.e., multiplication; for example,
o+1 is multiplicatively indecomposable, but clearly w--1¢ M(0,).
A generalization of this counter-example shows that the result in guestion
does, not extend to any operation 0,, y > 1.

THEOREM 46. For any & and y the following conditions are equivalent:

(i) &< M(0,)

(i) £=3 and a0,& = & for every a such that 2 < a< &.

Proof. In case £e¢ M(0,) and 2 < a < & we have by 42(i) -

80,6 = Up<e(aOym) .

Now a0,n < & for each 1< £ 80 a0,& <§&; the equality then follows
from 7. Of course, £ ¢ M (0,) implies £ > 3. .

Next assumeé that (ii) holds. That (ii) implies (i) in case y =0 is
known from the traditional arithmetic; accordingly, we may assume
y21 Let o, <& if a< 2, then a0, < £ follows from Corollary 2.
If a >2, then, by the strict monotony law 4(ii) and our assumption,

a0, f < a0,f=§.
To establish & e M(0,), it remains to prove that £ > w; in fact, we shall
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show that & = | & For, if & = -1 for some 5 < &, then, by the monotony
laws,

20,6 > 20,(n+1)=2n+2> ¢,
which contradicts our assumption.

This theorem shows that our general definition of main numbers,
when applied to the operations 0,, is essentially equivalent to the definition
in [8], p. 1563. For y = 0, 1, 2, Theorem 46 is well known from the literature,

In application to the operations O, with y > 2 Theorem 46 can be
improved as follows:

" TuworEM 47. Let y =
then the conditions

(i) te M (Ov);

(ii) a0, &= ¢
are equivalent. In particular, for y

(') 20,6 = & 0 ,

Proof. Assuming y > 2, we shall first show that (ii') implies (i)
For y =2 this is a familiar result of the traditional arithmetic. Let
y = 2-{ for some { > 2, and assume (ii'); we wish to prove that £ and y

-gatisfy condition 46 (ii). We have & > 3 by 2(ii), (iii). Consider any ordinal «
such that 2 < a < &, Since, by 7 and 8, e
£=20206220¢ 2 £,

we conclude that & € M(0,) and therefore & e M(0,). With the help of 32
and 42(i) we get

2. If a is any ordinal such that 2 < a < ¢,

> 2 condition (i) 8 equivalent to

00506 < (20200) 05,06 = 205 (a+ &)
since a < & e M(+), we have a+ £ = & (by 46 with y = 0), and we obtain
a0 8 <2058 = £ < a0yE,
80 that a0s.;& = & Thus, for y = 2-{ and ¢ > 2, (ii’) indeed implies 46 (ii),

and hence, by 46, it implies condition (i) of our theorem. Finally, let
y=2-{+1 for some { > 1. We notice that
202041622058 2 £

Therefore, assuming 20z.;11& = £, We obtain 20,.£ = £, hence & € M (Oy)
by what was proved above, and & ¢ M(0ypyy) by 43 (iii). S

We see that (ii') always implies (i) for y > 2. The implication in the
opposite direction follows immediately from 46, so that (i) and (ii’) turn
out to be equivalent.

We can now easily establish the equivalence of (i) and (i) for any
given a such that 2 < a < & On the one hand, (i) implies (ii) by 46. On
the other hand, (ii) yields

E<20,6<a0,E=¢,

©
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whence
2 O;v§ = E 3
and we get (i) by the first part of our proof.

The ordinals &> o which satisfy condition 47(ii') for y =2 are
referred to in the literature as epsilon numbers. Thus, in case y = 2,
Theorem 47 expresses the well-known result that the main numbers of
exponentiation are just » and the epsilon numbers.

It is a familiar fact of the traditional arithmetic that an enumeration
of the main numbers of addition and multiplication can be obtained
with the aid of exponentiation; specifically, u(7, 0,) = @'+ and u(y, 0,)
= o*". The following Theorem 48 and its corollary show that the ability
of higher operations to express the main numbers of lower ones is preserved
throughout the entire transfinite hierarchy of operations O,.

To understand properly the meaning of our next theorem, recall
that for any given ordinals a, y there is a uniquely determined ordinal »
such that u(v, 0,) is the smallest main number of O, which exceeds a;
cf. @orollary 41. Hence the function v,, such that w,,(n) = p(»+7, 0,)
for every z enumerates all main numbers of O, that exceed a.

THEOREM 48. Given a > 2 and y, let p(v, 0,) be the least main number
of O, exvceeding a. For every ordinal 5 we the'n. have

@) pr+n,0,) = a0,10"7 for y=0,1;

@y p(v+n, 0,) = p(r+n, Opp1) = a0,safw- (14
for some ¢ = 1.

Proof. We first assume » = 0. For (i) we appeal to the traditional
arithmetic; we recall that a0, w, resp. aO,w, is the least main number
of Oy, resp. 0,, which exceeds a. Now suppose that { > 1 and y = 2,
Using 3 (iii) and 31(ii), it is easy to show by induction that, for any x < w,

)] in case y=2-0

aOyion < p(v, 0,),
whence

a0, 00 < u(v, 0,).
Of course, a0,.s0> a, 350 we need only show that «0,,0 € M(0,). If
a’y B< a0,420, then there is a » < w such that both o' < a0,.2x and
< a0,1:2. Hence

@' 0y < (00,42%) 0,(a0y12%) = (2 0yy2%) 0112
<{a0y42%) Opra = 0 0yp2(x+1)
< a0,
and it follows that a0, ;.0 € M(0,).

We proceed by induetion on 7. Suppose that n = %'+1 for some 7,
and that

l‘(v+77” O-y) = a07+2[w‘(1+ 77)] .
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Now u(r+%'+1,0,) is the least main number of O, which exceeds
u(v+n',0,); hence, by the inductive hypothesis and the argument above
for the case = 0;
uv+1+1, 0,) = [a0y4s[@ (1+7)]]Opize0 .

Sinee y+2 = 2-({+1), the limit type identity 32(i) now yields:

/-L("’“{“ny Ov) = 110.,+2[(1)'(1+ 77,)+ L!)] = (101,.;,2[(0‘(1—!-77)] .
A simple continuity argument suffices for the case n=|J5 % 0. To
complete the proof we notice that, in case y =2-{ and { > 1, u(v+19, 0,)
= u(v+1, Oy11) by 40 and 43(iii).

Theorems 46 and 47 have revealed the close connections between
main number of the operations O, and fixed points of the functions ¢,,
defined by ¢.,(n) = «0,7. In fact, Theorem 46 shows that an ordinal ¢
belongs to M (0,) if and only if it is a common fixed point of all functions ¢,
with 2 <a< & In case y >2, Theorem 47 gives a stronger result:
§e M(0,) if and only if £ is a fixed point of any one function ¢,, with
2 < ¢; in particular, for a = 2 (or for any finite a > 2), M(0,) coincides
with the class of all fixed points of g,, . In view of this, Theorem 48 provides
an enumeration of the fixed points of any function @,, with a,y > 2.
In fact, the nth consecutive fixed point of g, is a0,4;[@-(L+n)]in case y
is of the form 2 -{+1, and is a0,12[w:(1+ 7)] otherwise; and, in particular,
the smallest fixed point of @,, is O,y or a0,s0. In case y = 0 or

y =1, the enwmerating formulas are different: it can easily be shown -

that the nth fixed points of .o and @, with «> 2 are, respectively,
a-o+n and «-(1+ 7).

CoroLLARY 49. (i) If y=0,1, then u(y, 0,)=20,.[0 (1+17)]
= 00,42(1+7); )

(i) If y=2- for some { > 1, then #@, 0y) = u(n, Opa) = 20, 12[w-
(1+77)] If, in addition, y < o, then u(n, 0,) = p(n, Op41) = ©0,15(1+ 1),
while if v > w, then u(y, 0,) = u(y, Op41) = @ 0y15(2+1).

Part (i) of 49 is well known from the traditional arithmetic of ordinals;
recall that wOy(1+ %)= «*". From part (i) with (=1 it follows that
the nth epsilon number is simply o 0;(2- 7).

COROLLARY 50. Assume that f= | § and that ¢ is the largest main
number of O, such that ¢ < a. We then have:

(1) a0psaf = 00,518 if y= 0,1;

(i) aOpi2f = 00y42B if y=2-¢ for some ¢ > 1.

Proof: by 48, using the elementary fact that = \Jp it g is of
the form w-7. .

From 49 and 47 we readily obtain a new characterization of the
main numbers of 0,4s:
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TueoREM 51. If &> u(0,0,), then &eM(0,10) if and only if
/‘(5 9 01') = f .

Proof: by 47, 49, and 43.

THEOREM 52. For every y > 1 we have:

(i) M(0sy) = M(02431) D M (0sy10);

(ii) &e M(0x,) if and only if & = a0s,ypef for some a = 2 and some f
such that §={JB #0.

Proof: by 43(iii), 51, and 49.

From Theorem 52 it is easily seen that no operation Os,.» can be
majorized by a composition of operations O, with lower indices. This is
in striking opposition to the property of the operations 0,.,.; expressed
in Corollary 33(i) and discussed. in the remarks following that Corollary.

In the last portion of this section we deal operations O, in which
the index p is a limit ordinal. We shall be interested in main numbers
common to all operations O;, { <y, and we shall exhibit a function
enumerating all such main numbers. As a consequence, it will turn out
that, contrary to what one could except, the class Me<y M (0;) does not
coincide with the class M (0,), but includes the latter as a proper part.
In fact, we shall see that practically all ordinals in the range of O, belong
to Me<, M(0y).

Lemwa 53. If y= (Jy #0 and a > 3, then a0,2 is the least element
of MNie<y M(0;) which exceeds a.

Proof. Let & = (i<, (a0;w). It is easy to show that, if & € () ;<,M (O,
and £’ > a, then ¢’ = &. Using the monotony laws, 47, 43(i), and 39(ii),
we can also prove without difficulty that £ ¢(),<, M(0;). Now, in case
a > w, we get by Lemma 25 and the monotony laws

00,2 = i<y (aOr) = E.
If, on the other hand, a < w, then, by Theorem 37, a0,2 = 30,2, while

by 28 and an easy induction (and because w ¢ M(0,) in case ¢ = 0), we
obtain

20w =380;0 for any {.
Thus,. to establish 20,2 = £ in case a < o, it suffices to show that
1y . 30,2 = | ;<u(30; ) .

By the continuity law 21(i) we have

Us<ol80; 0) = Ur<an<a(30:%) .

Lemma 36 shows that for all ¢, x < o there exists {' < o such that
30;:% < 30.2; hence,

Ut<a(80;0) = Ur<a(30;2) .
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The right-hand side of this equation is equal to 30,2 by Lemma 2'3,
this establishes (1) and completes the proof.

THEOREM 54. For every o> 3 and every y such that y= ]y 0
the following conditions are equivalent:

) EeMNey M(0;) and &> a3
(i) &= a0,(24n) for some 7.
Proof. First, assume that & satisfies (i). The function ¢ detined by
@(n) = a0,(24+)
is'a normal function, so by 20(iii) there exists exactly one #, sueh that
a0,(2+n) < E< a0,(2+7+1). B
According to Lemma 33, the least element of (M,<, 4 (0;) which exceeds
a0,(2+7,) is [a0,(2+7)]0,2, and by Theorem 27(i) we have
[a0,{24+%)]0,2 = a0, (24 5,+1) .

Thus, & > a0,(2+1,) cannot hold, and we conclude that & = a0, (2 7).

To show that (ii) implies (i), we must prove that a 0, (24-1) € ()<, M (0;)
for every 5. This is easily done by induction on %, using 53 and 27.

From Theorem 54 we see that, under the hypothesis of this theorem,
0,(247) is the nth successive element of (.., M (0;) which exceeds a.

COROLLARY 55. For every y such that y = |y # 0 the following con-
d‘itions are _equivalent:

) €My M (0);
( ) £=230,(24+1n) for some n.
In connection with Corollary 55 compare 37.

CorOLLARY 56. If y= | Jy #0, and either a>3 and B =2, or

a2 and >3, then a0,p e \o<, M(Oy).
Proof: by 54 and 37.
From this corollary it follows immediately that, under its hypothesis,

the formulas o, ' <00, and y' <y always imply a'O,f8 < aO,f.

This consequence is clearly related in its character to the monotony laws
of Section 1 and can be compared with Theorem 9 and Corollary 2 (iv).
CoroLLARY 57. Whenever y = |Jy # 0, we have ()<, M (0;) D M(0,)
Theorems 43, 52, and Corollary 57 exhaustively describe the inclusion
relations between the classes M (0,).

Appendix

The result{s of this paper form a base for a study of a number 6f
met.amathematlcal problems concerning the extended arithmetic of
ordinals. To formulate these problems precisely, we need some additional
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notations. For more information concerning the notions wused in this
appendix the reader may consult [13].

With any given ordinal y we correlate a definite algebraic structure O,
formed by the eclass @ of ordinals and the sequence of operations Oy, ..., 0,3
symbolically,

O, = 8,005 ey Op) = L, Ogdey -

By T, we denote the elementary (first order) theory of O,. In addition,
let O denote the relational structure formed by £ and the ordinary < re-
lation between ordinals, O = <@Q, <), and let T be the elementary theory
of O.

" Mostowski and Tarski have jointly obtained a number of results
concerning the theory T, some of which are stated in their abstract [10].
In particular they have established the following facts:

(I) Every ordinal ¢ < w® is definable in T. In other words, for every
@ < o® there exists in the language of T a formula ¢ with one free variable
such that a is the only ordinal that satisfies p. Moreover, a is intrinsically
definable in T in the following sense: the formula ¢ can be constructed
in such a way that the ranges of all bound variables are restricted to
ordinals smaller than . For instance, if « =2, we can take for ¢ the
formula:

e Hg'n[§<a/\1]<(!/\E?én/\‘Vg(:<l1‘>::§\\/C:7i)}'

(II) No ordinal a > w* iy definable in T.

* (III) There are proper substructures of O which are models of T,
and the smallest of them is {w®, <). Thus, O and {w*, <) are elementarily
equivalent; actually O is an elementary ertension of {w®, <j, in the sense
of [14].

(IV) For any two ordinals a and §, the structures <a, <) and {8, <)
are elementarily equivalent if and only if « and f§ are congruent modulo
w®, i.e., there are ordinals &,1,6 such that 6 < w®, a= w*-£+6, f=
w*-5n-+ 98, and either &= 5= 0 or both £+ 0, » # 0.

The main question in which we are interested here concerns whether
and in what form the results (I)-(IV) can be extended to the theories T,.
Tarski has shown that (I) holds for every theory T, if the ordinal o~ is
replaced in it by w(w=, 0,) everywhere, and, of course, T is replaced
by T,. He also has conjectured that the same applies, with appropriate
changes, to the results (II)-(IV). The changes are as follows: in (II) they
are the same as in (I); in (III) O, T, and {w®, <> are respectively replaced
by Oy, Ty, and {u(0®, 0y), Opdreys i (IV) o, <> and {B, <) are re-
spectively replaced by {u(a, 0,), Ocdeey and (u(f, 0y), Otde<y- Everything
else in (IL)-(IV) remains unchanged.
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In [3] Ehrenfeucht confirmed Tarski’s conjectures for y = 0 and
» = 1. Actually, he has obtained stronger results by showing that (II)-(IV)
apply not only to elementary theories T, Ty, and T, but also to the
corresponding weak second-order theories (with two kinds of variables,
those of the first kind ranging over ordinals, and those of the second
kind over finite sets of ordinals).

Doner has extended all the results of Ehrenfeucht to theories T,
with arbitrary indices and to the corresponding weak second-order
theories. A paper with a detailed presentation of Doner’s results is being
prepared for publication. .

In our final remarks we restrict ourselves to structures O, and
theories T, with finite indices y. From the results of Ehrenfeucht and
Doner (and some other results well known from the metamathematical
literature) it easily follows that with every sentence o in the language
of T, we can recursively correlate a sentence o* with the following pro-
perties: o* is formulated in the language of T,, the ranges of all variables
are restricted to ordinals < w, i.e., natural numbers, and the equivalence
0+ ¢* is valid in T,. (Roughly speaking, o* is a sentence in the language
of elementary number theory which is equivalent to o.) It seems natural
in this context to consider a subtheory T, of T, whose construction is
entirely analogous to that of Peano’s arithmetic, the familiar axiomatic
subtheory of elementary number theory. Just as Peano’s arithmetic, T} is
based upon a recursive axiom system whose main components are regursive
definitions of the operations Oy, ..., 0, and the schema of induction (in
this case, of transfinite induction). Tarski has conjectured that the equi-
valence ¢« o* is not only valid in T,, but also provable in T,. This
conjecture has also been confirmed by Doner.

To conclude, we may call to the reader’s attention that the problems
on the existence of identities discussed in Section 2 have also a ‘““imeta-
mathematical flavor” and their solution may require meétamathematical
methods.
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