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The range of a planar function with ambiguous points
by
J. Gresser (Milwaukee, Wis.)

By an arc 4 at a point £ in the plane P we shall mean a simple con-
tinuous curve z= z(f) (0 <t< 1) such that 2(t) #¢ for 0 <t<1 and
limz(t) = . Let w = f(2) be an arbitrary single valued function mapping P

itnéo itself. If A is anarvc at £ ¢ P we define the cluster set of f at £ along 4,
denoted by Cua(f, £), to be the set of all values a such that there exists
a sequence {z,} on A with z—{ and f(z)—>a. We call £ an ambiguous
point of f if there exist ares 4 and A’ at { such that Ca(f, %)~ Oulfs O
— 0. If in addition A and A’ are rectilinear segments having opposite
directions then ¢ is called a rectilincarly oppositely ambiguous point, and
the angle 6 between A or A’ and a horizontal line shall be called the
corresponding direction of ambiguity. We shalllet f(r, s) denote the following
sentence: Given the distinet directions 8y, 6s, ..., 0,, there exists a single
valued function f having a range of at most s values, such that every
point in the plane is a rectilinearly oppositely ambiguous point of f with
at least one of 6y, 0y, ..., 6, as direction of ambiguity.

The intent of this paper is to answer a question which arises from
the following two theorems.

THEOREM 1. If 2 < 8, then f(3,4) [1].

THEOREM 2. If 2% < N, then f(n-+2,2"*"—1) [2].

Tt is evident that for n = 1 Theorem 2 is & weaker form of Theorem 1.
We intend to show that Theorem 2 remains true for a range of 2"+ values.

Let X, be the set consisting of all n+ 2 tuples of the form (Jus Jay -
wey ity By Jrgny ey Juye) Where k= 1,2,3, .., n+2 and each j; is zero
or one. For any n+2 tuple of the form (ji, jos s jn+2) Where each j; is
zero or one we define the subset B(jy, ja; -y jn+z) Of Xy to consist of the
elements

(L5725 Jas wes Jntz) s
(jl’2!j31 R ] jﬂ-"z)?

(J1s Jas Joy +oes Jnyiy B+ 2).
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Let Blz B(jx;jz: "'7.7"11%'2) and BZ = B(ﬁ’ .727 "'7.7.7’L+2)- It ]z # j; for at
least two values of ¢ then B; n By = @.

LA, Let Yu be the set of all n-+2 tuples having coordinales that
are zero or one. For any natural number n, there exists a subset 4, of ¥y,
containing exactly 2 elements, such that any two clements of An differ
in at least two coordinates.

We shall actually prove the existence of two such disjoint sets, both
satisfying the conditions of the lemma, and our proof is by induction.

For n=1 let A4,={0,0,0),(0,1,1),(1,1,0),(1,0,1)} and
B,={{1,1,1),(1,0, 0),(0,0,1),(0,1, 0)}. Then A By =0 and 4,
and B; both satisfy the conditions of the lemma.

Let n>1 and suppose 4, and B, are disjoint sets, both satisfying
the conditions of the lemma. Let )

O = {(J1) Jo weey Juvzy ON(Jry Jas oy Jnie) € An}

D= {(J1, 2y -5 Jnte, 1)[(d1y Jay ey Jure) € B},

E= {(jlajzv very Jntes 0){( 15 Jas weey Jutn) € B},

B = {(Js, Jay vy Jutn, D5 Jay vy Jnte) e A}
and set Ayyi= Cw D and Bupa=E v F. Then Aup1n Bypa= 0 and
both satisty the conditions of the lemma, which completes the proof.

Now associated with the 2™+ elements of 4, there arve 2"* sets of
the form. B(jy, Jay ey jntz) Where (Ji,Jay -y ure) € An which for con-
venience we label arbitrarily as By, Bs, ..., Bet:. By the above comment

the By's are mutually disjoint since elements of 4, differ in at least two
ont1

coordinates, and so | Bs has (n-2)2" "elements. Since Xy has (n-+2)2"*
=4

on+l

elements, it follows that X, = | B:.
=1

THEOREM 3. If 2% < 8, then f(n+2,2""Y).
Proof. With the above work behind us our proof essentially parallels
the proof of Theorem 1. By a theorem of Davies [3] the hypothesis implies

n+2 5
that P = |J E; where the E,’s are mutually digjoint and every line having
i=1

direction 6; intersects X; in at most finitely many points. Let I be any
line in the plane. We impose an ordering on L as follows. For 2,2 e L
2 < # if either Tm(2) < Im(2’) or if Tm(2) = Im(2') and Re(z) < Re(z').
Let L{6;) be any line in the plane having direetion 0;. Then L(0;) inter-
sects Ej in only finitely many points which we label as 6, < €3 < €3 < ...
< em. Liet z € L(6;). We call z a class zero point with respect to By if either
<0, b < B < gy 8 <2< gy ey bp <2< €1 (p<m and p even) and
we call z & class one point with respect to By if either e, < 2 < €5, 63 < 2 < €4,
05 <2< €y bp <2< lpr (p<m and p odd). For p=m we define

©
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ep < 2 < py1 0 mean e, < 2. If L(0;) ~ Ej is empty then we call z e L(0y)
a class zero point with respect to E;. We have thus partitioned every
line in the plane having direction 0,, 0,, ..., 042 into alternating intervals
of class zero or class one points. Now let z ¢ P. Then z ¢ E; for some unique k.
Through z construet the (n-+1) lines having directions 0; with j # &,
say L(6;) (j # k). For each j # & since 2 ¢ By, z i3 a class zero or a class
one point with respect to E;. We define the correspondence ¢ mapping
the plane into X, by @(2) = (Jiy Jay eors Jr=1y By Jrt1y «ory Jnse) Where 2 e By
and 2 is a class j; point with respect to H; (1 & k).

Using the By's defined previously and the correspondence ¢ we are
now ready to define our function f. For z € P define f(2) = j where ¢ (2) ¢ B;.
The function f is clearly single valued and has a range of at most 2"
values.

Let z € P. Then 2 € K, for some unique k. Let L(0x) be a line segment
with direction 6, containing z in its interior and small enough so that
it intersects Ej in no other point. Let 2, 2, € L(0;) with 2, < 2 < 2,. Then
®(z,) and @(z,) differ in their kth coordinates. We assert that f(z) # f(z),
for if not f(2) = f(z) =7 implies that ¢(zy), ¢(2,) ¢ B; and since ¢(2;)
and @(2,) differ in their kth coordinates it follows from the definition of B;
and ¢ that one of the elements 2; or z, must be in F;, which contradicts
the definition of L(6). Thus if we let 4 and A’ be the arcs at z determined
by the two sides of L(0:) we see that C4{f,2) n C4(f,2) = O and hence 2
is a rectilinearly oppositely ambiguous point of f with 0 as direction of
ambiguity. .

It remains an open question whether the range can be reduced further.
The function we have defined in Theorem 3 depends upon the partition
of X, into the 2"*' disjoint sets B; and the question immediately arises
a8 to whether or not we can find a partition of X, into say m disjoint
sets, with m < 2"%', that would yield a function satisfying Theorem 3
but with a range of at most m values. It can be shown however, that such
an accomplishment would require additional, as yet unknown, information
about Davies’ decomposition of the plane mentioned at the beginning
of the proof of Theorem 3.

There is in fact reason to suspect that the range cannot be further
reduced. We define the minimal range as the smallest number g, such
that 2% =, implies that f(n-+2, gs). It has been shown in [1] thatb
there does not exist a function having & range of three values or less
such that every point in the plane is a rectilinearly oppositely ambignous
point. Note that we make no restriction here on directions of ambiguity.
Thus ¢, = 4 and so Theorem 3 is minimal for » = 1.

The reader is referred to [1] and [2] for other interesting theorems
on the subject. In particular f(n-+2,s,) implies that 2% < %,, so that
the converses to all the above results hold.
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On countable multiple point compactifications *
by
A. K. Steiner and E. F. Steiner (Ames, Iowa)

Throughout this paper a space X always denotes a Tychonoff space
and X a Hausdorff compactification of it. The Stone—Cech compac-
tification will be denoted by fX. Countable will mean countably infinite.

In [4], Magill characterizes those spaces X which possess finite com-
pactifications (i.e. |X —X| is finite) and in [3], those which possess coun-
table compactifications (i.e. | X —X| is countable). A much wider class
of compactifications consists of those having & finite or countable number
of multiple points as defined by Njastad, [6].

In Section 1 of this paper we show that every non pseudocompact
space has countable multiple point compactifications. It then follows
that although the Ruclidean n-spaces do not admit countable com-
pactifieations (cf. [5]) they do have countable multiple point compactif-
jcations. Section 1 will also provide examples of spaces X such that
|X —X| is infinite yet X does not possess a countable multiple point
compactification. These examples are obtained by using the fact that
for any space ¥, there exists a space X such that X —X =77
(cf. [2], p. 133).

Recent work (cf. [1], [3], [6], [7], [8]) has shown that many com-
pactifications are of the Wallman-type (henceforth called Wallman
compactifications) as defined by Frink [1]. In [6], Nijastad shows that if
the set of multiple points in X is contained in some subset of X —X which
is normally and zero-dimensionally embedded in X, then X is a Wallman
compactification. It follows that all finite multiple point compactifica-
tions are Wallman. The authors, in & previous work [8], have shown that
every countable compactification is Wallman. The purpose of Section 2
is to generalize this by showing that all countable multiple point com-
pactifications are Wallman. Since there are examples where the countable
set of multiple points is not contained in any subset of X —X which is
normally and zero-dimensionally embedded in X, this does not follow
from the theorem of Njastad.
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